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PROJECTIVE BUNDLES ON INFINITE-DIMENSIONAL
COMPLEX SPACES

E. BALLICO

Abstract. Let V be a complex localizing Banach space with countable un-
conditional basis and E a rank r holomorphic vector bundle on P(V ). Here
we study the holomorphic embeddings of P(E) into products of projective
spaces and the holomorphic line bundles on P(E). In particular we prove
that if r ≥ 3, then H1(P(E), L) = 0 for every holomorphic line bundle L on
P(E).
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1. Introduction

For any complex vector space let P(V ) be the projective space of all one-
dimensional linear subspaces of V . Unless otherwise stated all cohomology
groups of sheaves are sheaf cohomology groups or, equivalently because P(V )
is metrizable and hence paracompact if V is a Banach space, Čech cohomology
groups. In this paper we prove the following geometrical properties of the
complex manifold P(E). For the notion of localizing complex manifold, see [9],
p. 509; we just note that V is localizing if and only if P(V ) is localizing.

Theorem 1. Fix an integer r ≥ 2. Let V be a localizing Banach space
with countable unconditional basis and E a rank r holomorphic vector bundle
on P(V ). Set X := P(E) and let π : X → P(V ) be the projection. Call O(1)
the tautological line bundle on X with degree one on each fiber, i.e., the only line
bundle on X such that π∗(O(1)) ∼= E. We have Pic(X) ∼= Z⊕2 and we may take
π∗(OP(V )(1)) and O(1) as a basis of Pic(X). If r ≥ 3 we have H1(X, L) = 0
for every L ∈ Pic(X). If r = 2 we have H1(X, L) = 0 for every L ∈ Pic(X)
such that the degree of L with respect to the fibration π is at least −1.

Theorem 2. Fix integers r ≥ 2, s > 0, n ≥ 0, infinite dimensional Banach
spaces V , V1, . . . , Vs and a rank r vector bundle E on P(V ). Assume that V is
localizing and with countable unconditional basis. Then:

(a) If E � OP(V )(t)
⊕r for any integer t there is no closed embedding j :

P(E) → P(V1) × · · · × P(Vs) × Pn such that j(P(E)) has finite codi-
mension.

(b) Let j : P(E) → P(V1) × · · · × P(Vs) × Pn be a closed embedding such
that j(P(E)) has finite codimension. Then E ∼= OP(V )(t)

⊕r for some
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integer t (i.e., P(E) ∼= P(V ) × Pr−1), s = 1, n ≥ r − 1, V1
∼= V ⊕Cx

for some integer x ≥ 0 and j embeds linearly each slice P(V ) × {P},
P ∈ Pr−1, as a codimension x closed linear subspace of P(V1)×{Q} for
some Q ∈ Pn.

Remark 1. Take V and E as in the statement of Theorem 2 with E �
OP(V )(t)

⊕r for any integer t. By part (a) of Theorem 2 the ” algebraic manifold
” P(E) cannot be embedded as a finite codimensional closed analytic subset in
any finite product of projective spaces.

2. The Proofs

Lemma 1. Let V be a Banach space. Then H2(P(V ),Z) ∼= Z and any
hyperplane of P(V ) induces a generator of H2(P(V ),Z).

Proof. Since the result is well-known when V has finite dimension, we may
assume that V is infinite-dimensional. By [13], Proposition 1.2, all cohomology
groups of V \{0} vanishes. We point out that for several infinite-dimensional
Banach spaces (e.g., if V is a Hilbert space) V \{0} is homeomorphic to V ([7])
and even diffeomorphic to it ([4] or see [8], p. 21); every separable Banach
space is homeomorphic to the separable Hilbert space; it easily follows that
any separable Banach space V is homeomorphic to V \{0} and hence V \{0} is
contractible. There is a locally trivial fiber bundle m : V \{0} → P(V ) with
C∗ as fiber. Since H2(V \{0},Z) = 0, the Leray spectral sequence of m gives
the existence of an injective homomorphism H2(P(V ),Z) → H1(C∗,Z) ∼= Z.
Hence to check the lemma it is sufficient to show that the class a ∈ H2(P(V ),Z)
represented by a hyperplane H is not torsion. Take a line D ⊂ P(V ) not
contained in H. Thus H∩D is a point, P . By the controvariance of cohomology
groups the class a induces a non-zero multiple of the class b represented by P
in H2(D,Z. Since H2(D,Z) ∼= Z and b is a generator of H2(D,Z), b is not
torsion. ¤

Lemma 2. Let U be an open subset of a Banach space and m, k non-negative
integers with m + k > 0. Let f be a holomorphic function on U × (C∗)k ×Cm.
Then there is a Laurent expansion

f =
∑

i1∈Z,...,ik∈Z,j1≥0,...jm≥0

ai1,...,ik,j1,...,jmzi1
1 . . . zik

k zj1
k+1 . . . zjm

k+m (1)

in which each ai1,...,ik,j1,...,jm is a holomorphic function on U . For all subsets
A, B of {1, . . . , k} let

∑
A(≥0),B(<0)[f ] be the formal expansion given by (1) in

which every index i ∈ A varies only on the set of all non-negative integers and
in which every index i ∈ B varies only on the set of all negative integers. Then
the expansion

∑
A(≥0),B(<0)[f ] defines a holomorphic function on the product of

U , C∗ for every i ∈ {1, . . . , k}\(A ∪ B), C for every i ∈ A and P1\{0} for
every i ∈ B.

Proof. It is sufficient to use the classical proof by integration of the Laurent
expansion in finitely many variables, just as done in [12], 45–52, for the Cauchy
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formula. Just to simplify the notation we will only write down the case k = 1
and m = 0. Fix a ∈ C∗ and integrate f(w, z) with respect to the variable z in
the union of a circle centered at 0 and with large radius going counterclockwise
and a circle with center at 0 and small radius going clockwise. ¤

Remark 2. Let V be a localizing Banach space. By [1], Remark 5, for every
integer t we have H1(P(V ),OP(V )(t)) = 0 (sheaf cohomology).

Remark 3. A Banach space V has countable unconditional basis if and only
if V ⊕C has countable unconditional basis.

Unfortunately, since in Remark 2 we are able to handle only the first coho-
mology group, in this paper we will use only the case q = 1 of the following
result.

Lemma 3. Let M be a complex manifold locally modelled over open subsets of
a Banach space with countable unconditional basis and E a rank r holomorphic
vector bundle on M . Let f : P(E) → M be the projection. Then Rqf∗(O(t)) = 0
for every pair (q, t) of integers such that either 1 ≤ q ≤ r−2 or q ≥ r or q = r−1
and t ≥ −r + 1.

Proof. It is sufficient to prove that for every pseudoconvex open subset U of
a Banach space with countable unconditional basis and every such pair (q, t)
we have Hq(U × Pr−1, π∗2(OPr−1(t))) = 0, where π2 : U × Pr−1 → Pr−1 is the
projection. We may find a finite open covering U of U×Pr−1 such that any finite
intersection of open subsets of this covering is isomorphic to U × (C∗)k × Cm

for some non-negative integers k and m with k + m = r − 1. By Remark 3 for
all non-negative integers k, m the manifold U × (C∗)k ×Cm is a pseudoconvex
open subset of a Banach space with countable unconditional basis. Thus H i(U×
(C∗)k ×Cm,OU×(C∗)k×Cm) = 0 for every i > 0 ([10], Theorem 0.1). Hence U is
a Leray covering which computes Hq(U ×Pr−1, π∗2(OPr−1(t))). By Lemma 2 we
have the Laurent expansions which allow us to copy word for word the proof
for the case U a point given in [5], pp. 51–55. ¤

Remark 4. In the set-up of Lemma 3 we only used that M has a basis U of
open subsets such that H i(U,OU) = 0 for every i > 0 and every U ∈ U. Hence
by [11] we may apply Lemma 3 to complex manifolds modelled over certain
Fréchet spaces.

Remark 5. Let M be a complex Banach manifold and E a rank r holomorphic
vector bundle on M . Let f : P(E) → M be the projection and O(1) the
tautological line bundle on P(E) whose restriction to any fiber of f has degree
one. For every holomorphic vector bundle A on M and all integers i, t with i ≥ 0
we have Rif∗(O(t)⊗ f ∗(A)) ∼= A⊗ Rif∗(O(t)). If t < 0 we have f∗(O(t)) = 0.
We have f∗(OP(E)) ∼= OM . If t > 0 we have f∗(O(t)) ∼= St(E), where St denotes
the symmetric product. Now assume t ≥ 0, M = P(V ) and E isomorphic to a
direct sum of r line bundles. Then St(E) is a direct sum of line bundles.

Proof of Theorem 1. By Lemma 3 and Remark 5 we have π∗(OX) ∼= OP(V )

and R1π∗(OX) = 0. Hence from the Leray spectral sequence of π we obtain



46 E. BALLICO

H1(X,OX) = H1(P(V ),OP(V )). The latter sheaf cohomology group vanishes
by [9] and [1], Remark 5. From the exponential sequence

0 → Z → OX → O∗
X → 0 (2)

we obtain an inclusion j : Pic(X) → H2(X,Z). The Leray spectral sequence of
π gives H2(X,Z) ∼= Z⊕2 and that H2(X,Z) has as generators the first Chern
classes of π∗(OP(V )(1)) and of O(1). This implies the surjectivity of j, proving
the first assertion of Theorem 1. All the vanishing results in the statement of
Theorem 1 follow from Lemma 3, Remark 5 and the vanishing theorems proved
in [9] (see [1], Remark 5). ¤

Remark 6. Let T be a reduced and irreducible finite-dimensional complex
space. For every integer m > 2(dim(T )) every holomorphic map g : Pm → T
is constant because any two fibers of f are disjoint and for any two closed
subvarieties A, B of Pm with codim(A) ≤ dim(T ) and codim(B) ≤ dim(T ) we
have A ∩ B 6= ∅. Thus every holomorphic map P(V ) → T is constant if V is
infinite-dimensional.

Proof of Theorem 2. We have E ∼= OP(V )(a1)⊕· · ·⊕OP(V )(ar) for some integers
a1 ≥ · · · ≥ ar ([9], Theorems 7.1 and 8.5). Set X := P(E) and let f : X → P(V )
be the projection. Assume the existence of a closed embedding j : X → P(V1)×
· · ·×P(Vs)×Pn with j(X) of finite codimension. A section of f is given by a pair
(L, u), where L ∈ Pic(P(V )) and u : L → E is a nowhere vanishing inclusion,
i.e., an injection as a map of holomorphic bundles, i.e., a map whose dual map
E∗ → L∗ is surjective. The image of a section of f is biholomorphic to P(V ).
Hence by Remark 6 we see that either n = 0 or the image of any such section is
mapped to a point by the projection µs+1 : P(V1)×· · ·×P(Vs)×Pn → Pn. Now
we use that E ∼= OP(V )(a1)⊕ · · · ⊕ OP(V )(ar). Hence taking L = OP(V )(ar) we
see that for every P ∈ X there is a section of f whose image contains P . Fix any
section u of f . We have codim((j ◦u)(P(V ))) = codim(j(X))+ r−1 and hence
j ◦u is a finite-codimensional embedding of P(V ) into P(V1)×· · ·×P(Vs)×Pn.
Let µi : P(V1) × · · · × P(Vs) × Pn → P(Vi), 1 ≤ i ≤ s, be the projections.
As in Lemma 1 and in the proof of Theorem 1 we obtain H2(P(V1) × · · · ×
P(Vs)×Pn,Z) ∼= Z(s+1) and Pic(P(V1)× · · · ×P(Vs)×Pn) ∼= Z(s+1) and that
both Abelian groups are freely generated by the pull-backs of the classes of the
hyperplanes of each of the factors of P(V1)×· · ·×P(Vs)×Pn. Since Pic(P(V ))
is freely generated by OP(V )(1), there are integers xi, 1 ≤ i ≤ s + 1, such that
(µi ◦ j ◦ u)∗(OP(Vi)(1)) ∼= OP(V )(xi) for 1 ≤ i ≤ s and (µs+1 ◦ j ◦ u)∗(OPn(1)) ∼=
OP(V )(xs+1). We have xi ≥ 0 for every i and xj = 0 if and only if µj ◦ j ◦ u is a
point.

(i) First assume s ≥ 2 and fix Q ∈ P(V2) × · · · × P(Vs) × Pn. The
analytic set (j ◦ u)(P(V )) ∩ P(V1) × {Q} is closed and of finite codimension
in the infinite-dimensional projective space P(V1) × {Q}. Hence it contains
many lines, D (see e.g., [2] or [3]). Since D maps to {Q} by the projection
ρ : P(V1)× · · · ×P(Vs)×Pn → P(V2)× · · · ×P(Vs)×Pn we obtain deg(D) =
x1deg((j◦u)−1(D). Since the compact Riemann Surface (j◦u)−1(D) has positive
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degree, while D is a line, we obtain x1 = 1 and that (j ◦ u)−1(D) has degree
one, i.e., it is a line. Fix P ∈ (j ◦u)−1(D) and move the line (j ◦u)−1(D) among
the lines of P(V ) through P . For any such nearby line R the set ρ◦ j ◦u(R) is a
point. Since P ∈ R, we get ρ ◦ j ◦ u(R) = {Q} for any such R. Since any point
of P(V ) is contained in a line containing P , we obtain ρ ◦ j ◦ u(P(V )) = {Q},
i.e., j ◦ u(P(V )) ⊆ P(V1) × {Q}. Since V2 has infinite dimension, j ◦ u(P(V ))
has not finite codimension, contradiction.

(ii) By part (i) we may assume s = 1. First assume s = 1 and n = 0. By
[3], Theorem 3, we obtain that for any section u of f the closed analytic subset
j(u(X)) is a closed finite codimensional linear subspace of P(V1). Let α and
β be the integers such that j∗(OP(V1)(1)) ∼= O(α) ⊗ f ∗(OP(V )(β)). Since the
restriction of OP(V1)(1) to any compact Riemann Surface contained in P(V1)
has positive degree, we have α > 0 and β > 0. First assume a1 = ar. Hence
there are several sections u, v of f such that u(P(V )) ∩ v(P(V )) = ∅. Since
j(u(P(V ))) and j(v(P(V ))) are finite codimensional linear subspaces of P(V1)
and V1 has infinite dimension, then j(u(P(V ))) ∩ j(v(P(V ))) 6= ∅, contra-
dicting the injectivity of j. Now assume a1 > ar. There are nowhere van-
ishing morphisms OP(V )(a1) → E and OP(V )(ar) → E such that the images
of the corresponding sections are disjoint. Again, we just obtained a con-
tradiction. Now assume s = 1 and n > 0. First assume a1 > ar. In this
case we obtain a family {uα} of sections of f whose images {uα(P(V ))} cov-
ers X and whose images are mutually intersecting. Since each µ(uα(P(V )))
is just a point (Remark 5), we obtain the existence of P ∈ Pn such that
j(X) ⊆ P(V ) × {P}. The case s = 1 and n = 0 gives a contradiction. Now
assume a1 = ar, i.e., assume E ∼= OP(V )(a1)

⊕r. Let α′, β′ be the integers such
that j∗(µ∗1(OP(V1)(1)) ⊗ µ∗2(OPn(1))) ∼= O(α′) ⊗ f ∗(OP(V )(β

′)). The proof just
given for the case a1 > ar shows that α′ = 1. As in the proofs in [2] or [3] (i.e.,
just a use of Remark 6) we see that j is obtained as a Segre product of a linear
embedding of P(V ) as a finite codimensional linear subspace of P(V1) with an
embedding of Pr−1 into Pn, proving the theorem with a more precise form of
part (b). ¤
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1971.

9. L. Lempert, The Dolbeault complex in infinite dimensions. I. J. Amer. Math. Soc.
11(1998), No. 3, 485–520.

10. L. Lempert, The Dolbeault complex in infinite dimensions. III. Sheaf cohomology in
Banach spaces. Invent. Math. 142(2000), No. 3, 579–603.
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