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EQUICONTINUITY AND QUASI-UNIFORMITIES

E. CORBACHO, V. TARIELADZE, AND R. VIDAL

Abstract. For topological spaces X, Y with a fixed compatible quasi-uni-
formity Q in Y and for a family (fi)i∈I of mappings from X to Y , the
notions of even continuity in the sense of Kelley, topological equicontinuity
in the sense of Royden and Q-equicontinuity (i.e., equicontinuity with respect
to the topology of X and Q) are compared. It is shown that Q-equicontinuity
implies even continuity, and if Q is locally symmetric, it implies topological
equicontinuity too. It turns out that these notions are equivalent provided
Q is a uniformity compatible with a compact topology, but the equivalence
may fail even for a locally symmetric quasi-uniformity Q compatible with a
compact metrizable topology.
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1. Introduction

There exists a natural notion of equicontinuity for a set of mappings from
a topological space (X, τ) to a uniform or quasi-uniform space (Y,Q), which
we call (τ,Q)-equicontinuity. On the other hand, there are several notions of
equicontinuity type which require only the presence of a topology η in the second
space without any reference to a uniformity or quasi-uniformity compatible with
η. The first of them is the notion of (τ, η)-even continuity [5]. A related notion
of (τ, η)-topological equicontinuity was introduced in [11].

Our note originates with the following question: since, as a rule, there are
many uniformities or quasi-uniformities compatible with a given topology, is
it possible to find among them such a quasi-uniformity Q which reduces the
checking of (τ, η)-even continuity or (τ, η)-topological equicontinuity to (τ,Q)-
equicontinuity?

First of all we show that (τ,Q)-equicontinuity always implies (τ, TQ)-even con-
tinuity (Proposition 3.3), and if Q is a locally symmetric quasi-uniformity, then
(τ,Q)-equicontinuity implies (τ, TQ)-topological equicontinuity too (Proposition
3.5). It appears that, rather unexpectedly, the local symmerty is essential for
the validity of the latter conclusion (Remark 3.6(1)). Using Propositions 3.3
and 3.5, we give the following partial positive answer to the above-mentioned
question: if Q is a uniformity compatible with a compact topology, then (τ, TQ)-
even continuity, (τ,Q)-equicontinuity and (τ, TQ)-topological equicontinuity are
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equivalent (Theorem 3.7). Finally, it is established that in Theorem 3.7 the uni-
formity cannot be replaced by locally symmetric quasi-uniformity compatible
with a compact metrizable topology (Proposition 3.8).

2. Basic Definitions

2.1. Quasi-uniformities. For a topological space (X, τ) we denote

(np) by Nτ (x) the collection of all τ -neighbourhoods of a point x ∈ X,
(ns) by Nτ (K) the collection of all τ -neighbourhoods of a set K ⊂ X, and
(nd) by Dτ the collection of all τ × τ -neighbourhoods of the diagonal

∆X := {(x, x) ∈ X ×X |x ∈ X}.
In the sequel, for a set X and a subset G ⊂ X SG will stand for the subset

of X ×X defined by the equality

SG := (G×G) ∪ (X \G)×X.

If P is a set of subsets of X × X, then, by definition, P−1 = {P−1 : P ∈ P},
where

P−1 := {(y, x) ∈ X ×X | (x, y) ∈ P} for ⊂ X ×X.

A relation P ⊂ X ×X is called symmetric if P−1 = P.
For a set X and two relations U, V ⊂ X ×X, as usual, we set

U ◦ V := {(x, y) ∈ X ×X | ∃z ∈ X such that (x, z) ∈ V, (z, y) ∈ U}.
All the terms and concepts, which are not defined below, are taken from [5].

A uniformity in a nonempty set X is a nonempty set P of subsets of X ×X
with the following properties:

(RF) P is a filter such that ∆X ⊂ P for every P ∈ P ,
(DF) for any P ∈ P there exists R ∈ P such that R ◦R ⊂ P.
(SF) P−1 = P .

A quasi-uniformity in a non-empty set X is a non-empty set P of subsets of
X ×X with the properties (RF) and (DF).

If P is a quasi-uniformity, then P−1 is also a quasi-uniformity which is called
the conjugate of P . Therefore, a quasi-uniformity P is a uniformity provided
it satisfies the symmetry condition (SF). Any member P of a given quasi-
uniformity or uniformity is called an entourage.

Let P be a quasi-uniformity in X; a subfamily P0 ⊂ P is called:
— a base for P if every member of P contains some member of P0,
— a subbase for P if the family of finite intersections of members of P0 is a

base for P .
Every quasi-uniformity P induces in X the topology TP for which

{P [x] |P ∈ P} = NTP (x) ∀x ∈ X.

A topology τ in X is compatible with a quasi-uniformity P if τ = TP .
For a given topology τ in X the collection {SG |G ∈ τ} is a subbase of a

quasi-uniformity in X called the Pervin quasi-uniformity and which we denote
by Qper(τ).
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Several important properties of the Pervin’s quasi-uniformity are listed in the
next proposition.

Proposition 2.2. Let X be a nonempty set and τ be a topology in X.
(1) (Pervin) Qper(τ) is compatible with τ.

(2) If τ is a T1-topology, then (Qper(τ))−1 is compatible with the discrete
topology in X.

(3) If τ is a T0-topology, then Qper(τ) is a uniformity if and only if τ is a
discrete topology.

Proof. (1) See [10, p. 15, Theorem 1.19].
(2) Fix x0 ∈ X and let us find G ∈ τ such that if P := (SG)−1, then

P [x0] = {x0}. Since τ is a T1-topology, we have G = (X \ {x0}) ∈ τ. Clearly,
P [x0] = {x0}.

(3) see [3, (2.35)]. ¤

For a given topology τ in X there exists a compatible uniformity if and only
if (X, τ) is a completely regular topological space (see, e.g., [5, p. 188, Corollary
6.17]). It is also known that if τ is a compact regular topology in X, then Dτ

is a uniformity compatible with τ , and if two uniformities U1,U2 in a set X are
compatible with a given compact topology τ , then U1 = U2 [5, p. 198, Corollary
6. 30].

A pair (X,P), where X is a set and P is a (quasi-)uniformity is called a
(quasi-)uniform space.

Every quasi-uniform space (X,P) is endowed with the topology TP and hence
is also treated as a topological space.

A quasi-uniform space (Y,Q) as well as a quasi-uniformity Q are called
Lebesgue [4] if for each open cover O of (Y, TQ) there is an entourage Q ∈ Q
such that the family (Q[y])y∈Y refines O.

Proposition 2.3 (Lebesgue’s covering lemma; [4, Proposition 5.1]). If (Y,Q)
is a quasi-uniform space such that (Y, TQ) is a compact topological space, then
(Y,Q) is a Lebesgue quasi-uniform space.

A quasi-uniform space (Y,Q) as well as the quasi-uniformity Q are called:

– point-symmetric ([4], [8, p. 887]) if for every y ∈ Y and every Q ∈ Q
there is a symmetric entourage S ∈ Q such that S[y] ⊂ Q[y];

– small-set symmetric if (Y,Q−1) is point-symmetric [8, p. 887];
– locally symmetric if for every y ∈ Y and every Q ∈ Q there is a sym-

metric entourage S ∈ Q such that S ◦ S[y] ⊂ Q[y].

Proposition 2.4. Let (Y,Q) be a quasi-uniform space.
(a) [4, Proposition 2.21] (Y,Q) is point-symmetric if and only if TQ ⊂ TQ−1 .
(b) ([10, Theorem 3.17], [4, Proposition 2.23]) If Q is a locally symmetric

quasi-uniformity, then TQ is a regular topology.
(c1) [4, Corollary of Proposition 5.2] If Q is a Lebesgue quasi-uniformity such

that TQ is a regular topology, then Q is a locally symmetric.
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(c2) [4, Proposition 2.26] If TQ is a compact regular topology, then Q is a
locally symmetric quasi-uniformity.

2.5. Equicontinuities. Let X,Y be sets, I a nonempty index set, and F :=
(fi)i∈I a family of mappings from X to Y ; if x0 ∈ X is a point and A ⊂ X, W ⊂
Y, then

F(x0, W ) := {j ∈ I | fj(x0) ∈ W}, F(A,W ) := {j ∈ I | fj(A) ⊂ W},
F\(A, W ) := {j ∈ I | fj(A) ∩W 6= ∅}.

Note that F(x0,W )=F({x0},W ) = F\({x0},W ) and if x0 ∈ A, then F(x0,W ) ⊂
F\(A,W ).

A given family of mappings F := (fi)i∈I from a topological space (X, τ) to a
topological space (Y, η) is called:

– evenly continuous at x0 ∈ X and y0 ∈ Y if for every B ∈ Nη(y0) there
are A ∈ Nτ (x0) and W ∈ Nη(y0) such that F(x0,W ) ⊂ F(A,B).

– evenly continuous at x0 ∈ X if F is evenly continuous at x0 and y for
each y ∈ Y .

– evenly continuous if for every x ∈ X we have that F is evenly continuous
at x.

Moreover, F is called:

– topologically equicontinuous at x0 ∈ X and y0 ∈ Y if for every B ∈
Nη(y0) there are A ∈ Nτ (x0) and W ∈ Nη(y0) such that F\(A,W ) ⊂
F(A,B).

– topologically equicontinuous at x0 ∈ X if F is topologically equicontinu-
ous at x0 and y for each y ∈ Y .

– topologically equicontinuous if for every x ∈ X we have that F is topo-
logically equicontinuous at x .

Let us also recall the usual notions of equicontinuity and uniform equiconti-
nuity.

If (X, τ) is a topological space and (Y,Q) is a quasi-uniform space, then F is
called:

– (τ,Q)-equicontinuous at x0 ∈ X if ∀Q ∈ Q, ∃A ∈ Nτ (x0) such that

fi(A) ⊂ Q[fi(x0)] ∀i ∈ I.

– (τ,Q)-equicontinuous if F is (τ,Q)-equicontinuous at every x ∈ X.

If (X,P) and (Y,Q) are both quasi-uniform spaces, then F is called:

– (P ,Q)-uniformly equicontinuous if ∀Q ∈ Q, ∃P ∈ P such that

fi × fi(P ) ⊂ Q ∀i ∈ I,

where for a given f : X → Y the map f × f : X × X → Y × Y at a
point (x1, x2) is defined by the equality f × f(x1, x2) = (f(x1), f(x2)).

The notion of even continuity, resp., topological equicontinuity is taken from
[5, Chapter 7], resp., from [11, Part Three, §14.2 (p. 362)]. The notions of
equicontinuiy and uniform equicontinuity are obvious (see [1], [10]). Since the
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definition of the latter notion in the case of quasi-uniform spaces is absolutely
the same as in the case of uniform spaces, we shall follow [7, p. 191] and use the
term “uniformly equicontinuous family” instead of the term “quasi-uniformly
equicontinuous family”.

Remark 2.6. Let (X, τ), (Y, η) be topological spaces, x0 ∈ X a point and
f : X → Y a continuous mapping at x0.

(1) The singleton F = {f} is (τ, η)-evenly continuous at x0.
(2) The singleton F = {f} is (τ, η)-topologically equicontinuous at x0 pro-

vided (Y, η) is either a regular or a Hausdorff space.
(3) The conclusion of (2) may not be true (even for a compact non-Hausdorff

T1-space).

Proof of (1). Take an arbitrary y0 ∈ Y and an open B ∈ Nη(y0). If f(x0) 6∈ B,
then F(x0, B) = ∅ and the condition of even continuity at x0 and y0 is satisfied
trivially for every A ∈ Nτ (x0) with B = W. If f(x0) ∈ B, then, since B
is open, B ∈ Nη(f(x0)); hence, by the continuity of f at x0, we have that
A := f−1(B) ∈ Nτ (x0) and the condition of even continuity at x0 and y0 is
satisfied now for A and B = W.

Proof of (2). Take arbitrarily y0 ∈ Y. If f(x0) = y0, the continuity of f at x0

implies trivially that F is topologically equicontinuous at x0 and y0.
Let f(x0) 6= y0 and assume that (Y, η) is regular. Take an open B ∈ Nη(y0).
If f(x0) ∈ B, then, by the continuity of f at x0, A := f−1(B) ∈ Nτ (x0) and

the condition of topological equicontinuity at x0 and y0 is satisfied for A and
B = W.

If f(x0) 6∈ B, take a closed W ∈ Nη(y0) with W ⊂ B (here we need the
regularity of (Y, η)). Then B1 = Y \ W ∈ Nη(f(x0)); by the continuity of f
at x0 we have that A1 := f−1(B1) ∈ Nτ (x0), and the condition of topolog-
ical equicontinuity at x0 and y0 is satisfied trivially for A1 and W (because
F\(A1,W ) = ∅ ⊂ F(A1, B)).

Let f(x0) 6= y0 and assume that (Y, η) is Hausdorff. Take an arbitrary B ∈
Nη(y0). Since (Y, η) is Hausdorff, there are W ∈ Nη(y0) and B0 ∈ Nη(f(x0))
with B0 ∩ W = ∅. Then by the continuity of f at x0 we have that A :=
f−1(B0) ∈ Nτ (x0) and the condition of topological equicontinuity at x0 and y0

is satisfied trivially for A and W (because F\(A,W ) = ∅ ⊂ F(A, B)).

Proof of (3). Endow the set Z of integers with the cofinite topology τ and let
X = Y = Z. Consider the mapping x 7→ f(x) := x + 1. Then f is continuous
everywhere, but {f} is not topologically equicontinuous at 0 and 0.

Indeed, the continuity of f is evident. Let now B := Z\{1}. Then B ∈ Nτ (0).
Observe that since τ is a cofinite topology, for every A ∈ Nτ (0) and W ∈ Nτ (0)
we have that f(A)∩W 6= ∅, but there does not exist A ∈ Nτ (0) with f(A) ⊂ B.
Hence {f} is not topologically equicontinuous at 0 and 0. ¤

For a group (X, +) and an element a ∈ X we denote by ra the right translation
map x 7→ x + a, while ι stands for the group inversion map x 7→ −x.
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It is clear from the definitions that if a family F := (fi)i∈I of mappings
from (X, τ) to a (Y, η) is topologically equicontinuous (at x ∈ X and y ∈
Y ), then it is evenly continuous at (x ∈ X and y ∈ Y ). The next statement
provides, in particular, the examples of evenly continuous families which are
not topologically equicontinuous.

Proposition 2.7. Let (X, +) be an Abelian group and τ a topology in X.
(a) The family (ra)a∈X is (τ, τ)-evenly continuous if and only if + is (τ×τ, τ)-

continuous.
(b) The family (ra)a∈X is (τ, τ)-topologically equicontinuous if and only if

(X, +, τ) is a topological group (i.e., + is (τ × τ, τ)-continuous and ι is (τ, τ)-
continuous as well).

(c) If X = R is the real line with the usual addition and σ is the Sorgenfrey
topology in R, then the family (ra)a∈X is (σ, σ)-evenly continuous and is not
(σ, σ)-topologically equicontinuous.

Proof. (a) is a particular case of [2, Theorem 5.2].
(b) is a particular case of [2, Theorem 6.2].
(c) follows from (a) and (b) (because + is (σ×σ, σ)-continuous, but (R, +, σ)

is not a topological group). ¤

3. Comparison of Different Types of Equicontinuities

For the sake of completeness we begin our consideration with the following
known result.

Proposition 3.1. Let (X,P) and (Y,Q) be quasi-uniform spaces, F := (fi)i∈I

a family of mappings from X to Y.
(a) If F is (P ,Q)-uniformly equicontinuous, then F is (TP ,Q)-equicontinuous.
(b) [7, p. 210, Proposition 9] If (X,P) is a Lebesgue quasi-uniform space,

(Y,Q) is a uniform space and F is (TP ,Q)-equicontinuous, then F is (P ,Q)-
uniformly equicontinuous.

(c) [9] If (X,P) is a Lebesgue quasi-uniform space, (Y,Q) is a small-set sym-
metric quasi-uniform space and f : X → Y is a (TP , TQ)-continuous mapping,
then f is (P ,Q)-uniformly continuous.

Remark 3.2. (1) In Proposition 3.1(a) we can assert the (TP , TQ)-even conti-
nuity (see Proposition 3.3), but not the (TP , TQ)-topological equicontinuity (see
Remark 3.6(1)).

(2) Until now Proposition 3.1(c) has been the best generalization of Heine-
Cantor’s theorem. In the case of a compact quasi-uniform space (X,P) it was
obtained in [6, Proposition 1]. It seems to be unknown whether or not an
arbitrary equicontinuous family F from a Lebesgue quasi-uniform space to a
small-set symmetric quasi-uniform space is uniformly equicontinuous.

In the next proposition, the item (b) is a local version of [5, Theorem 7.23],
where it is proved by using of a gauge of pseudometrics. For the sake of self-
containedness we present this statement with a direct (i.e., pseudometric free)
proof.
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Proposition 3.3. Let (X, τ) be a topological space, x0 ∈ X a point, (Y,Q)
a quasi-uniform space, and F := (fi)i∈I a family of mappings from X to Y.

(a) If F is (τ,Q)-equicontinuous at x0, then it is (τ, TQ)-evenly continuous at
x0.

(b) [5, p. 237, Theorem 7.23] If F is (τ, TQ)-evenly continuous at x0, the set
F(x0) = {fi(x0) | i ∈ I} has the TQ-compact closure and Q is a uniformity, then
F is (τ,Q)-equicontinuous at x0.

Proof. (a) Take an arbitrary y ∈ Y and B ∈ NTQ(y). There are Q ∈ Q and
R ∈ Q such that Q[y] ⊂ B and R ◦ R ⊂ Q. By the (τ,Q)-equicontinuity of
F at x0, there exists A ∈ Nτ (x0) such that fi(A) ⊂ R[fi(x0)] ∀i ∈ I. Set
W := R[y] ∈ NTQ(y) and let i ∈ F(x0,W ). Then (y, fi(x0)) ∈ R. From this,
since (fi(x0), fi(x)) ∈ R ∀x ∈ A, we get (y, fi(x)) ∈ R ◦ R ⊂ Q ∀x ∈ A. This
means that i ∈ F(A,Q[y]) ⊂ F(A,B). Consequently, F(x0,W ) ⊂ F(A,B) and
hence F is (τ, TQ)-evenly continuous at x0 and y.

(b) Fix Q ∈ Q and a symmetric S ∈ Q with S ◦ S ⊂ Q. Let K be
the TQ-closure of F(x0) and y ∈ K. Then S[y] ∈ NTQ(y). Since F is (τ,Q)-
equicontinuous at x0 and y, there are Ay ∈ Nτ (x0) and an open Wy ∈ NTQ(y)
such that F(x0,Wy) ⊂ F(Ay, S[y]). As the family (Wy)y∈K covers K, there are a
natural n and the elements y1, . . . , yn ∈ K with K ⊂ ∪n

k=1Wyk
. Set A := ∩n

k=1Ak.
Fix an arbitrary i ∈ I. Since fi(x0) ∈ K, there is k ≤ n such that fi(x0) ∈

Wyk
. Then i ∈ F(Ayk

, S[yk]). In particular, i ∈ F(A, S[yk]), i.e., fi(A) ⊂ S[yk].
Therefore for a given x ∈ A we have (yk, fi(x)) ∈ S and (yk, fi(x0)) ∈ S. This,
because S is symmetric, gives

(fi(x0), fi(x)) ∈ S ◦ S ⊂ Q.

Hence, fi(A) ⊂ Q[fi(x0)] and F is (τ,Q)-equicontinuous at x0. ¤
Remark 3.4. We retain the notation of Proposition 3.3.

(1) It is easy to see that if the family F = (fi)i∈I is such that for some
y0 ∈ Y we have fi(x0) = y0, ∀i ∈ I, then the even continuity of F at x0

and y0 implies the (τ,Q)-equicontinuity of F at x0.
(2) In Proposition 3.3(a) it cannot be asserted that F is (τ, TQ)-topologically

equicontinuous at x0 (see Proposition 3.5 and Remark 3.6).

Proposition 3.5. Let (X, τ) be a topological space, x0 ∈ X a point, (Y,Q)
a locally symmetric quasi-uniform space, and F := (fi)i∈I a family of mappings
from X to Y.

If F is (τ,Q)-equicontinuous at x0, then it is (τ, TQ)-topologically equicontin-
uous at x0.

Proof. Take an arbitrary y ∈ Y and B ∈ NTQ(y). There is Q ∈ Q such that
Q[y] ⊂ B. By the local symmetry there are symmetric S, S1 ∈ Q such that
S1 ◦ S1[y] ⊂ Q[y] and S ◦ S[y] ⊂ S1[y]. We can suppose that S ⊂ S1. Then
S ◦ S ◦ S[y] ⊂ S ◦ S1[y] ⊂ S1 ◦ S1[y] ⊂ Q[y].

By the (τ,Q)-equicontinuity of F at x0, we can find A ∈ Nτ (x0) such that
fi(A) ⊂ S[fi(x0)] ∀i ∈ I. Set W = S[y] ∈ NTQ(y), take i ∈ F\(A,W ) and let
us see that then i ∈ F(A,B).
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Since fi(A)∩W 6= ∅, we have a x1 ∈ A such that (y, fi(x1)) ∈ S. But we also
have (fi(x1), fi(x0)) ∈ S and (fi(x0), fi(x)) ∈ S ∀x ∈ A. Then (y, fi(x)) ∈ S ◦
S◦S ∀x ∈ A and fi(A) ∈ S◦S◦S[y] ⊂ Q[y]. This means that i ∈ F(A,Q[y]) ⊂
F(A,B). Consequently, F\(A,W ) ⊂ F(A,B) and hence F is (τ, TQ)-topologically
continuous at x0 and y. ¤

Remark 3.6. (1) Proposition 3.5 may not be true without the assumption of
the local symmetry for (Y,Q).

Indeed, let X = Y = R and S be the quasi-uniformity in R having a base
{Qε|ε ∈]0, 1[}, where Qε := {(x, y) ∈ R2 | y − x ∈ [0, ε[}. Then σ = TS is the
Sorgenfrey topology in R. It is easy to see that the family (ra)a∈R is (S,S)-
uniformly equicontinuous; hence it is (σ,S)-equicontinuous as well (see Propo-
sition 3.1(a)). However, according to Proposition 2.7(c), the family (ra)a∈R is
not (σ, σ)-topologically equicontinuous.

(2) Note that (R, σ) is a completely regular Hausdorff space, hence it admits
(even) a compatible uniformity, the family (ra)a∈R is (σ, σ)-evenly continuous
(see Proposition 2.7(c)), but there does not exist in R a locally symmetric
quasi-uniformity Q with TQ = σ, for which the family (ra)a∈R would be (σ,Q)-
equicontinuous.

Indeed, if Q is a locally symmetric quasi-uniformity in R with TQ = σ, then,
by Proposition 3.5, the (σ,Q)-equicontinuity of the family (ra)a∈R would imply
its (σ, σ)-topological equicontinuity, which we do not have by Proposition 2.7(c).

The next assertion provides a positive answer to the question from the intro-
duction when the second space is compact regular.

Theorem 3.7. Let (X, τ) be a topological space, (Y, η) a compact regular
topological space, and Q the unique uniformity in Y compatible with η.

Then for a point x0 ∈ X and a family F := (fi)i∈I of mappings from X to Y
the following statements are equivalent:

(i) F is (τ, η)-evenly continuous at x0.
(ii) F is (τ,Q)-equicontinuous at x0.
(iii) F is (τ, η)-topologically equicontinuous at x0.

Proof. (i)=⇒(ii) follows from Proposition 3.3(b).
(ii)=⇒(iii) follows from Proposition 3.5 (because any uniformity is locally

symmetric).
(iii)=⇒(i) is trivial. ¤

The next statement shows that in Theorem 3.7 the compatible uniformity
cannot be replaced by a compatible locally symmetric quasi-uniformity (even in
the case of compact metrizable topological spaces).

Proposition 3.8. Let (X, +, θ, τ) be a Hausdorff topological group and
Qper(τ) be the Pervin quasi-uniformity in X.

(1) If the family (ra)a∈X of right translations is (τ,Qper(τ))-equicontinuous,
then τ is a discrete topology.
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(2) If (X, +, θ, τ) is an infinite compact Hausdorff topological group, then the
family (ra)a∈X is (τ, τ)-topologically equicontinuous, but it is not (τ,Qper(τ))-
equicontionuous (although Qper(τ) is a locally symmetric quasi-uniformity, see
Proposition 2.4(c)).

Proof. (1) We can assume that X 6= {θ}. Take G := X \ {θ}. Then G ∈ τ and
G 6= ∅. Since {ra | a ∈ X} is (τ,Qper(τ))-equicontionuous at θ and the set SG

is an entourage in Qper(τ), we obtain that for some symmetric A ∈ Nτ (θ),

A + a = ra(A) ∈ SG[ra(θ)] = SG[a] ∀a ∈ X. (3.8.1)

Since for a ∈ G we have SG[a] = G if and only if a ∈ G, from (3.8.1) we get

A + a ⊂ G ∀a ∈ G. (3.8.2)

If A 6= {θ}, then for some a ∈ A∩G we have A + a ⊂ G. Since A is symmetric,
−a ∈ A. Therefore θ ∈ A + a ∈ G. A contradiction. Consequently, A = {θ}
and so, θ is isolated in (X, τ).

(2) The family {ra | a ∈ X} is (τ, τ)-topologically equicontinuous in every
topological group (see Proposition 2.7(b) or [11, Proposition 4.13]). It cannot
be (τ,Qper(τ))-equicontinuous by (1) (because an infinite compact topological
space cannot be discrete). ¤
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