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ON THE BEHAVIOR OF SOLUTIONS OF LINEAR NEUTRAL
INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED

DELAY
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Abstract. A useful inequality for solutions of linear neutral integrodifferen-
tial equations with unbounded delay is established, using a real root of the
corresponding characteristic equation. This inequality is used to obtain an
estimate for solutions, which leads to a stability criterion.
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1. Introduction And Statement Of The Main Results

During the past four decades, the theories of Volterra integral equations and
Volterra integrodifferential equations have undergone rapid developments. Vari-
ous classical problems in the theory of differential equations (ordinary or partial)
lead to integral or integrodifferential equations and, in many cases, can be dealt
with in a more satisfactory manner using these (integral or integrodifferential
equations) than directly with differential equations. Also, various problems in
applied science are conducive to integral and integrodifferential equations in a
natural way, these equations thus emerging as competent mathematical tools
in modelling phenomena and processes encountered in those fields of investi-
gation. In particular, Volterra integral and integrodifferential equations are
widely used in mathematical ecology, especially in population dynamics (cf.,
e.g., Gopalsamy [8]). For the basic theory of Volterra integral and integrodiffer-
ential equations, we choose to refer to the books by Burton [1, 2], Corduneanu
[3], and Miller [17]; also, for equations with unbounded delay, the reader is re-
ferred to the survey article by Corduneanu and Lakshmikantham [4] and the
book by Lakshmikantham, Wen and Zhang [16].

In recent years there has been some research activity concerning the existence
and/or the nonexistence of positive solutions of integrodifferential equations.
See, for example, Györi and Ladas [10], Kiventidis [11], Kordonis and Philos
[14], Ladas, Philos and Sficas [15], Philos [18, 19], and Philos and Sficas [22].

Driver, Sasser and Slater [6] obtained some significant results on the asymp-
totic behavior and the stability for first order linear delay differential equations
with constant coefficients and one constant delay; see Driver [5] for some similar
asymptotic and stability results for first order linear autonomous delay differ-
ential equations with infinitely many distributed delays. The results given in
[6] have been improved and extended in several directions by Graef and Qian
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[9], Kordonis, Niyianni and Philos [12], Philos [20], and Philos and Purnaras
[21]. Motivated by the results in [6] (as well as by those in [12], [20] and [21]),
Kordonis and Philos [13] established some results on the behavior of solutions
of linear integrodifferential equations with unbounded delay.

This paper deals with the behavior of solutions of linear neutral integrodif-
ferential equations with unbounded delay. A useful inequality for solutions is
established. This inequality is a tool to obtain an estimate for solutions, which
leads to a criterion for the stability and the asymptotic stability of the trivial
solution. Our results are derived by the use of a real root (with an appropri-
ate property) of the corresponding characteristic equation. The results of the
present paper can be applied to the corresponding non-neutral integrodifferen-
tial equations. An improved version of the results given by Kordonis and Philos
[13] for linear (non-neutral) integrodifferential equations with unbounded delay
can be obtained (as a special case) from the results of this paper. The techniques
applied in obtaining our results originate in the methods used in [13]. Note that
nothing but elementary calculus will be used. Neutral integrodifferential equa-
tions with unbounded delay have been investigated by many authors (see, for
example, the book by Lakshmikantham, Wen and Zhang [16]). These equations
belong to a very wide class of the neutral functional differential equations with
infinite delay.

Consider the linear neutral integrodifferential equation with unbounded delay
[
x(t) +

∫ t

−∞
G(t− s)x(s)ds

]′
= ax(t) +

∫ t

−∞
K(t− s)x(s)ds, (E)

where a is a real number, and G and K are continuous real-valued functions
on the interval [0,∞). It will be supposed that K is not eventually identically
zero.

As usual, a continuous real-valued function x defined on the real line R will
be called a solution of the neutral integrodifferential equation (E) if the function

x(t)+
t∫

−∞
G(t−s)x(s)ds is a continuously differentiable real-valued function for

t ≥ 0 and x satisfies (E) for all t ≥ 0.
In what follows, by S we will denote the (nonempty) set of all continuous

real-valued functions φ on (−∞, 0], which are such that

ΦG(t) =

∫ t

−∞
G(t− s)φ(s)ds for t ≥ 0

is a continuously differentiable real-valued function on [0,∞), and

ΦK(t) =

∫ 0

−∞
K(t− s)φ(s)ds for t ≥ 0

is a continuous real-valued function on [0,∞).
It is known (see, for example, [16]) that, for any given initial function φ in S,

there exists a unique solution x of the neutral integrodifferential equation (E)
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which satisfies the initial condition

x(t) = φ(t) for t ∈ (−∞, 0]; (C)

we call this function x the solution of the initial problem (E)–(C) or, more
briefly, the solution of (E)–(C).

With the neutral integrodifferential equation (E) we associate its character-
istic equation

λ

[
1 +

∫ ∞

0

e−λsG(s)ds

]
= a +

∫ ∞

0

e−λsK(s)ds. (∗)

To obtain the results of this paper, we will make use of a real root λ0 of the
characteristic equation (∗) with the property∫ ∞

0

e−λ0s(1 + |λ0| s) |G(s)| ds +

∫ ∞

0

e−λ0ss |K(s)| ds < 1. (P(λ0))

In the sequel, if λ0 is a real root of (∗) with the property (P(λ0)), we will
denote by S(λ0) the (nonempty) subset of S which contains all functions φ in
S such that e−λ0tφ(t) is bounded for t ≤ 0.

The basic result of this paper is the following theorem which establishes a
useful inequality for solutions of the neutral integrodifferential equation (E).

Theorem. Let λ0 be a real root of the characteristic equation (∗) with the
property (P(λ0)) and set

γ(λ0) =

∫ ∞

0

e−λ0s(1− λ0s) G(s) ds +

∫ ∞

0

e−λ0ss K(s) ds

and

µ(λ0) =

∫ ∞

0

e−λ0s(1 + |λ0| s) |G(s)| ds +

∫ ∞

0

e−λ0ss |K(s)| ds.

Then, for any φ ∈ S(λ0), the solution x of (E)–(C) satisfies∣∣∣∣e−λ0tx(t)− L(λ0; φ)

1 + γ(λ0)

∣∣∣∣ ≤ µ(λ0)M(λ0; φ) for all t ≥ 0,

where

L(λ0; φ) = φ(0) +

∫ ∞

0

G(s)

[
φ(−s)− λ0e

−λ0s

∫ 0

−s

e−λ0rφ(r)dr

]
ds

+

∫ ∞

0

e−λ0sK(s)

[∫ 0

−s

e−λ0rφ(r) dr

]
ds

and

M(λ0; φ) = sup
t≤0

∣∣∣∣e−λ0tφ(t)− L(λ0; φ)

1 + γ(λ0)

∣∣∣∣ .

Note. The property (P(λ0)) guarantees that 0 < µ(λ0) < 1. Also, since
|γ(λ0)| ≤ µ(λ0), it holds −1 < γ(λ0) < 1 and so, in particular, we have 1 +
γ(λ0) > 0. Moreover, from (P(λ0)) and the definition of S(λ0) it follows that
(for any φ ∈ S(λ0)) L(λ0; φ) is a real number. Furthermore, by the definition
of S(λ0), M(λ0; φ) is a nonnegative constant (for any φ ∈ S(λ0)).
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An interesting consequence of our theorem is the corollary below, which gives
an estimate of solutions of the neutral integrodifferential equation (E) that leads
to a stability criterion for the trivial solution of (E).

Before stating this corollary, we will give two well-known definitions (see, e.g.,
[16]).The trivial solution of (E) is said to be stable (at 0) if, for every ε > 0,
there exists δ ≡ δ(ε) > 0 such that, for any φ in S with ‖φ‖ ≡ sup

t≤0
|φ(t)| < δ,

the solution x of (E)–(C) satisfies |x(t)| < ε for all t ∈R. Moreover, the trivial
solution of (E) is called asymptotically stable (at 0) if it is stable (at 0) in the
above sense and, in addition, there exists δ0 > 0 such that, for any φ in S with
‖φ‖ < δ0, the solution x of (E)–(C) satisfies lim

t→∞
x(t) = 0.

Corollary. Let λ0 be a real root of the characteristic equation (∗) with the
property (P(λ0)).

Define γ(λ0) and µ(λ0)as in Theorem and set

Θ(λ0) =
[1 + µ(λ0)]

2

1 + γ(λ0)
+ µ(λ0).

Then, for any φ ∈ S(λ0), the solution x of (E)–(C) satisfies

|x(t)| ≤ Θ(λ0)N(λ0; φ)eλ0t for all t ≥ 0,

where

N(λ0; φ) = sup
t≤0

[
e−λ0t |φ(t)|] .

Moreover, the trivial solution of (E) is stable (at 0) if λ0 = 0 and it is asymp-
totically stable (at 0) if λ0 < 0.

Note. Clearly, Θ(λ0) is a real number with Θ(λ0) > 1. Moreover, by the
definition of S(λ0), N(λ0; φ) is a nonnegative constant (for any φ ∈ S(λ0)).

The proofs of our theorem and corollary stated above will be given in Sec-
tion 2.

Now, let us consider the special case where the kernel G is identically zero
on [0,∞), i.e., the case of the linear (non-neutral) integrodifferential equation
with unbounded delay

x′(t) = ax(t) +

∫ t

−∞
K(t− s)x(s) ds. (Ẽ)

By a solution of the integrodifferential equation (Ẽ) we mean a continuous real-
valued function x defined on R, which is continuously differentiable on [0,∞)

and satisfies (Ẽ) for t ≥ 0. As it concerns the integrodifferential equation (Ẽ),
the set S is the (nonempty) set of all continuous real-valued functions x on
(−∞, 0] such that

ΦK(t) =

∫ t

−∞
K(t− s)φ(s)ds for t ≥ 0
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is a continuous real-valued function on [0,∞). The characteristic equation of

(Ẽ) is

λ = a +

∫ ∞

0

e−λsK(s) ds. (∗̃)

In the special case of the (non-neutral) integrodifferential equation (Ẽ), the
property (P(λ0)) (of a real root λ0 of the characteristic equation (∗̃)) takes the
form ∫ ∞

0

e−λ0ss |K(s)| ds < 1. (P̃(λ0))

If λ0 is a real root of (∗̃) with the property (P̃(λ0)), the set S(λ0) is defined as
in the general case of the equation (E).

By applying our theorem and its corollary to the special case of the (non-

neutral) integrodifferential equation (Ẽ), we obtain the following results respec-
tively:

Let λ0 be a real root of the characteristic equation (∗̃) with the property (P̃(λ0))
and set

γ̃(λ0) =

∫ ∞

0

e−λ0ssK(s)ds and µ̃(λ0) =

∫ ∞

0

e−λ0ss |K(s)| ds.

Then, for any φ ∈ S(λ0), the solution x of (Ẽ)–(C) satisfies∣∣∣∣∣e
−λ0tx(t)− L̃(λ0; φ)

1 + γ̃(λ0)

∣∣∣∣∣ ≤ µ̃(λ0)M̃(λ0; φ) for all t ≥ 0,

where

L̃(λ0; φ) = φ(0) +

∫ ∞

0

e−λ0sK(s)

[∫ 0

−s

e−λ0rφ(r)dr

]
ds

and

M̃(λ0; φ) = sup
t≤0

∣∣∣∣∣e
−λ0tφ(t)− L̃(λ0; φ)

1 + γ̃(λ0)

∣∣∣∣∣ .

Let λ0 be a real root of the characteristic equation (∗̃) with the property

(P̃(λ0)).
Define γ̃(λ0) and µ̃(λ0) as above and set

Θ̃(λ0) =
[1 + µ̃(λ0)]

2

1 + γ̃(λ0)
+ µ̃(λ0).

Then, for any φ ∈ S(λ0), the solution x of (Ẽ)–(C) satisfies

|x(t)| ≤ Θ̃(λ0)N(λ0; φ)eλ0t for all t ≥ 0,

where N(λ0; φ) is defined as in Corollary.

Moreover, the trivial solution of (Ẽ) is stable (at 0) if λ0 = 0 and it is asymp-
totically stable (at 0) if λ0 < 0.
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The above results for the (non-neutral) integrodifferential equation (Ẽ) can
be considered as improved versions of the main results of the paper by Kordonis
and Philos [13]. In [13], the following simple result has been established:

Assume that there exists a real number γ such that
∫ ∞

0

e−γs |K(s)| ds < ∞

and let the following hypothesis be satisfied:
∫ ∞

0

e−γsK(s)ds > γ − a and

∫ ∞

0

e−γss |K(s)| ds ≤ 1.

Then, in the interval (γ,∞), the characteristic equation (∗̃) has a unique root

λ0; this root satisfies (P̃(λ0)).

The results given above for the (non-neutral) integrodifferential equation (Ẽ)
have been previously obtained in [13] with the use of the unique root λ0 of (∗̃) in
the interval (γ,∞) and under the conditions mentioned above (which guarantee
the existence and uniqueness of this root of (∗̃)). It must be noted that the
assumption that the kernel K keeps its sign posed in [13] is not necessary and
so this assumption can be removed. No restriction on the sign of K or G is
assumed in the present paper.

It is an open problem to find conditions on the coefficient a and the kernels
G and K of the neutral integrodifferential equation (E), which are sufficient for
the characteristic equation (∗) to have a real root λ0 with the property (P(λ0)).

Before closing this section, we remark that our main results can be extended
to a more general case of the linear neutral integro-delay-differential equation
with unbounded delay

[
x(t) +

∞∑
n=1

cnx(t− σn) +

∫ t

−∞
G(t− s)x(s)ds

]′

= ax(t) +
∞∑

n=1

bnx(t− τn) +

∫ t

−∞
K(t− s)x(s)ds, (Ê)

where cn and bn (n = 1, 2, . . . ) are real numbers, and σn and τn (n = 1, 2, . . . ) are
positive constants with σi 6= σj and τi 6= τj (i, j = 1, 2, . . . ; i 6= j). Equations

with unbounded delay of the form (Ê) have appeared in several investigations;
we choose to refer to the paper by Gopalsamy [7], the survey article by Cor-
duneanu and Lakshmikantham [4], and the book by Lakshmikantham, Wen and
Zhang [16].

2. Proofs of the Main Results

Proof of Theorem. Consider an arbitrary function φ in S(λ0) and let x be the
solution of (E)–(C).

Set

y(t) = e−λ0tx(t) for t ∈ R.
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Then, for every t ≥ 0, we obtain

[
x(t) +

∫ t

−∞
G(t− s)x(s)ds

]′
− ax(t)−

∫ t

−∞
K(t− s)x(s)ds

=

[
x(t) +

∫ ∞

0

G(s)x(t− s)ds

]′
− ax(t)−

∫ ∞

0

K(s)x(t− s)ds

= eλ0t

{[
y(t) +

∫ ∞

0

e−λ0sG(s)y(t− s)ds

]′
+

+ λ0

[
y(t) +

∫ ∞

0

e−λ0sG(s)y(t− s)ds

]
−

−ay(t)−
∫ ∞

0

e−λ0sK(s)y(t− s)ds

}

= eλ0t

{[
y(t) +

∫ ∞

0

e−λ0sG(s)y(t− s)ds

]′
+ (λ0 − a)y(t)+

+ λ0

∫ ∞

0

e−λ0sG(s)y(t− s)ds−
∫ ∞

0

e−λ0sK(s)y(t− s)ds

}

= eλ0t

{[
y(t) +

∫ ∞

0

e−λ0sG(s)y(t− s)ds

]′
−

− λ0

[∫ ∞

0

e−λ0sG(s)ds

]
y(t) +

[∫ ∞

0

e−λ0sK(s)ds

]
y(t) +

+ λ0

∫ ∞

0

e−λ0sG(s)y(t− s)ds −
∫ ∞

0

e−λ0sK(s)y(t− s)ds

}

= eλ0t

{[
y(t) +

∫ ∞

0

e−λ0sG(s)y(t− s)ds

]′
−

− λ0

∫ ∞

0

e−λ0sG(s) [y(t)− y(t− s)] ds +

+

∫ ∞

0

e−λ0sK(s) [y(t)− y(t− s)] ds

}
.

Thus, the fact that x satisfies (E) for t ≥ 0 is equivalent to the fact that y
satisfies

[
y(t) +

∫ ∞

0

e−λ0sG(s)y(t− s)ds

]′
= λ0

∫ ∞

0

e−λ0sG(s) [y(t)− y(t− s)] ds

−
∫ ∞

0

e−λ0sK(s) [y(t)− y(t− s)] ds for t ≥ 0. (2.1)

On the other hand, the initial condition (C) takes the equivalent form

y(t) = e−λ0tφ(t) for t ∈ (−∞, 0]. (2.2)
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Furthermore, by using (2.2) and taking into account the definition of L(λ0; φ),
we can verify that (2.1) is equivalent to

y(t) +

∫ ∞

0

e−λ0sG(s)y(t− s)ds = λ0

∫ ∞

0

e−λ0sG(s)

[∫ t

t−s

y(r)dr

]
ds

−
∫ ∞

0

e−λ0sK(s)

[∫ t

t−s

y(r)dr

]
ds + L(λ0; φ) for t ≥ 0. (2.3)

Next, we define

z(t) = y(t)− L(λ0; φ)

1 + γ(λ0)
for t ∈ R.

Then, by the definition of γ(λ0), it is not difficult to see that (2.3) can equiva-
lently be written as

z(t) +

∫ ∞

0

e−λ0sG(s)z(t− s)ds = λ0

∫ ∞

0

e−λ0sG(s)

[∫ t

t−s

z(r)dr

]
ds

−
∫ ∞

0

e−λ0sK(s)

[∫ t

t−s

z(r)dr

]
ds for t ≥ 0. (2.4)

Moreover, the initial condition (2.2) is equivalent to

z(t) = e−λ0tφ(t)− L(λ0; φ)

1 + γ(λ0)
for t ∈ (−∞, 0]. (2.5)

Because of the definitions of y and z, the proof will be complete by showing
that z satisfies

|z(t)| ≤ µ(λ0)M(λ0; φ) for all t ≥ 0. (2.6)

In the rest of the proof we will establish (2.6). By the definition of M(λ0; φ)
and in view of (2.5), we have

|z(t)| ≤ M(λ0; φ) for t ∈ (−∞, 0]. (2.7)

We will prove that M(λ0; φ) is also a bound of z on the whole real line R, i.e.,

|z(t)| ≤ M(λ0; φ) for all t ∈ R. (2.8)

To this end, let us consider an arbitrary number ε > 0. Then

|z(t)| < M(λ0; φ) + ε for every t ∈ R. (2.9)

Indeed, in the case where (2.9) fails, by taking into account (2.7) we can conclude
that there exists a point t∗ > 0 such that

|z(t)| < M(λ0; φ) + ε for t ∈ (−∞, t∗), and |z(t∗)| = M(λ0; φ) + ε.

Then, since 0 < µ(λ0) < 1, from (2.4) we obtain

M(λ0; φ) + ε = |z(t∗)|≤
∫ ∞

0

e−λ0s |G(s)|
[
|z(t∗ − s)|+|λ0|

∫ t∗

t∗−s

|z(r)| dr

]
ds

+

∫ ∞

0

e−λ0s |K(s)|
[∫ t∗

t∗−s

|z(r)| dr

]
ds
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≤
{∫ ∞

0

e−λ0s (1 + |λ0| s) |G(s)| ds

+

∫ ∞

0

e−λ0ss |K(s)| ds

}
[M(λ0; φ) + ε]

≡ µ(λ0) [M(λ0; φ) + ε] < M(λ0; φ) + ε.

We have thus arrived at a contradiction and so (2.9) holds true. Furthermore,
since ε > 0 is arbitrary, (2.9) yields (2.8), i.e., (2.8) is always valid. Finally, by
(2.8), from (2.4) we derive for every t ≥ 0

|z(t)| ≤
∫ ∞

0

e−λ0s |G(s)|
[
|z(t− s)|+ |λ0|

∫ t

t−s

|z(r)| dr

]
ds

+

∫ ∞

0

e−λ0s |K(s)|
[∫ t

t−s

|z(r)| dr

]
ds

≤
{∫ ∞

0

e−λ0s (1 + |λ0| s) |G(s)| ds +

∫ ∞

0

e−λ0ss |K(s)| ds

}
M(λ0; φ)

≡ µ(λ0)M(λ0; φ),

which means that (2.6) is satisfied. So, our proof is complete. ¤

Proof of Corollary. Let φ be an arbitrary function in S(λ0) and let x be the
solution of (E)–(C). Then our theorem guarantees that the solution x satisfies

∣∣∣∣e−λ0tx(t)− L(λ0; φ)

1 + γ(λ0)

∣∣∣∣ ≤ µ(λ0)M(λ0; φ) for all t ≥ 0,

where L(λ0; φ) and M(λ0; φ) are defined as in Theorem. This gives

e−λ0t |x(t)| ≤ |L(λ0; φ)|
1 + γ(λ0)

+ µ(λ0)M(λ0; φ) for every t ≥ 0.

But, from the definitions of M(λ0; φ) and N(λ0; φ) it follows that

M(λ0; φ) ≤ N(λ0; φ) +
|L(λ0; φ)|
1 + γ(λ0)

and so we have

e−λ0t |x(t)| ≤ 1 + µ(λ0)

1 + γ(λ0)
|L(λ0; φ)|+ µ(λ0)N(λ0; φ) for t ≥ 0. (2.10)

Furthermore, by taking into account the definition of L(λ0; φ), we obtain

|L(λ0; φ)| ≤ |φ(0)|+
∫ ∞

0

|G(s)|
[
|φ(−s)|+ |λ0| e−λ0s

∫ 0

−s

e−λ0r |φ(r)| dr

]
ds

+

∫ ∞

0

e−λ0s |K(s)|
[∫ 0

−s

e−λ0r |φ(r)| dr

]
ds

= |φ(0)|+
∫ ∞

0

e−λ0s

[
e−λ0(−s) |φ(−s)|+|λ0|

∫ 0

−s

e−λ0r |φ(r)| dr

]
|G(s)| ds
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+

∫ ∞

0

e−λ0s

[∫ 0

−s

e−λ0r |φ(r)| dr

]
|K(s)| ds.

Thus, by the definition of N(λ0; φ) and µ(λ0), we get

|L(λ0; φ)| ≤
[
1 +

∫ ∞

0

e−λ0s (1 + |λ0| s) |G(s)| ds

+

∫ ∞

0

e−λ0s |K(s)| ds

]
N(λ0; φ) = [1 + µ(λ0)] N(λ0; φ).

Hence, (2.10) yields

e−λ0t |x(t)| ≤
{

[1 + µ(λ0)]
2

1 + γ(λ0)
+ µ(λ0)

}
N(λ0; φ), t ≥ 0,

which, by the definition of Θ(λ0), can be written as

|x(t)| ≤ Θ(λ0)N(λ0; φ)eλ0t for all t ≥ 0. (2.11)

Now, let us suppose that λ0 ≤ 0. Let φ be an arbitrary bounded function in
S and define

‖φ‖ = sup
t≤0

|φ(t)| .

As λ0 is nonpositive, it follows immediately that φ belongs to the set S(λ0) and,
moreover, that

N(λ0; φ) ≤ ‖φ‖ . (2.12)

The solution x of (E)-(C) satisfies (2.11). By (2.12), from (2.11) we obtain

|x(t)| ≤ Θ(λ0) ‖φ‖ eλ0t for every t ≥ 0. (2.13)

Since λ0 ≤ 0, the last inequality gives

|x(t)| ≤ Θ(λ0) ‖φ‖ for any t ≥ 0.

So, as Θ(λ0) > 1, it follows that

|x(t)| ≤ Θ(λ0) ‖φ‖ for all t ∈ R. (2.14)

We have thus proved that, for any bounded function φ ∈S, the solution x of (E)-
(C) satisfies (2.13) and (2.14). From (2.14) it follows that the trivial solution
of (E) is stable (at 0) (provided that λ0 ≤ 0). Moreover, if λ0 < 0, then (2.13)
guarantees that

lim
t→∞

x(t) = 0,

which means that the trivial solution of (E) is asymptotically stable (at 0).
The proof of our corollary is now complete.
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