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EFFECTIVE SOLUTION OF A CLASS OF BOUNDARY
VALUE PROBLEMS OF THERMOELASTICITY IN
GENERALIZED CYLINDRICAL COORDINATES

N. KHOMASURIDZE

Abstract. A class of static boundary value problems of thermoelasticity is
effectively solved for bodies bounded by coordinate surfaces of generalized
cylindrical coordinates ρ, α, z (ρ, α are orthogonal curvilinear coordinates
on the plane and z is a linear coordinate). Besides in the Cartesian system of
coordinates some boundary value thermoelasticity problems are separately
considered for a rectangular parallelepiped. An elastic body occupying the
domain Ω = {ρ0 < ρ < ρ1, α0 < α < α1, 0 < z < z1}, is considered to be
weakly transversally isotropic (the medium is weakly transversally isotropic
if its nine elastic and thermal characteristics are correlated by one or several
conditions) and non-homogeneous with respect to z.
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1. Introduction

The given work, precise solutions for a class of static boundary value ther-
moelasticity problems for a weakly transversally isotropic (z = const is the
plane of isotropy) a section of a finite, annular cylinder Ω = {ρ0 < ρ < ρ1,
α0 < α < α1, 0 < z < z1} non-homogeneous with respect to z in generalized
cylindrical coordinates ρ, α, z, with Lame coefficients hρ = hα = h(ρ, α), hz = 1
[1]. The elastic medium is called weakly transversally isotropic when its nine
elastic and thermal characteristics are correlated by certain conditions. These
conditions are not artificial since they are automatically satisfied in the case of
homogeneous isotropic media. The first part of the paper is focused on ther-
moelasticity problems when on the four lateral cylindrical surfaces of a section
of a finite, annular cylinder (SFAC) ρ = ρ0, ρ = ρ1, α = 0 and α = α1 homo-
geneous boundary symmetry- or antisymmetry-type conditions are defined [2]
while on z = zj (j = 0, 1; z0 = 0) we have: arbitrary thermal disturbance and
equal to zero normal displacement and tangential stresses or normal stress and
tangential displacements. Besides, the thermoelastic equilibrium of an SFAC
multilayer along z is considered. The second part of the article is devoted to the
thermoelastic equilibrium of a rectangular parallelepiped when on each of its six
sides the following values are defined: the temperature and equal to zero normal
stress and tangential displacements or the normal derivative of the temperature
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(thermal flow density) and equal to zero normal displacement and tangential
stresses.

The obtained solutions are considerable practical importance. In particular,
they can be used to determine thermoelastic stresses in thick construction plates
of various shape; in bodies of complex shape affected by smooth or rough rigid
dies of various shape; in construction slabs with easily deformable aggregate,
etc. The solution of boundary value problems involving SFACs only affected by
thermal fields can be used in metallurgy.

In the Appendix a specific problem is solved.

2. Equilibrium Equations, Boundary Conditions, General
Solution

The thermoelastic equilibrium of a transversally isotropic body when mass
forces are absent can be described in generalized cylindrical coordinates ρ, α, z
in the following way [3]:

∂

∂ρ
(hRρ) +

1

h

∂

∂α
(h2Rα) + h2 ∂Rz

∂z
− ∂h

∂ρ
Aα = 0,

∂

∂α
(hAα) + h2 ∂Az

∂z
+

1

h

∂

∂ρ
(h2Aρ)− ∂h

∂α
Rρ = 0,

h2 ∂Zz

∂z
+

∂

∂ρ
(hZρ) +

∂

∂α
(hZα) = 0.

(1)

Rρ, Aα, Zz are normal stresses, Rα = Aρ, Rz = Zρ, Az = Zα are tangential
stresses and the equalities correlating the stresses and the displacements have
the following form:

Rρ = c1eρρ + (c1 − 2c5)eαα + c3ezz − k10T =
c1

h2

(
∂(hu)

∂ρ
+

∂(hv)

∂α

)

− 2c5

(
1

h

∂v

∂α
+

1

h2

∂h

∂ρ
u

)
+ c3

∂w

∂z
− k10T,

Aα = c1eαα + (c1 − 2c5)eρρ + c3ezz − k10T =
c1

h2

(
∂(hu)

∂ρ
+

∂(hv)

∂α

)

− 2c5

(
1

h

∂u

∂ρ
+

1

h2

∂h

∂α
v

)
+ c3

∂w

∂z
− k10T,

Zz = c2ezz + c3(eρρ + eαα)− k20T =
c3

h2

(
∂(hu)

∂ρ
+

∂(hv)

∂α

)

+ c2
∂w

∂z
− k20T,

Zρ = c4ezρ = c4

(
∂u

∂z
+

1

h

∂w

∂ρ

)
, Zα = c4ezα = c4

(
1

h

∂w

∂α
+

∂v

∂z

)
,

Aρ = c5eαρ = c5

[
∂

∂ρ

(v

h

)
+

∂

∂α

(u

h

)]
,

(2)
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where u, v, w are the components of the displacement vector ~U along the tan-
gents to the coordinate lines ρ, α, z; eρρ, eαα, ezz, ezρ = eρz, ezα = eαz, eαρ = eρα

are deformations; cj = cj(z) (j = 1, 2, . . . , 5) are elastic characteristics where
[4] c1 > 0, c2 > 0, c4 > 0, c5 > 0, c1c2 > c2

3 + c2c5 (free energy is a positively de-
fined square form without the inequality c2 > 0, although the condition c2 > 0
is almost always satisfied); k10 = [2(c1− c5)k1 + c3k2], k20 = (2c3k1 + c2k2), and
k1 = k1(z) k2 = k2(z) are linear thermal expansion coefficients in the plane
of isotropy z = const and along z, k1 > 0, k2 > 0; T is the change in the
temperature of the elastic body defined by the equation

∆2T +
1

λ1

∂

∂z

(
λ2

∂T

∂z

)
= 0 (3)

and the corresponding boundary conditions (the temperature of the body in its
natural state is taken as zero) while λ1 = λ1(z) and λ2 = λ2(z) are the heat
conduction coefficients in the plane of isotropy and along z, λ1 > 0, λ2 > 0;

∆2 = 1
h2

(
∂2

∂ρ2 + ∂2

∂α2

)
. Weak transversal isotropy conditions have the following

form:
a) c1c2 = (c3 + 2c4)

2, b) k20 = c · k10, c) c4 = const, (4)

where c =
√

c2
c1

. Conditions (4) are not artificial since the automatically hold

in the case of homogeneous isotropic media when c1 = c2 = c3 + 2c4, k10 = k20,
c = 1. Using (1) and (2) we can obtain the following system with respect to
the functions D, Kρ, Kα, Kz, u, v, w:

a)
∂

∂z
(c ·D)− 1

h2

[
∂(hKα)

∂ρ
− ∂(hKρ)

∂α

]
= 0,

b)
∂D

∂ρ
− ∂Kz

∂α
+

∂(hKα)

∂z
= 0,

c)
∂D

∂α
− ∂(hKρ)

∂z
+

∂Kz

∂ρ
= 0,

d)
1

h2

[
∂(hKρ)

∂ρ
+

∂(hKα)

∂α

]
+

∂

∂z
(gKz) = 0;

e)
1

h2

[
∂(hu)

∂ρ
+

∂(hv)

∂α

]
+ c

∂w

∂z
− k10

c1

T =
D

c1

,

f)
∂w

∂α
− ∂(hv)

∂z
=

hKρ

c4

,

g)
∂(hu)

∂z
− ∂w

∂ρ
=

hKα

c4

,

h)
∂(hv)

∂ρ
− ∂(hu)

∂α
=

h2Kz

c5

,

(5)

where g = c4
c5

; (5d) is an identity, which immediately follows from (5f,g,h).
Further we shall consider the thermoelastic equilibrium of an SFAC occupying

the domain Ω = {ρ0 < ρ < ρ1, α0 < α < α1, 0 < z < z1}. The boundary
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conditions that will appear have the following form:

For ρ = ρj we have : a)
∂T

∂ρ
= 0, u = 0, Kz = 0, Zρ = 0 or

b) T = 0, D = 0, v = 0, w = 0.
(6)

For α = αj we have : a)
∂T

∂α
= 0, v = 0, Zα = 0, Kz = 0 or

b) T = 0, D = 0, w = 0, u = 0.
(7)

For z = zj we have : a) T = τ3j(ρ, α) or b)
∂T

∂z
= τ̃3j(ρ, α), or

c)
∂T

∂z
+ θ3jT = τ̃3j(ρ, α).

(8)

or z = zj we have :

a) Zz = F3j1(ρ, α), hZρ = F3j2(ρ, α), hZα = F3j3(ρ, α) or

b) w = f3j1(ρ, α), hu = f3j2(ρ, α), hv = f3j3(ρ, α), or

c) w = f3j1(ρ, α), hZρ = F3j2(ρ, α), hZα = F3j3, or

d) Zz = F3j1(ρ, α), hu = f3j2(ρ, α), hv = f3j3(ρ, α).

(9)

In (6)–(9) we have j = 0, 1, with z0 = 0; θ3j are defined constants. The functions
τ̃3j(ρ, α), F3j1(ρ, α) themselves, the functions τ3j(ρ, α), f3j1(ρ, α), F3j2(ρ, α) and
F3j3(ρ, α) with their first derivatives and the functions f3j2(ρ, α) and f3j3(ρ, α)
with their first and second derivatives are assumed to expand into absolutely and
uniformly converging Fourier series with respect to the eigen-functions of the
corresponding Sturm–Liouville problems. Besides, the functions are chosen so
that compatibility conditions hold on the edges of the SFAC. The interpretation
of boundary conditions (6), (7) and conditions (9c), (9d) for f3ji(ρ, α) = 0,
F3ji(ρ, α) = 0 (i = 1, 2, 3) is given in [1].

The present paper deals with the construction of a regular solution of some
kind of boundary value problem of thermoelasticity, so that it is necessary to
define the concept of regularity.

The solution of system (5) defined by the functions T , u, v, w will be called
regular if T is twice and u, v, w is three times continuously differentiable in the

domain Ω̃, where Ω̃ is the domain Ω with the boundaries ρ = ρj and α = αj,
and on the surface z = zj T with its first derivatives and u, v and w with their
first and second derivatives can be represented by absolutely and uniformly
converging Fourier series with respect to eigen-functions of the corresponding
Sturm–Liouville problems. In addition, we assume that the equilibrium equa-
tions hold for ρ = ρj and α = αj.

Theorem 1. For the class of thermoelasticity boundary value problems under
consideration the general solution of system (5) in a class of regular functions
can be represented as

hu =
∂ϕ33

∂ρ
+

∂ϕ32

∂α
, hv =

∂ϕ33

∂α
− ∂ϕ32

∂ρ
, w =

∂ϕ33

∂z
+

∂(c · ϕ31)

∂z
, (10)
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where

∆2ϕ31 +
∂2

∂z2
(c · ϕ31) = 0,

∆2ϕ32 + g
∂2ϕ32

∂z2
= 0,

∆2ϕ33 + c
∂2ϕ33

∂z2
=

c4 −√c1c2

c1

∂2(c · ϕ31)

∂z2
+

k10

c1

T.

(11)

Proof. It follows from (5a,b,c) that

∆2D +
∂2

∂z2
(c ·D) = 0.

Let

D = c4
∂2

∂z2
(c · ϕ31), (12)

where ∆2ϕ31 + ∂2

∂z2 (c ·ϕ31) = 0. The possible loss of generality in the expression
for D, caused by the presence of the second derivative in the right-hand side
of equality (12), can be reestablished by an appropriate representation of the
function ϕ31 using the method of separation of variables (the technique is similar
to that in [2]).

Taking (12) into account we can write equation (5a, b, c) as

∂

∂ρ

[
hKα + c4

∂2(c · ϕ31)

∂ρ∂z

]
− ∂

∂α

[
hKρ − c4

∂2(c · ϕ31)

∂α∂z

]
= 0,

∂

∂z

[
hKα + c4

∂2(c · ϕ31)

∂ρ∂z

]
− ∂Kz

∂α
= 0,

∂Kz

∂ρ
− ∂

∂z

[
hKρ − c4

∂2(c · ϕ31)

∂ρ∂z

]
= 0.

The latter equalities imply that a function c4
∂ϕ32

∂z
exists, such that

hKρ = c4
∂

∂z

[
∂ϕ32

∂ρ
+

∂(c · ϕ31)

∂α

]
,

hKα = c4
∂

∂z

[
∂ϕ32

∂α
− ∂(c · ϕ31)

∂ρ

]
, Kz = c4

∂2ϕ32

∂z2
.

Substituting the expressions for Kρ, Kα, and Kz into (5d) we obtain

a)
∂

∂z

(
∆2ϕ32 + g

∂2ϕ32

∂z2

)
= 0 or b) ∆2ϕ32 + g

∂2ϕ32

∂z2
= f(ρ, α). (13)

A particular solution of equation (13b) can be found in the form of the function
ϕ∗32 = ϕ∗32(ρ, α) of two variables (indeed, if a particular solution is sought in the
form of ϕ∗32 = ϕ∗32(ρ, α), it leads to the equation ∆2ϕ

∗
32 = f(ρ, α), which implies

that ϕ∗32 will be a function of the variables ρ and α), and if that is true, then
in the expressions for Kρ, Kα and Kz no ϕ∗32 will appear, so with no loss of
generality we assume f(ρ, α) = 0.
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Equalities (5f,g,h), taking into account the expressions for Kρ, Kα and Kz,
can be written as

∂

∂α

[
w − ∂(c · ϕ31)

∂z

]
− ∂

∂z

(
hv +

∂ϕ32

∂ρ

)
= 0,

∂

∂z

(
hu− ∂ϕ32

∂α

)
− ∂

∂ρ

[
w − ∂(c · ϕ31)

∂z

]
= 0,

∂

∂ρ

(
hv +

∂ϕ32

∂ρ

)
− ∂

∂α

(
hu− ∂ϕ32

∂α

)
= 0.

The latter equalities suggest that a function ϕ33 exists such that

hu =
∂ϕ33

∂ρ
+

∂ϕ32

∂α
, hv =

∂ϕ33

∂α
− ∂ϕ32

∂ρ
, w =

∂ϕ33

∂z
+

∂(ϕ31)

∂z
. (14)

Substituting (14) into (5e) we have

∆2ϕ33 + c
∂2ϕ33

∂z2
=

c4 −√c1c2

c1

∂2(c · ϕ31)

∂z2
+

k10

c1

T.

Thus both equations (11) and representations (10) have been obtained, hence
Theorem 1 is proved. ¤

If we transform boundary conditions (9) in the same manner as in [2], we can
construct the solution of any of boundary value problems (5)–(9) as well as of
the corresponding boundary value-contact problems for a multilayer cylindrical
body (the construction of the solution is as effective as in [2]; in the case of
a non-homogeneous medium the specific type of non-homogeneity should be
defined). Without dwelling on it since in [2] a broader (in the sense of elastic
and thermal properties of the medium) class of boundary value and boundary
value-contact problems of thermoelasticity is considered (on the other hand,
system (11) is simpler than the corresponding system in [2]), we shall consider
a special class of thermoelastic boundary value problems. With this aim we
shall once more (for convenience) write boundary conditions (9c) and (9d) for
f3ji(ρ, α) = 0 and F3ji(ρ, α) = 0 (i = 1, 2, 3).

For z = zj we have : a) w = 0, hZρ = 0, hZα = 0, or

b) Zz = 0, hu = 0, hv = 0.
(15)

3. Thermoelasic Field With Zero rot ~U and D

Consider a class of boundary value problems of thermoelasticity generated
by boundary value problems (5), (6), (7), (8), (15).

We shall find the solution of boundary value problems (5), (6), (7), (8), (15)
assuming that ϕ31 = 0 and ϕ32 = 0 in (10) and (11). Then (10) and (11) will,
respectively, take the following form:

hu =
∂ϕ33

∂ρ
, hv =

∂ϕ33

∂α
, w =

∂ϕ33

∂z
; (16)
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∆2ϕ33 + c
∂2ϕ33

∂z2
=

k10

c1

T . (17)

Using (2) and (16), for a normal stress Zz (with (4a), (4b) and (17) in mind)
and tangential stresses Zρ and Zα we have

Zz = −2c4∆2ϕ33, Zρ =
2c4

h

∂2ϕ33

∂ρ∂z
, Zα =

2c4

h

∂2ϕ33

∂α∂z
. (18)

It is important that on the lateral surfaces ρ = ρj and α = αj of a generalized
cylinder the homogeneous boundary conditions for ϕ33 and T are the same.
Indeed, when conditions (6a) are satisfied we have ∂T

∂ρ
= 0, ∂ϕ33

∂ρ
= 0, when

conditions (6b) and (7b) are satisfied we have T = 0, ϕ33 = 0, and when
conditions (7) are satisfied we have ∂T

∂α
= 0, ∂ϕ33

∂α
= 0.

It can be easily seen that conditions ϕ31 = 0 and ϕ32 = 0 imply rot ~U = 0
and D = 0 or

D = 0, Kρ = 0, Kα = 0, Kz = 0.

In the forthcoming we will show that such kind of thermal field corresponds to
the class of boundary value problems (5), (6), (7), (8), (15).

Let ϕ0
33 and ϕ∗33, respectively, denote the general and a particular solution

of equation (17). Consider boundary conditions for equation (17) on the plane
boundaries of the SFAC z = 0 and z = z1 (on each of the surfaces ρ = ρj and
α = αj either the functions ϕ0

33 and ϕ∗33 or their normal derivatives are equal to
zero):

a) ϕ0
33

∣∣
z=0

+ ϕ∗33|z=0 = 0, ϕ0
33

∣∣
z=z1

+ ϕ∗33|z=z1
= 0;

b)
∂ϕ0

33

∂z

∣∣∣∣
z=0

+
∂ϕ∗33

∂z

∣∣∣∣
z=0

= 0,
∂ϕ0

33

∂z

∣∣∣∣
z=z1

+
∂ϕ∗33

∂z

∣∣∣∣
z=z1

= 0;

c) ϕ0
33

∣∣
z=0

+ ϕ∗33|z=0 = 0,
∂ϕ0

33

∂z

∣∣∣∣
z=z1

+
∂ϕ∗33

∂z

∣∣∣∣
z=z1

= 0.

(19)

In case of (19c) we consider ϕ∗33|z=0 and
∂ϕ∗33
∂z

∣∣∣
z=z1

to be defined functions (the

function T in (17) is assumed to be known, resulting from the solution of a cor-

responding boundary value problem for equation (3)) and ϕ0
33|z=0 and

∂ϕ0
33

∂z

∣∣∣
z=z1

are chosen so that conditions (19c) are satisfied. We behave in a similar way in
the case of (19a) and (19b).

Conditions (19a) and formulas (16) and (18) imply

u|z=zj
= 0, v|z=zj

= 0, Zz|z=zj
= 0.

Conditions (19b) and formulas (16) and (18) imply

Zρ|z=zj
= 0, Zα|z=zj

= 0, w|z=zj
= 0.

Conditions (19c) and formulas (16) and (18) imply

u = 0, v = 0, Zz = 0 for z = 0
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and

Zρ = 0, Zα = 0, w = 0 for z = z1.

The above-stated and the uniqueness of the solution of the thermoelasticity
problems under consideration [2] result in the following theorem.

Theorem 2. The solution of a class of thermoelasticity boundary value
problems (3), (5), (6), (7), (8), (15) for an SFAC consisting of a medium char-
acterized by nine parameters (c1(z), c2(z), . . . λ2(z)) satisfying restrictions (4) is
reduced to the integration of the system of differential equations

∆2T +
1

λ1

∂

∂z

(
λ2

∂T

∂z

)
= 0, ∆ϕ33 + c

∂2ϕ33

∂z2
=

k10

c1

T ,

when on each of the surfaces ρ = ρj and α = αj the functions T and ϕ33 or
their normal derivatives are assumed to be equal to zero and on each side z = zj

one of conditions (8) and condition ϕ33 = 0 of ∂ϕ33

∂z
= 0 are satisfied.

Note that a non-homogeneity class exists, i.e., a collection of functions c1(z),
c2(z), . . . , λ2(z), for which ϕ∗33 can be analytically found.

4. Thermoelastic Equilibrium of Multilayer SFAC with Zero
rot ~U and D

Consider an SFAC multilayer along z, occupying the domain Ωz = Ωz1 +
Ωz2 + . . . + Ωzβ, where Ωzj = {ρ0 < ρ < ρ1, α0 < α < α1, zj−1 < z < zj},
j = 1, 2, . . . , β, and β is the number of layers. The layers Ωz1, Ωz2, . . . , Ωzβ

contact with one another along the planes z = zj, where j = 1, 2, . . . , β − 1.
Each layer has its elastic and thermal characteristics.

With ρ = ρj (j = 0, 1) for all layers simultaneously conditions (6) are satisfied
while with α = αj we have conditions (7). On the remaining boundary surfaces
of the domain Ωz conditions (8) and (15) are satisfied with z1 substituted by
zβ. On the contact plane z = zj (z = zj is the contact plane of the j-th and
j + 1-th layers) put

Tj − Tj+1 = 0, λ2j
∂Tj

∂z
− λ2(j+1)

∂Tj+1

∂z
= 0,

ϕ
(j)
33 − ϕ

(j+1)
33 = 0,

∂ϕ
(j)
33

∂z
− ∂ϕ

(j+1)
33

∂z
= 0.

The last two equalities, taking formulas (16) and (18) into account, imply the
following contact conditions

uj − uj+1 = 0, vj − vj+1 = 0, wj − wj+1 = 0,

Zρj − Zρ(j+1) = 0, Zαj − Zα(j+1) = 0, Zzj − Zz(j+1) = 0.

The considerations presented in this section and the uniqueness of the solution
of the boundary value contact problems given here [2] lead to the following
theorem.
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Theorem 3. Consider a multilayer along the coordinate z SFAC, whose
each β layer is an SFAC of Theorem 2; furthermore, let the conditions on the
surface of multilayer SFAC coincide with the conditions on the surface of the
SFAC from Theorem 2, the contact between the layers being rigid. In the case
the solution to the boundary value contact problem is reduced to the integration
of the equations

∆T +
1

λ1j

∂

∂z

(
λ2j

∂T

∂z

)
= 0, ∆ϕ

(j)
33 + cj

∂2ϕ
(j)
33

∂z2
=

k
(j)
10

c1j

Tj , j = 1, 2, . . . , β,

with the boundary conditions for Tj and ϕ
(j)
33 coinciding, respectively, with bound-

ary conditions T and ϕ33 in Theorem 2 and the contact conditions with respect

to the functions Tj, Tj+1, ϕ
(j)
33 and ϕ

(j+1)
33 given in the second paragraph of this

section.

It can be easily seen that in the case of the multilayer CPP under considera-
tion we have rot ~U = 0 and D = 0.

5. Thermoelastic Equilibrium of a Weakly Transversally
Isotropic Homogeneous SFAC with rot ~U = 0 and D = 0

For λ1 = const and λ2 = const heat conductivity equation (3) will take the
following form

∆2T + λ0
∂2T

∂z2
= 0,

where λ0 = λ2

λ1
. In this case, using the method of separation of variables, the

function T in the domain Ω can be represented as

T = a0 + b0z +
∞∑

n=0

∞∑
m=0

[
A3mne−p31z + B3mne

p31(z−z1)
]
ψmn(ρ, α),

where a0, b0, p31(m,n) = p(m,n)√
λ0

> 0, Amn, Bmn are constant; ψmn(ρ, α) is a

non-trivial solution of the following regular Sturm–Liouville problem [1]

∆2ψmn + p2ψmn = 0; (20)

a) ψmn = 0 or b)
∂ψmn

∂ρ
= 0 for ρ = ρj; (21)

a) ψmn = 0 or b)
∂ψmn

∂α
= 0 for α = αj; (22)

Conditions (21) and (22) follow from conditions (6) and (7). Comments to the
function ψmn are exactly the same as in [2] to a similar function.

Although this section deals with a homogeneous SFAC, it is noteworthy that
if λ1 = λ1(z) and λ2 = λ2(z), then

T = η0(z) +
∞∑

n=0

∞∑
m=0

ηmn(z)ψmn(ρ, α),
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where η0(z) and ηmn(z) are the solution of the equations

d

dz

(
λ2

dη0

dz

)
= 0 and

1

λ

d

dz

(
λ2

dηmn

dz

)
− p2ηmn = 0.

Going back to the homogeneous SFAC, when all the nine parameters of the
medium are constant we assume that

a) T =
c1(λ0 − c)

k10

∂2T31

∂z2
or b) T =

2cc1

k10

∂T32

∂z
(23)

which depends on whether c 6= λ0 or c = λ0. In (23a) we have

T31 =
a0

2

(
z2 − λ0

2
r2

)
+

b0

2

(
z3 − 3λ0

2
z · r2

)

+
∞∑

n=0

∞∑
m=0

[
A3mne

−p31z + B3mne
p31(z−z1)

] ψmn(ρ, α)

p2
31

. (24)

The function T32 can be represented by means of a series similar to T31; r =√
x2 + y2 (x, y are Cartesian coordinates). Obviously T31 and T32 satisfy the

same equation as T .
For c 6= λ0 the solution of (17) can be written as

ϕ33 = ϕ0
33 + T31, (25)

where ∆2T31 + λ0
∂2T31

∂z2 = 0, and for c = λ0 the solution of (17) is expressed as

ϕ33 = ϕ0
33 + zT32, (26)

where ∆2T32 + c∂2T32

∂z2 = 0. Remember that in (25) and (26) ϕ0
33 is the solution

of (17) with a zero right-hand side.
For the function ϕ0

33, similar to the function T31, we have

ϕ0
33 = a1(2z

2 − c · r2) + b1(2z
3 − 3c · z · r2)

+
∞∑

n=0

∞∑
m=0

[
C3mne

−p32z + D3mnep32(z−z1)
]
ψmn(ρ, α), (27)

where a1, b1, p32(m,n) = p(m,n)√
c

, Cmn, Dmn are constant.

Formulas (23)–(27) suggest that boundary value problems (5), (6), (7), (8),
(15) have been solved for a weakly transversally isotropic homogeneous SFAC.
We can illustrate it by the solution of boundary value problem (5), (6b), (7b),
(8a), (15b) for c 6= λ0 applying the Fourier method.

Similar to [1], for T31 we have

T31 =
∞∑

n=1

∞∑
m=1

(
τ30mn − e−p31z · τ31mn

1− e−2p31z1
e−p31z

+
τ31mn − e−p31z · τ30mn

1− e−2p31z1
ep31(z−z1)

)
ψmn(ρ, α). (28)
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In (28) τ30mn and τ31mn are Fourier coefficients of the functions τ30(ρ, α) and
τ31(ρ, α) expanded into a Fourier series with respect to the functions ψmn, where
the functions ψmn are a non-trivial solution of problem (20), (21a), (22a).

In the expression for the function

ϕ0
33 =

∞∑
n=1

∞∑
m=1

[
C3mne

−p32z + D3mne
p32(z−z1)

]
ψmn(ρ, α) (29)

the constants C3mn and D3mn with formula (25) and boundary conditions (19a)
in mind (conditions (19a) lead to conditions (15b)) are established using the
following system of equations

C3mn + e−p32z1D3mn = −τ30mn,

e−p32C3mn + D3mn = −τ31mn.
(30)

The determinant of this system 1 − e−2p32z1 and the expression 1 − e−2p31z1

in (28) exceed zero since p32 > 0 and p31 > 0.
Having determined C3mn and D3mn from system (30) and substituting the

obtained solution into (29) we shall have the solution of the stated problem.
The uniqueness of the obtained solution and convergence of the corresponding
series can be easily proved [2].

The analytical solution of any of boundary value problems (5), (6), (7), (8),
(15) can be constructed in a similar way both for c 6= λ0 and c = λ0.

6. Weakly Transversally Isotropic Rectangular Parallelepiped

In the given section it is assumed that besides condition (4a) and (4b) there
is also the following condition

c = g. (31)

With (31) in mind, in Cartesian coordinates x, y, z, with constant elastic and
thermal characteristics of the medium system (5) can be written as

a) c
∂D

∂z
− ∂Ky

∂x
+

∂Kx

∂y
= 0, e)

∂u

∂x
+

∂v

∂y
+ c

∂w

∂z
− k10

c1

T =
D

c1

,

b)
∂D

∂x
− ∂Kz

∂y
+

∂Ky

∂z
= 0, f)

∂w

∂y
− ∂v

∂z
=

Kx

c4

,

c)
∂D

∂y
− ∂Kx

∂z
+

∂Kz

∂x
= 0, g)

∂u

∂z
− ∂w

∂x
=

Ky

c4

,

d)
∂Kx

∂x
− ∂Ky

∂y
+ c

∂Kz

∂z
= 0, h)

∂v

∂x
− ∂u

∂y
=

Kz

c5

.

(32)

We can express the solution of system (32) by means of functions ϕ21, ϕ22,

ϕ23, where frac∂2ϕ2i∂x2 + ∂2ϕ2i

∂y2 + c∂2ϕ2i

∂z2 = ∆cϕ2i = 0 (i = 1, 2, 3), assuming

that the surface and thermal disturbances are defined on the sides x = 0 and
x = x1 or y = 0 and y = y1 of a rectangular parallelepiped (RP) occupying the
domain Ω = {0 < x < x1, 0 < y < y1, 0 < z < z1} (z = const remains to be the
plane of isotropy of the medium). As an illustration we are going to consider in
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detail the case when the disturbance is defined on the sides y = 0 and y = y1,
or to be more exact, when we have the following boundary conditions:

For z = zj we have : a)
∂T

∂z
= 0, w = 0, Xz = 0, Yz = 0 or

b) T = 0, Zz = 0, u = 0, v = 0.
(33)

For x = xj we have : a)
∂T

∂x
= 0, u = 0, Yx = 0, Zx = 0 or

b) T = 0, Xx = 0, v = 0, w = 0.
(34)

For y = yj we have : a) T = τ2j(z, x) or b)
∂T

∂y
= τ̃2j(z, x) or

c)
∂T

∂y
+ θ2jT = τ̃2j(z, x).

(35)

For y = yj we have : qj1Yy + qj2v = F2j1(z, x),

qj3Zy + qj4w = F2j2(z, x),

qj5Xy + qj6u = F2j3(z, x).

(36)

In (33)–(36) j = 0, 1, z0 = 0, x0 = 0, y0 = 0; qji and qj(i+1) are constant with
qji · qj(i+1) ≥ 0 (i = 1, 3, 5); the requirements to the functions τ2j(z, x), τ̃2j(z, x),
F2j1(z, x), . . . , F2js(z, x) are similar to the requirements to the functions appear-
ing in (8) and (9). Conditions (33a) and (34a) are called symmetry conditions
while conditions (33b) and (34b) are called antisymmetry conditions. Note that
conditions (9) can also be replaced by more general conditions of type (36) if
the domain Ω implied a rectangular parallelepiped.

Let

D =
∂ϕ21

∂y
,

then (32a,b,c) can be expressed in the following way

∂

∂y

(
Kx + c

∂ϕ21

∂z

)
− ∂Ky

∂x
= 0,

∂Ky

∂z
− ∂

∂y

(
Kz − ∂ϕ21

∂x

)
= 0,

∂

∂x

(
Kz − ∂ϕ21

∂x

)
− ∂

∂z

(
Kx + c

∂ϕ21

∂z

)
= 0.

The latter equalities imply that a function ∂ϕ22

∂y
exists, such that

Kx =
∂2ϕ22

∂x∂y
− c

∂ϕ21

∂z
, Ky =

∂2ϕ22

∂y2
, Kz =

∂2ϕ22

∂z∂y
+

∂ϕ21

∂x
. (37)

Substituting (37) into (32d) we obtain

a)
∂

∂y
∆cϕ22 = 0 or b) ∆cϕ22 = f(z, x), (38)
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where f(z, x) is a function resulting from the integration of equation (38a).
Similar to the case of equation (13b), it can be shown that f(z, x) = 0.

Equations (32e,f,g,h), taking into account the expressions for D, formulas
(37) and condition (31), can be written as

∂u

∂x
+

∂v

∂y
+ c

∂w

∂z
=

1

c1

∂ϕ21

∂y
+

k10

c1

T,

∂

∂y

(
w − 1

c4

∂ϕ22

∂x

)
− ∂

∂z

(
v − ϕ21

c5

)
= 0,

∂

∂z

(
u +

1

c5

∂ϕ22

∂z

)
− ∂

∂x

(
w − 1

c4

∂ϕ22

∂x

)
= 0,

∂

∂x

(
v − ϕ21

c5

)
− ∂

∂y

(
u +

1

c5

∂ϕ22

∂z

)
= 0,

(39)

It follows from (39) that

u =
∂ϕ̄23

∂x
− 1

c5

∂ϕ22

∂z
, v =

∂ϕ̄23

∂y
+

ϕ21

c5

, w =
∂ϕ̄23

∂z
+

1

c4

∂ϕ22

∂x
, (40)

where

∆cϕ̄23 =
c5 − c1

c1c5

∂ϕ21

∂y
+

k10

c1

T . (41)

For c 6= λ0 let

T =
c1(λ0 + c)

k10

∂2T21

∂z2
,

where ∆2T21 + λ0
∂2T21

∂z2 = 0 and for c = λ0 let

T =
2c1

k10

∂T22

∂y
,

where ∆cT22 = 0, then for c 6= λ0 the solution of equation (41) will be

ϕ̄23 = ϕ23 +
c5 − c1

2c1c5

yϕ21 + T21,

while for c = λ we shall have

ϕ̄23 = ϕ23 +
c5 − c1

2c1c5

yϕ21 + yT22.

If we substitute the expression ϕ̄33 obtained for c 6= λ0 into (40) we have

u =
∂

∂x

(
ϕ23 +

c5 − c1

2c1c5

yϕ21

)
− 1

c5

∂ϕ22

∂z
+

∂T21

∂x
,

v =
∂

∂y

(
ϕ23 +

c5 − c1

2c1c5

yϕ21

)
+

ϕ21

c5

+
∂T21

∂y
,

w =
∂

∂z

(
ϕ23 +

c5 − c1

2c1c5

yϕ21

)
+

1

c4

∂ϕ22

∂x
+

∂T21

∂z
.

(42)
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If in the expressions for u, v and w the last members, i.e., ∂T21

∂x
, ∂T21

∂y
and ∂T21

∂z

are substituted, respectively, by y
∂T22

∂x
, ∂

∂y
(yT22) and ∂T22

∂z
, we shall obtain a

solution of system (33) represented by functions ϕ21, ϕ22 and ϕ23 for c = λ0.
When a solution of system (32) expressed by formulas (42) is available, we can

construct analytically (in series) the solution of any boundary value problems
(32), (33), (34), (35), (36) as well as of the corresponding boundary value-
contact problems for a multilayer RP both for c 6= λ0 and c = λ0. The technique
is similar to that used in [2] by the given author. The above stated implies
the following: system (32) can be analytically solved taking into consideration
boundary conditions (33), (34) and

∂T

∂y

∣∣∣∣
y=yj

= τ̃2j(x, z), v|y=yj
= f2j1(x, z),

Zy|y=yj
= F2j2(x, z), Xy|y=yj

= F2j3(x, z)

or

T |y=yj
= τ2j(x, z), Yy|y=yj

= F2j1(x, z),

w|y=yj
= f2j2(x, z), u|y=yj

= f2j3(x, z).

If the above is true, then summing up the solutions we can also solve system (32)
analytically taking into account both nonhomogeneous boundary conditions
(33), (34) (in the right-hand sides of equalities (33) and (34) there are defined
functions instead of zero) and the boundary conditions which appear in the
previous sentence. Without dwelling on it consider the case when ϕ21 = 0 and
ϕ22 = 0.

7. Equilibrium of RP with Thermal Disturbance on the Sides
y = yj or x = xj when rot ~U = 0 and D = 0

Let ϕ21 = 0 and ϕ22 = 0, i.e., D = 0 and rot ~U = 0 or D = 0, Kx = 0,
Ky = 0, Kz = 0, then for c 6= λ0 (42) implies

u =
∂

∂x
(ϕ23 + T21) , v =

∂

∂y
(ϕ23 + T21) , w =

∂

∂z
(ϕ23 + T21) . (43)

It should be noted that for D = 0, Kρ = 0, Kα = 0 and Kz = 0 representation
(43) and all other representations considered in this section remain true for
c 6= g as well. In other words, neither the condition c 6= g nor c = g will in any
way affect either (43) or other representations similar to (43).

If c = λ0, then

u =
∂ϕ23

∂x
+ y

∂T22

∂x
, v =

∂ϕ23

∂y
+ y

∂T22

∂y
+ T22, w =

∂ϕ23

∂z
+ y

∂T22

∂z
. (44)

By means of representations (43) and (44) the thermoelastic equilibrium of
a weakly transversally isotropic RP can be found under boundary conditions
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(33), (34), (35) and

a) v|y=yj
= 0, Zy|y=yj

= 0, Zx|y=yj
= 0, or

b) Yy|y=yj
= 0, w|y=yj

= 0, u|y=yj
= 0.

(45)

The thermoelastic equilibrium of an RP under boundary conditions (33),

(34)′ (a prime over the number means that in (34a) the condition
∂T

∂x
= 0 is

omitted while in (34b) we omit the condition T = 0), (45)′ (a prime over the

number means that (45a) is supplemented by the condition ∂T
∂y

∣∣∣
y=yj

= 0 and

(45b) is supplemented by the condition T |y=yj
= 0) and

a) T |x=xj
= τ1j(y, z) or b)

∂T

∂x

∣∣∣∣
x=xj

= τ̃1j(y, z), or

c)

(
∂T

∂x
+ θ1jT

)

x=xj

= τ̃1j(y, z),

(46)

for c 6= λ0 can be represented as

u =
∂

∂x
(ϕ13 + T11) , v =

∂

∂y
(ϕ13 + T11) , w =

∂

∂z
(ϕ13 + T11) , (47)

where ∆cϕ13 = 0, ∆2T11 + λ0
∂2T11

∂z2 = 0, T = c1(λ0+c)
k10

∂2T11

∂z2 and for c = λ0 as

u =
∂ϕ13

∂x
+ x

∂T12

∂x
+ T12, v =

∂ϕ13

∂y
+ x

∂T12

∂y
, w =

∂ϕ13

∂z
+ x

∂T12

∂z
, (48)

where ∆cT12 = 0, T = 2c1
k10

∂T12

∂x
.

8. Equilibrium of RP with Thermal Disturbance on the Six Sides
when rot ~U = 0 and D = 0

Construct now for the RP the solution of boundary value problems (32), (34)∗,
(45)∗, (33)∗, where (34)∗, means that in (34a) instead the condition ∂T

∂x

∣∣
x=xj

= 0

we have the condition ∂T
∂x

∣∣
x=xj

= τ̃1j(y, z) and in (34b) instead of the condition

T |x=xj
= 0 we have the condition T |x=xj

= τ1j(y, z); (45)∗ means that (45a) is

supplemented by the condition ∂T
∂y

∣∣∣
y=yj

= τ̃2j(z, x) and (45b) by the condition

T |y=yj
= τ2j(z, x); (33)∗ means that in (33a) instead of the condition . ∂T

∂z

∣∣
z=zj

=

0 we take the condition . ∂T
∂z

∣∣
z=zj

= τ̃3j(x, y) and in (33b) instead of the condition

T |z=zj
= 0 we take the condition T |z=zj

= τ3j(x, y). We shall also assume

that the compatibility conditions on the edges of the RP are homogeneous
(if the compatibility conditions are non-homogeneous they can be reduced to
homogeneous conditions using the technique of [5]).

The solution of boundary value problems (32), (34)∗, (45)∗, (33)∗ is con-
structed by means of summation of the solutions of boundary value problems
(32), (34)∗, (45)′, (33); (32), (34), (45)∗, (33); (32), (34), (45)′, (33)∗.
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As an example, using the method of separation of variables, we can construct
the solution of boundary value problem (32), (34b)∗, (45b)∗, (33b)∗ for c 6= λ0

representing it as a sum of the solutions of boundary value problems (32),
(34b)∗, (45b)′, (33b); (32), (34b), (45b)∗, (33b); (32), (34b), (45b)′, (33b)∗. If
we denote the components of the displacement vector by u1, v1 and w1 in the
case of boundary value problem (32), (34b)∗, (45b), (33b), by u2, v2 and w2 in
the case of boundary value problem (32), (34b), (45b)∗, (33b), by u3, v3 and w3

in the case of boundary value problem (32), (34b), (45b)′, (33b)∗ and by u, v
and w in the case of boundary value problem (32), (34b)∗, (45b)∗, (33b)∗, then

u = u1 + u2 + u3, v = v1 + v2 + v3, w = w1 + w2 + w3. (49)

In equality (49) we have

a) u1 =
∂

∂x
(ϕ13 + T11) , v1 =

∂

∂y
(ϕ13 + T11) , w1 =

∂

∂z
(ϕ13 + T11) ;

b) u2 =
∂

∂x
(ϕ23 + T21) , v2 =

∂

∂y
(ϕ23 + T21) , w2 =

∂

∂z
(ϕ23 + T21) ;

c) u3 =
∂

∂x
(ϕ33 + T31) , v3 =

∂

∂y
(ϕ33 + T31) , w3 =

∂

∂z
(ϕ33 + T31) ;

(50)

In (50) we have

T11 =
∞∑

n=1

∞∑
m=1

[
τ10mn − e−p11x1τ11mn

1− e−2p11x1
e−p11x +

τ11mn − e−p11x1τ10mn

1− e−2p11x1
ep11(x−x1)

]

× sin

(
πm

y1

y

)
sin

(
πm

z1

z

)
,

ϕ13 =
∞∑

n=1

∞∑
m=1

[
e−p12x1τ11mn − τ10mn

1− e−2p12x1
e−p12x +

e−p12x1τ10mn − τ11mn

1− e−2p12x1
ep12(x−x1)

]

× sin

(
πm

y1

y

)
sin

(
πm

z1

z

)
;

T21 =
∞∑

n=1

∞∑
m=1

[
τ20mn − e−p21y1τ21mn

1− e−2p21y1
e−p21y +

τ21mn − e−p21y1τ20mn

1− e−2p21y1
ep21(y−y1)

]

× sin

(
πm

z1

z

)
sin

(
πm

x1

x

)
, (51)

ϕ23 =
∞∑

n=1

∞∑
m=1

[
e−p22y1τ21mn − τ20mn

1− e−2p22y1
e−p22y +

e−p22y1τ20mn − τ21mn

1− e−2p22y1
ep22(y−y1)

]

× sin

(
πm

z1

z

)
sin

(
πm

x1

x

)
;

T31 =
∞∑

n=1

∞∑
m=1

[
τ30mn − e−p31z1τ31mn

1− e−2p31z1
e−p31z +

τ31mn − e−p31z1τ30mn

1− e−2p31z1
ep31(z−z1)

]
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× sin

(
πm

x1

x

)
sin

(
πm

y1

y

)
,

ϕ0
33 =

∞∑
n=1

∞∑
m=1

[
e−p32z1τ31mn − τ30mn

1− e−2p32z1
e−p32z +

e−p32z1τ30mn − τ31mn

1− e−2p32z1
ep32(z−z1)

]

× sin

(
πm

x1

x

)
sin

(
πm

y1

y

)
.

In (51)

p11 = π

√(
m

y1

)2

+ λ0

(
n

z1

)2

, p12 = π

√(
m

y1

)2

+ c

(
n

z1

)2

,

p21 = π

√
λ0

(
m

z1

)2

+

(
n

x1

)2

, p22 = π

√
c

(
m

z1

)2

+

(
n

x1

)2

,

p31 = π

√√√√ 1

λ0

[(
m

x1

)2

+

(
n

y1

)2
]
, p32 = π

√√√√1

c

[(
m

x1

)2

+

(
n

y1

)2
]
;

τ10mn, τ11mn, τ20mn, τ21mn, τ30mn, τ31mn are Fourier coefficients of the func-
tions τ10(y, z), τ11(y, z), τ20(z, x), τ21(z, x), τ30(x, y), τ31(x, y), respectively. The
uniqueness of the obtained solution and convergence of the corresponding series
can be easily proved.

Quite similarly one can construct a solution of any other boundary value
problem from the class of boundary value problems (32), (34)∗, (45)∗, (33)∗ for
an RP, both for c 6= λ0 and c = λ0 (mind that the medium constituting the RP
is characterized by nine elastic and thermal constants correlated by means of
conditions (4a) and (4b).

The above-stated suggests that the following Theorem has been proved.

Theorem 4. For a weakly transversally isotropic homogeneous RP the precise
solution of boundary value problems (32), (34)∗, (45)∗, (33)∗; is constructed by
summing up the solutions of boundary value problems (32), (34)∗, (45)′, (33);
(32), (34), (45)∗, (33); (32), (34), (45)′, (33)∗. Finally the components of the
displacement vector and stress tensor are represented as double series of form
(51).

Remark 1. If on each of the six sides of the RP the defined density of the
thermal flow or the defined temperature (including the case when the temper-
ature is defined for some sides while for other sides the density of the thermal
flow is given) is represented as a finite double series, then the precise solution
becomes elementary.

Remark 2. The boundary value problems considered in this section are of
practical importance since the boundary conditions which appear in these prob-
lems may have a practical interpretation. In particular, boundary conditions
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(34b)∗, (45b)∗ and (33b)∗ can be interpreted in the following way: thin non-
tensile and non-compressible plates are attached to the sides of an RP and in
each plate the defined temperature distribution is maintained.

Appendix

Find the thermoelastic equilibrium of a homogeneous cube Ω = {0 < x < π,
0 < y < π, 0 < z < π}, for λ0 = 2, c = 1, g = 1, c1 − 2c4 = c3 and k1 = k2,
with the following boundary conditions:

Xx = 0, v = 0, w = 0, T = 0 for x = 0,

Xx = 0, v = 0, w = 0, T = A1 sin y sin z for x = π;

Yy = 0, w = 0, u = 0, T = 0 for y = 0,

Yy = 0, w = 0, u = 0, T = A2 sin z sin x for y = π;

Zz = 0, u = 0, v = 0, T = 0 for z = 0,

Zz = 0, u = 0, v = 0, T = A3 sin x sin y for z = π,

where Ai are arbitrary constants (i = 1, 2, 3).
According to formulas (50), we have

u =
∂Φ

∂x
, v =

∂Φ

∂y
, w =

∂Φ

∂z
,

where Φ = ϕ13 + T11 + ϕ23 + T33 + ϕ0
33 + T33. As for ϕ13, T11, . . . , T33, it follows

from formulas (51)

T11 = A1
sinh(

√
3x)

sinh(
√

3π)
sin y sin z, ϕ13 = −A1

sinh(
√

2x)

sinh(
√

2π)
sin y sin z,

T21 = A2
sinh(

√
3y)

sinh(
√

3π)
sin z sin x, ϕ23 = −A2

sinh(
√

2y)

sinh(
√

2π)
sin z sin x,

T31 = A3
sinh z

sinh π
sin x sin y, ϕ0

33 = −A3
sinh(

√
2z)

sinh(
√

2π)
sin x sin y.

Using the function Φ we can express stresses as

1

2c4

Xx = −
(

∂2Φ

∂y2
+

∂2Φ

∂z2

)
,

1

2c4

Yy = −
(

∂2Φ

∂x2
+

∂2Φ

∂z2

)
,

1

2c4

Zz = −
(

∂2Φ

∂x2
+

∂2Φ

∂y2

)
,

1

2c4

Zx =
∂2Φ

∂x∂z
,

1

2c4

Zy =
∂2Φ

∂y∂z
,

1

2c4

Yx =
∂2Φ

∂x∂y
.

In conclusion, we shall give some graphs describing changes in the displacements
u and w and the stresses Xx, Zz, Yx and Zx along the diagonal of the cube
passing through the points M1(0, 0, 0) and M2(π, π, π) for A1 = A2 = A3 = 1
(see Fig. 1). It should be noted that on the diagonal M1M2 we have Xx =
Yy = 0.
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Fig. 1
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