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ON THE MEASURABILITY OF FUNCTIONS WITH
RESPECT TO CERTAIN CLASSES OF MEASURES

A. KHARAZISHVILI AND A. KIRTADZE

Abstract. The concept of measurability of real-valued functions with re-
spect to various classes of measures is introduced and the associated notion
of an absolutely nonmeasurable function is investigated. A characterization
of such functions is given. Also, it is shown that functions produced by the
classical Vitali partition of the real line are measurable with respect to the
class of all extensions of the Lebesgue measure on this line.
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Let E be a set and let M be a class of measures on E (we assume, in general,
that the domains of measures from M are various σ-algebras of subsets of E).
We say that a real-valued function f : E → R is measurable with respect to
M if there exists at least one measure µ ∈ M such that f is measurable with
respect to µ. Otherwise, we say that f is absolutely nonmeasurable with respect
to M .

Let µ be a measure on E. As usual, we say that µ is diffused (or continuous)
if it vanishes on all singletons in E.

Example 1. For any set E, let ME be the class of all nonzero σ-finite
diffused measures on E. Let f : E → R be a function and let, for some t0 ∈ R,
the relation card(f−1(t0)) > ω be satisfied, where ω denotes the first infinite
cardinal number. In this case, we can assert that f is measurable with respect to
ME. Indeed, it is not difficult to define a complete diffused probability measure
µ on E such that µ(f−1(t0)) = 1. Consequently, for any set T ⊂ R, we have
µ(f−1(T )) = 1 if t0 ∈ T , and µ(f−1(T )) = 0 if t0 6∈ T . This, obviously, implies
that f is measurable with respect to the measure µ (hence, with respect to the
class ME).

In particular, if an original set E is such that card(E) > 2ω, then every
function f : E → R is measurable with respect to ME.

Let P be a topological space whose all singletons belong to the Borel σ-
algebra of P . We recall that P is a universal measure zero space if there exists
no nonzero σ-finite diffused Borel measure on P . It is well known that there are
uncountable universal measure zero subspaces of the real line R. One classical
construction of such a subspace of R is due to Luzin and is presented, e.g.,
in [1].
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Taking into account Example 1 and using the notion of a universal mea-
sure zero space, we can obtain a characterization of absolutely nonmeasurable
functions (with respect to the class ME).

Theorem 1. A function f : E → R is absolutely nonmeasurable with respect
to ME if and only if the following two conditions hold:

1) for each r ∈ R, the set f−1(r) is at most countable;
2) the set ran(f) (i.e., the range of f) is a universal measure zero subspace

of R.

Proof. Suppose first that f is absolutely nonmeasurable with respect to ME.
Then the argument given in Example 1 shows that condition 1) must be satis-
fied. Let us verify that condition 2) must be valid, too. Indeed, assuming that
ran(f) is not a universal measure zero subset of R, consider some Borel diffused
probability measure ν on ran(f) and denote

S = {f−1(Z) : Z ∈ dom(ν)}.
Clearly, S is a σ-algebra of subsets of E and the family of countable sets
{f−1(r) : r ∈ ran(f)} forms a partition of E. We put

µ(f−1(Z)) = ν(Z) (Z ∈ dom(ν)).

In this manner, the diffused probability measure µ on the σ-algebra S is defined
so that f turns out to be measurable with respect to µ. However, this contra-
dicts our assumption that f is absolutely nonmeasurable with respect to ME.
The contradiction obtained shows the necessity of conditions 1) and 2) for the
absolute nonmeasurability of f with respect to ME.

Now, suppose that these two conditions are fulfilled for f and let us establish
that f is absolutely nonmeasurable with respect to ME. Suppose for a moment
that there exists a measure µ belonging to ME such that f is measurable with
respect to µ. We may assume, without loss of generality, that µ is a probability
measure. Then, denoting by B(ran(f)) the Borel σ-algebra of ran(f), we may
define

ν(Z) = µ(f−1(Z)) (Z ∈ B(ran(f))).

So we get a Borel probability measure ν on ran(f) which is diffused in view
of condition 1). But this contradicts condition 2). The contradiction obtained
ends the proof of the theorem. ¤

Remark 1. Let ω1 denote, as usual, the first uncountable cardinal number. It
is impossible to prove (within ZFC theory) the existence of absolutely nonmea-
surable functions with respect to the class ME where card(E) > ω1. This fact
directly follows from Theorem 1 and the circumstance that there are models of
set theory (constructed by Baumgartner and Laver) in which the cardinality of
any universal measure zero subspace of R does not exceed ω1.

Assuming some additional set-theoretical axioms, it is not difficult to demon-
strate that there exists an absolutely nonmeasurable function f : R → R with
respect to the class MR. For instance, the existence of such a function follows
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from the existence of a Luzin subset of R (detailed information about Luzin sets
can be found, e.g., in [2]). Moreover, the next example shows that absolutely
nonmeasurable functions can be found even among injective homomorphisms
of the additive group R into itself.

Example 2. Under Martin’s Axiom, there exists a generalized Luzin set
X ⊂ R being simultaneously a vector space over the field Q of all rational
numbers (the construction of such a set X is fairly standard, by using the
method of transfinite recursion). It is well known that every Luzin set is a
universal measure zero space and, under Martin’s Axiom, every generalized
Luzin set is a universal measure zero space, too. In particular, X is a universal
measure zero subset of R. Let g : R → X denote some isomorphism between
R and X both of which are regarded as vector spaces over Q. Then g can be
considered as an injective group homomorphism from R into R and therefore
g is a nontrivial solution of the classical Cauchy functional equation

φ(x + y) = φ(x) + φ(y) (x ∈ R, y ∈ R).

Furthermore, according to Theorem 1, g turns out to be absolutely nonmeasur-
able with respect to the class MR.

In this context, let us recall that any nontrivial solution of the Cauchy func-
tional equation is necessarily nonmeasurable in the Lebesgue sense.

Let S be an equivalence relation on R whose all equivalence classes are at
most countable. We shall say that f : R → R is a Vitali type function for S if
(r, f(r)) ∈ S for each r ∈ R and the set ran(f) is a selector of the partition of
R determined by S.

It is widely known that if V is the classical Vitali equivalence relation on R
(i.e., (x, y) ∈ V ⇔ x− y ∈ Q), then any Vitali type function for V is absolutely
nonmeasurable with respect to the class of all translation-invariant extensions
of the Lebesgue measure λ on R (see, e.g., [2], [3], [4] or [5]). However, the
following somewhat surprising statement is valid.

Theorem 2. Let M(λ) denote the class of all measures on R extending λ.
Then every Vitali type function for V is measurable with respect to M(λ).

Proof. Our argument is essentially based on one useful result of measure theory,
stating that if E is a set, µ is a σ-finite measure on E and {Xn : n < ω} is a
disjoint countable family of subsets of E, then there always exists a measure µ′

on E extending µ and satisfying the relation {Xn : n < ω} ⊂ dom(µ′) (in this
connection, see [6] and [7]).

Let f : R → R be a Vitali type function for V . Denote X = ran(f). The
family of sets {X + q : q ∈ Q} forms a countable partition of R. Therefore, ac-
cording to the above-mentioned result, there exists a measure λ′ on R extending
λ and such that X + q ∈ dom(λ′) for all q ∈ Q. We assert that f is measurable
with respect to λ′. Indeed, for each Borel subset B of R, the equality

f−1(B) = ∪{X ∩B + q : q ∈ Q}
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is easily verified. This equality can also be rewritten as

f−1(B) = ∪{(X + q) ∩ (B + q) : q ∈ Q}.
The right-hand side of the latter relation indicates that the set f−1(B) is λ′-
measurable, which yields at once the measurability of f with respect to λ′

(hence, with respect to M(λ)). This ends the proof. ¤
Remark 2. If µ is a nonzero σ-finite diffused measure on E and {Xn : n < ω}

is a countable family of subsets of E, then, in general, we cannot assert that
there exists a measure µ′ on E extending µ and satisfying the relation {Xn : n <
ω} ⊂ dom(µ′). Moreover, if E is of cardinality ω1, then there exists a countable
family {Xn : n < ω} of subsets of E such that for every nonzero σ-finite diffused
measure µ on E at least one set Xn is nonmeasurable with respect to µ.

Example 3. Assuming Martin’s Axiom, it is not difficult to construct a
generalized Luzin set X ⊂ R and an equivalence relation S ⊂ R×R such that:

1) (∀r ∈ R)(card(S(r)) = ω);
2) X is a selector of the partition {S(r) : r ∈ R} of R.
Let h : R → R be a Vitali type function for S such that ran(h) = X. Then,

in view of Theorem 1, h is absolutely nonmeasurable with respect to the class
MR.

The preceding example shows that the validity of Theorem 2 is essentially
implied by some special (in fact, group-theoretical) properties of the classical
Vitali partition of R.

Example 4. Denote by M ′(λ) the class of all those measures on R which
extend λ and are quasi-invariant under the group of all translations of R. It
can be demonstrated that there exists a Vitali type function for V which is
measurable with respect to M ′(λ) (cf. [4] and [5]). At the same time, we do not
know whether there exists a Vitali type function for V absolutely nonmeasurable
with respect to M ′(λ).

Let E be a set equipped with a σ-finite measure µ and let f : E → R be
a function satisfying the following condition: there exists a Borel probability
measure ν on ran(f) such that the graph of f is a (µ × ν)-thick subset of the
product space E × ran(f).

Then, applying the standard argument (cf. [4] or [5]), it is not difficult to
demonstrate that there exists a measure µ′ on E such that:

1) µ′ extends µ;
2) f is measurable with respect to µ′.
In other words, f turns out to be measurable with respect to the class M(µ)

of all extensions of µ.
In particular, if E = R and a function f : R → R has the (λ×λ)-thick graph,

then f turns out to be measurable with respect to an appropriate extension of
λ (and thus f is measurable with respect to the class M(λ)). Note that there
are various examples of functions f : R → R whose graphs are (λ × λ)-thick
subsets of the plane R2 (see, e.g., [5] and [8]). Moreover, the following much
stronger statement is valid.
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Theorem 3. There exists a function g : R → R having the property that,
for any σ-finite diffused Borel measure µ on R and for any σ-finite measure ν
on R, the graph of g is a (µ× ν)-thick subset of the plane R2.

Proof. We start with a partition {Xt : t ∈ R} of R into Bernstein sets (recall
that a Bernstein set is any totally imperfect subset of R whose complement is
also totally imperfect). The existence of such a partition is well known (see,
e.g., [1], [2], [5]). Define the required function g as follows: for each x ∈ R, put
g(x) = t if and only if x ∈ Xt.

Let µ be any σ-finite diffused Borel measure on R and let ν be an arbitrary
nonzero σ-finite measure on R. Let us verify that the graph of g is (µ×ν)-thick
in R2. Indeed, if Z is any (µ× ν)-measurable set with (µ× ν)(Z) > 0, then, in
virtue of the Fubini theorem, there exists a point t0 ∈ R such that

µ({x ∈ R : (x, t0) ∈ Z}) > 0.

Keeping in mind that Xt0 is a Bernstein subset of R, we get

Xt0 ∩ {x ∈ R : (x, t0) ∈ Z} 6= ∅.

Therefore the graph of g has the nonempty intersection with Z. This completes
the proof. ¤
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