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INVARIANT REGIONS AND GLOBAL EXISTENCE OF
SOLUTIONS FOR REACTION-DIFFUSION SYSTEMS WITH A

FULL MATRIX OF DIFFUSION COEFFICIENTS AND
NONHOMOGENEOUS BOUNDARY CONDITIONS

SAID KOUACHI

Abstract. The purpose of this paper is the construction of invariant regions
in which we establish the global existence of solutions for reaction-diffusion
systems with a general full matrix of diffusion coefficients without balance
law’condition (f + g ≡ 0) and with nonhomogeneous boundary conditions.
Our techniques are based on invariant regions and Lyapunov functional meth-
ods. The nonlinear reaction term has been supposed to be of polynomial
growth.
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1. Introduction

We consider the reaction-diffusion system

∂u

∂t
− a11∆u− a12∆v = f(u, v) in R+ × Ω, (1.1)

∂v

∂t
− a21∆u− a22∆v = g(u, v) in R+ × Ω (1.2)

with the boundary conditions

λu + (1− λ)
∂u

∂η
= β1 and λv + (1− λ)

∂v

∂η
= β2 on R+ × ∂Ω (1.3)

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x) in Ω, (1.4)

where

(i) 0 < λ < 1 and βi ∈ R, i = 1, 2

(Robin nonhomogeneous boundary conditions), or

(ii) λ = βi = 0, i = 1, 2

(homogeneous Neumann boundary conditions), or

(iii) 1− λ = βi = 0, i = 1, 2

(homogeneous Dirichlet boundary conditions).

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



350 SAID KOUACHI

Ω is an open bounded domain of the class C1 in RN , with boundary ∂Ω,
∂

∂η
denotes the outward normal derivative on ∂Ω, the constants aij (i, j =

1, 2) are supposed to be positive and (a12 + a21)
2 < 4a11a22) which reflects the

parabolicity of the system and implies at the same time that the matrix of
diffusion

A =

(
a11 a12

a21 a22

)

is positive definite. The eingenvalues λ1 and λ2 (λ1 < λ2) of A are positive. If
we put

a = min {a11, a22} and a = max {a11, a22} ,

then the positivity of diffusion coefficients implies that

λ1 < a ≤ a < λ2.

The initial data are assumed to be in the region

Σ =

{{
(u0, v0) ∈ R2 such that µ2v0 ≤ u0 ≤ µ1v0

}
if µ2β2 ≤ β1 ≤ µ1β2,

{
(u0, v0) ∈ R2 such that 1

µ2
u0 ≤ v0 ≤ 1

µ1
u0

}
if 1

µ2
β1 ≤ β2 ≤ 1

µ1
β1,

where

µ1 ≡ a− λ1

a21

> 0 > µ2 ≡ a− λ2

a21

.

One will treat the first case, the second one will be discussed in the last section.
We suppose that the reaction terms f and g are continuously differentiable,
polynomially bounded on Σ, (f(r, s), g(r, s)) is in Σ for all (r, s) in ∂Σ (we say
that (f, g) points into Σ on ∂Σ); i.e.,

µ2g(µ2s, s) ≤ f(µ2s, s) and f(µ1s, s) ≤ µ1g(µ1s, s), for all s ≥ 0, (1.5)

and for positive constants C and α > −µ2 sufficiently close to −µ2, we have

f(u, v) + Cg(u, v) ≤ C1 (u + αv + 1) for all u and v in Σ (1.6)

where C1 is a positive constant.
In the trivial case where a12 = a21 = a11 − a22 = 0; nonnegative solutions

exist globally in time. In diagonal case where a12 = a21 = 0, a11 6= a22 and
homogeneous Neumann boundary conditions, Alikakos [1] established the global
existence and L∞-bounds of solutions for positive initial data when

g(u, v) = −f(u, v) = uvβ, (∗)
and 1 < β < (N+2)

N
. The reactions given by (∗) satisfy in fact a condition

analogous to (1.5) and form a special case since (f, g) point into Σ on ∂Σ by
taking Σ = R+ × R+. Masuda [21] showed that solutions to this system exist
globally for every β > 1 and converge to a constant vector as t → +∞. Haraux
and Youkana [6] generalized the method of Masuda [21] to handle nonlinearities
uF (v) that form a particular case since they also assumed that Σ = R+ × R+.
Recently Kouachi and Youkana [19] generalized the method of Haraux and
Youkana [6] to the triangular case (a12 = 0) by taking nonlinearities f(u, v) of
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a weak exponential growth. Kanel and Kirane [10] proved the global existence,
in the case where g(u, v) = −f(u, v) = −uvn and n is an odd integer, under the
embarrassing condition

|a12 − a21| < Cp,

where Cp contains a constant from Solonnikov’s estimate. Later they improved
their results in [11] to obtain the global existence under the restrictions

H1. a22 < a11 + a21,

H2. a12 < ε0 ≡
(

a11a22(a11 + a21 − a22)

a11a22 + (a11 + a21 − a22)

)
if a11 ≤ a22 < a11 + a21,

H3. a12 < min

{
1

2
(a11 + a21) , ε0

}
,

and

|F (v)| ≤ CF (1 + |v|1+ε ,

where ε and CF are positive constants with ε < 1 sufficiently small and g(u, v) =
−f(u, v) = uF (v). All the techniques used by the authors cited above showed
their limitations because some are based on the embedding theorem of Sobolev
(Alikakos [1], Hollis, Martin, and Pierre [8], Masuda [21]), while others (Kanel
and Kirane [11]) use the properties of the Neumann function for a heat equation,
for which one of its restriction is that the coefficient of −∆u in equation (1.1)
must be larger than that of −∆v in equation (1.2), whereas it is not the case
with problem (1.1)–(1.4).

This article is the continuation of [16], where a11 = a22 and σg + ρf ≡ 0
with σ and ρ being any positive constants and the function g(u, v) is positive
and polynomially bounded. In [16] we considered the homogeneous Neumann
boundary conditions and established the global existence of solutions with initial
data in an invariant region, which is a special case of the one considered here.
In [18] and in the case where a11 = a22, we eliminate the balance condition and
replace it by a condition analogous to (1.6).

The components u(t, x) and v(t, x) represent either chemical concentrations or
biological population densities and system (1.1)–(1.2) is a mathematical model
describing various chemical and biological phenomena (Cussler [2], Garcia-
Ybarra and Clavin [4], De Groot and Mazur [5], Jorne [9], Kirkaldy [14], Lee
and Hill [20] and Savchik, Changs, and Rabitz [23].

2. Local Existence and Invariant Regions

In this section, we prove that if (f, g) points into Σ on ∂Σ, then Σ is an
invariant region for problem (1.1)–(1.4), i.e., the solution remains in Σ for any
initial data in Σ. Once the invariant regions are constructed, both problems
of the local and global existence become easier to be established: for the first
problem we demonstrate that system (1.1)–(1.2) with the boundary conditions
(1.3) and the initial data in Σ is equivalent to a problem for which the local
existence throughout the time interval [0, Tmax[ can be obtained by the known
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procedure and for the second one, since we use usual techniques based on Lya-
punov functionals which are not directly applicable to problem (1.1)–(1.4) and
need invariant regions (Kirane and Kouachi [12], [13], Kouachi [15], [16] and
Kouachi and Youkana [19]).

The main result of this subsection is

Proposition 2.1. Suppose that (f, g) points into Σ on ∂Σ, then for any
(u0, v0) in Σ the solution (u(t, .), v(t, .)) of problem (1.1)–(1.4) remains in Σ for
all t in [0, T ∗[.

Proof. Let

(
x11

x12

)
and

(
x21

x22

)
be the eigenvectors of the matrix At associated

with its eigenvalues λ1 and λ2 (λ1 < λ2). For fixed i = 1, 2, multiplying equation
(1.1) by xi1 and equation (1.2) by xi2 and adding the resulting equations, we
get

∂w1

∂t
− λ1∆w1 = x11f + x12g = F1(w1, w2) in ]0, T ∗[× Ω, (2.1)

∂w2

∂t
− λ2∆w2 = x21f + x22g = F2(w1, w2) in ]0, T ∗[× Ω, (2.2)

with the boundary conditions

λwi + (1− λ)
∂wi

∂η
= ρi, i = 1, 2, on ]0, T ∗[× ∂Ω, (2.3)

and the initial data

wi(0, x) = w0
i (x), i = 1, 2, in Ω, (2.4)

where
wi = (xi1u + xi2v) (t, x), i = 1, 2, in ]0, T ∗[× Ω,

ρi = xi1β1 + xi2β2, i = 1, 2,
(2.5)

and

Fi(w1, w2) = xi1f + xi2g, i = 1, 2, for all u and v in Σ. (2.6)

First, as it has been mentioned above, note that the condition of the parabolicity
of system (1.1)–(1.2) implies of the one of system (2.1)–(2.2); since (a12+a21)

2 <
4a11a22 ⇒ det A = a11a22 − a12a21 > 0. Since λ1 and λ2 (λ1 < λ2) are the
eingenvalues of the matrix At, problem (1.1)–(1.4) is equivalent to problem
(2.1)–(2.4) and to prove that Σ is an invariant region for system (1.1)–(1.2) it
suffices to prove that the region

{
(w0

1, w
0
2) ∈ R2 such that w0

i ≥ 0, i = 1, 2
}

= R+ × R+, (2.7)

is invariant for system (2.1)–(2.2) and that

Σ =
{
(u0, v0) ∈ R2 such that w0

i = (xi1u0 + xi2v0) ≥ 0, i = 1, 2
}

. (2.8)

Since

(
xi1

xi2

)
is an eingenvector of At associated to the eingenvalue λi, i = 1, 2,

then if we assume without loss of generality that a11 ≤ a22 we have (a11−λi)xi1+
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a21xi2 = 0, i = 1, 2. If we choose x12 =
1

µ1

and x22 = − 1

µ2

, then xi1u0+xi2v0 ≥ 0,

i = 1, 2,⇔ 1

µ1

(
− 1

µ1

u0 + v0

)
≥ 0 and − 1

µ2

(
− 1

µ2

u0 + v0

)
≥ 0. Then the

first inequality is equivalent to u0 ≤ µ1v0 and since µ2 < 0, the second one is
equivalent to u0 ≥ µ2v0. Then (2.8) is proved and (2.5) can be written

w1 = −u + µ1v and w2 = u− µ2v. (2.5)′

Now, to prove that the region R+ × R+ is invariant for system (2.1)–(2.2), it
suffices to show that F1(w1, w2) ≥ 0 for all (w1, w2) such that w1 = 0 and w2 ≥ 0
and F2(w1, w2) ≥ 0 for all (w1, w2) such that w1 ≥ 0 and w2 = 0 thanks to the
invariant region’s method (Smoller [24]). But using expressions (2.7), we get

F1(w1, w2) = −f + µ1g and F2(w1, w2) = f − µ2g. (2.6)′

Following the same reasoning as above and taking into account that v0 ≥ 0 in
Σ, we come to condition (1.5). Then Σ is an invariant region for the system
(1.1)–(1.3). ¤

Then system (1.1)–(1.2) with the boundary conditions (1.3) and initial data
in Σ is equivalent to system (2.1)–(2.2) with the boundary conditions (2.3) and
positive initial data (2.4). As it has been mentioned at the beginning of this
section and since ρ1 and ρ2 given by

ρ1 = −β1 + µ1β2 and ρ2 = β1 − µ2β2

are positive, we have for any initial data in C
(
Ω

)
or Lp(Ω), p ∈ (1, +∞), local

existence and uniqueness of solutions to the initial value problem (2.1)–(2.4)
and consequently those of problem (1.1)–(1.4) follow from the basic existence
theory for abstract semilinear differential equations (Friedman [3], Henry [7]
and Pazy [22]). The solutions are classical on ]0, T ∗[ , where T ∗ denotes the
eventual blow up time in L∞(Ω). The local solution is continued globally by a
priori estimates.

Once invariant regions are constructed, one can apply the Lyapunov technique
and establish the global existence of unique solutions for (1.1)–(1.4).

3. Global Existence

As the determinant of the linear algebraic system (2.5), with respect to vari-
ables u and v, is different from zero, to prove global existence of solutions
of problem (1.1)–(1.4) one needs to prove it for problem (2.1)–(2.4). To this
end, it is well known that (Henry [7]) it suffices to derive a uniform estimate of
‖F1(w1, w2)‖p and ‖F2(w1, w2)‖p on [0, T ∗[ for some p > N/2, where ‖.‖pdenotes

the usual norms in spaces Lp(Ω) defined by

‖u‖p
p =

1

|Ω|
∫

Ω

|u(x)|p dx, 1 ≤ p < ∞, and ‖u‖∞ = ess sup
x∈Ω

|u(x)|
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Let us define, for any positive integer n, the finite sequence

θi = θ(n−i)2 , i = 0, 1, . . . , n, (3.1)

where θ is a positive constant sufficiently large such that

θ >
TrA

2
√

det A
≡ (a11 + a22)

2
√

a11a22 − a12a21

. (3.2)

The main result of this subsection is

Theorem 3.1. Let (w1(t, .), w2(t, .)) be any positive solution of problem
(2.1)–(2.4). Introduce the functional

t −→ L(t) =

∫

Ω

Hn (w1(t, x), w2(t, x)) dx, (3.3)

where

Hn(w1, w2) =
n∑

i=0

Ci
nθiw

i
1w

n−i
2 . (3.4)

Then the functional L is uniformly bounded on the interval [0, T ∗], T ∗ < Tmax.

Proof. The proof is similar to that in [15]. Differentiating L with respect to t
yields

L′(t) =

∫

Ω

[
∂Hn

∂w1

∂w1

∂t
+

∂Hn

∂w2

∂w2

∂t

]
dx

=

∫

Ω

(
λ1

∂Hn

∂w1

∆w1 + λ2
∂Hn

∂w2

∆w2

)
dx +

∫

Ω

(
∂Hn

∂w1

F1 +
∂Hn

∂w2

F2

)
dx

= I + J.

By simple use of Green’s formula we have

I = I1 + I2,

where

I1 =

∫

∂Ω

(
λ1

∂Hn

∂w1

∂w1

∂η
+ λ2

∂Hn

∂w2

∂w2

∂η

)
ds (3.5)

(with ds as area element) and

I2 =−
∫

Ω

(
λ1

∂2Hn

∂w2
1
|∇w1|2+(λ1+λ2)

∂2Hn

∂w1∂w2
∇w1∇w2+λ2

∂2Hn

∂w2
2
|∇w2|2

)
dx. (3.6)

First, let us calculate the first and second partial derivatives of Hn with respect
to w1 and w2. We have

∂Hn

∂w1

=
n∑

i=1

iC i
nθiw

i−1
1 wn−i

2 and
∂Hn

∂w2

=
n−1∑
i=0

(n− i)Ci
nθiw

i
1w

n−i−1
2 .

Using the formula

iCi
n = nCi−1

n−1 for all i = 1, . . . , n (3.7)
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and replacing the index i by i− 1, we get

∂Hn

∂w1

= n

n−1∑
i=0

Ci
n−1θi+1w

i
1w

n−1−i
2 . (3.8)

For
∂Hn

∂w2

, using (3.7) and the fact that

Ci
n = Cn−i

n for all i = 0, . . . , n, (3.9)

we get

∂Hn

∂w2

= n

n−1∑
i=0

Ci
n−1θiw

i
1w

n−1−i
2 . (3.10)

Using formulas (3.8) and (3.10), we deduce by analogy

∂2Hn

∂w2
1

= n(n− 1)
n−2∑
i=0

Ci
n−2θi+2w

i
1w

n−2−i
2 , (3.11)

∂2Hn

∂w1∂w2

= n(n− 1)
n−2∑
i=0

Ci
n−2θi+1w

i
1w

n−2−i
2 (3.12)

and

∂2Hn

∂w2
2

= n(n− 1)
n−2∑
i=0

Ci
n−2θiw

i
1w

n−2−i
2 . (3.13)

Now we claim that there exists a positive constant C2 independent of t ∈
[0, Tmax[ such that

I1 ≤ C2 for all t ∈ [0, Tmax[ . (3.14)

To see this, we follow the same reasoning as in [18]:
(i) If 0 < λ < 1, using the boundary conditions (2.3) we get

I1 =

∫

∂Ω

(
λ1

∂Hn

∂w1

(γ1 − σw1) + λ2
∂Hn

∂w2

(γ2 − σw2)

)
ds,

where σ =
λ

1− λ
and γi =

ρi

1− λ
, i = 1, 2.

Since

H(w1, w2) = λ1
∂Hn

∂w1

(γ1 − σw1) + λ2
∂Hn

∂w2

(γ2 − σw2)

= Pn−1(w1, w2)−Qn(w1, w2),

where Pn−1 and Qn are polynomials with positive coefficients and respective
degrees n− 1 and n and since the solution is positive, we obtain

lim sup
(|w1|+|w2|)→+∞

H(w1, w2) = −∞, (∗∗)

which proves that H is uniformly bounded on R2
+ and consequently (3.14).

(ii) If λ = 0, then I1 = 0 on [0, Tmax[ .
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(iii) The case of homogeneous Dirichlet conditions is trivial, since in this case

the positivity of the solution on [0, Tmax[×Ω implies
∂w1

∂η
≤ 0 and

∂w2

∂η
≤ 0 on

[0, Tmax[×∂Ω. Consequently one again gets (3.14) with C2 = 0

I2 = −n(n− 1)
n−2∑
i=0

C i
n−2

×
∫

Ω

wi
1w

n−2−i
2

(
λ1θi+2 |∇w1|2 + (λ1 + λ2) θi+1∇w1∇w2 + λ2θi |∇w2|2

)
dx.

Using (3.1) and (3.2) we deduce that the quadratic forms (with respect to ∇w1

and ∇w2) are positive since

((λ1 + λ2) θi+1)
2 − 4λ1λ2θiθi+2 = θ2

i+1

(
(λ1 + λ2)

2 − 4λ1λ2θ
2
)

< 0, (3.15)

i = 0, 1, . . . , n− 2.

Then
I2 ≤ 0. (3.16)

(3.8) and (3.10) together imply

J = n

n−1∑
i=0

Ci
n−1

∫

Ω

[
(θi+1F1(w1, w2) + θiF2(w1, w2)) wi

1w
n−1−i
2

]
dx.

Using expressions (2.6)′, we get

θi+1F1(w1, w2) + θiF2(w1, w2) = (−θi+1 + θi) f + (µ1θi+1 − µ2θi) g

= (µ1θi+1 − µ2θi)

[
θi

θi+1
− 1

−µ2
θi

θi+1
+ µ1

f + g

]
.

Since the function x → x− 1

−µ2x + µ1

is increasing with lim
x→+∞

x− 1

−µ2x + µ1

= − 1

µ2

and since θi

θi+1
is sufficiently large when θ is chosen sufficiently large, by us-

ing condition (1.6) and relation (2.5)′ successively we get, for an appropriate
constant C3,

J ≤ C3

∫

Ω

[
n−1∑
i=0

(w1 + w2 + 1) Ci
n−1w

i
1w

n−1−i
2

]
dx.

Following the same reasoning as in [17], a straightforward calculation shows
that

J ≤ C4L(t) on [0, T ∗].

Then we have
•
L(t) ≤ C5L(t) + C6L

(p−1)/p(t) on [0, T ∗].

Putting

Z = L1/p,
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one gets

p
•
Z ≤ C5Z + C6.

The solution of this linear differential inequality gives the uniform boundedeness
of the functional L on the interval [0, T ∗], which completes the proof of the
theorem. ¤

Corollary 3.1. Suppose that the functions f(r, s) and g(r, s) are continuously
differentiable on Σ, point into Σ on ∂Σ and satisfy condition (1.6). Then all
solutions of (1.1)–(1.4) with initial data in Σ and uniformly bounded on Ω are
in L∞(0, T ∗;Lp(Ω)) for all p ≥ 1.

Proof. The proof is an immediate consequence of Theorem 3.1, the trivial in-
equality ∫

Ω

(w1(t, x) + w2(t, x))p dx ≤ L(t) on [0, T ∗[

and (2.5)′. ¤
Proposition 3.1. Under the hypothesis of Corollary 3.1, if the reactions

f(r, s) and g(r, s) are polynomially bounded, then all solutions of (1.1)–(1.3)
with the initial data in Σ and uniformly bounded on Ω are global in time.

Proof. As it has been mentioned above, it suffices to derive a uniform estimate
of ‖F1(w1, w2)‖p and ‖F2(w1, w2)‖p on [0, T ∗[ for some p > n/2. Since the

functions f(u, v) and g(u, v) are polynomially bounded on Σ, by using relations
(2.5) and (2.6) we get that so are F1(w1, w2) and F2(w1, w2) and the proof
becomes an immediate consequence of Corollary 3.1. ¤

4. Final Remarks

If
1

µ2

β1 ≤ β2 ≤ 1

µ1

β1, then system (1.1)–(1.2) can be rewritten as

∂v

∂t
− a22∆v − a21∆u = f̃(v, u) in R+ × Ω, (1.1)′

∂u

∂t
− a12∆v − a11∆u = g̃(v, u) in R+ × Ω (1.2)′

with the same boundary conditions (1.3) and initial data (1.4) and where

f̃(v, u) = g(u, v) and g̃(v, u) = f(u, v) for all (u, v) in R2.

In this case, the diffusion matrix of the system becomes

A =

(
a22 a21

a12 a11

)

and the new constants µ1 and µ2 become µ1 =
a− λ1

a12

and µ2 =
a− λ2

a12

which

are equal respectively to − 1

µ2

and − 1

µ1

. Then all the previous results remain
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valid in the region

Σ =

{
(u0, v0) ∈ R2 such that

1

µ2

u0 ≤ v0 ≤ 1

µ1

u0

}
.

(f̃ , g̃) points into Σ on ∂Σ if

1

µ2

g̃(
1

µ2

s, s) ≤ f̃(
1

µ2

s, s) and f̃(
1

µ1

s, s) ≤ 1

µ1

g̃(
1

µ1

s, s) for all s ≥ 0,

which is equivalent to

1

µ2

f(s,
1

µ2

s) ≤ g(s,
1

µ2

s) and g(s,
1

µ1

s) ≤ 1

µ1

f(s,
1

µ1

s) for all s ≥ 0, (1.5)′

and condition (1.6) becomes, for an appropriate constant C1,

f̃(v, u) + Cg̃(v, u) ≤ C1 (v + αu + 1) for all u and v in Σ

for positive constants C and α > µ1 sufficiently close to µ1, which can be
interpreted as

g(u, v) + Cf(u, v) ≤ C1 (αu + v + 1) for all u and v in Σ (1.6)′

for positive constants C and α > − 1

µ2

sufficiently close to − 1

µ2

.
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