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ON GENERALIZED STEP-FUNCTIONS AND
SUPERPOSITION OPERATORS

A. KHARAZISHVILI

Abstract. For a given σ-ideal of sets, the notion of a generalized step-
function is introduced and investigated in connection with the problem of
sup-measurability of certain functions of two variables, regarded as superpo-
sition operators.
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Let R denote the real line and let Φ : R × R → R be a function of two
variables. Then this Φ can be treated as a superposition operator defined as
follows: for any function f : R → R, we put

(Φ(f))(x) = Φ(x, f(x)) (x ∈ R).

Sometimes, Φ is also called a Nemytskii superposition operator.
Let λ denote the standard Lebesgue measure on R. In many cases, it is

important to know whether a given superposition operator Φ preserves the
class L(R) of all real-valued Lebesgue measurable functions on R (i.e., Φ(f) is λ-
measurable whenever f is λ-measurable). There are various sufficient conditions
under which Φ maps L(R) into itself.

In particular, if Φ is λ-measurable with respect to the first variable and con-
tinuous with respect to the second variable (the so-called Carathéodory classical
conditions), then Φ preserves L(R) or, in short, Φ is sup-measurable. In such a
case, Φ is also λ2-measurable where λ2 = λ× λ stands for the two-dimensional
Lebesgue measure on the plane R2.

Other conditions for the sup-measurability of Φ can be found, e.g., in [1].
Under some additional set-theoretical axioms, there exist sup-measurable Φ

which are not λ2-measurable (see, for instance, [2], [3], [4], [5]). On the other
hand, as Shelah and Roslanowski have recently announced, the statement “all
sup-measurable operators Φ are λ2-measurable” is consistent with ZFC theory.

In this paper, we are focused on the following problem: give a characterization
of all those functions f ∈ L(R) for which there exists a superposition operator
Φ having rather good descriptive properties and such that Φ(f) does not belong
to L(R). In order to solve this problem, we need several auxiliary notions and
propositions. First of all let us recall the following classical statement from
descriptive set theory.

Lemma 1. Let E be a Polish topological space, E ′ be a metric space, and let
h : E → E ′ be a continuous mapping whose range ran(h) is uncountable. Then
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there exists a set C ⊂ E homeomorphic to the Cantor discontinuum such that
the restriction h | C is injective (hence h | C is a homeomorphism between C
and h(C)).

For the proof of this lemma see, e.g., [6].
Recall that f ∈ L(R) is a step-function if card(ran(f)) ≤ ω, i.e., the range

of f is at most countable. We shall say that f ∈ L(R) is a generalized step-
function if there exists at least one step-function g ∈ L(R) such that f and g
are equivalent (with respect to the measure λ).

Lemma 2. If f ∈ L(R), then the following two assertions are equivalent:
1) f is not a generalized step-function;
2) there exists a set Y ⊂ R with λ∗(Y ) > 0 such that the restriction f | Y is

injective.

Proof. The implication 2) ⇒ 1) is trivial. Let us prove the implication 1) ⇒ 2).
Suppose that f ∈ L(R) satisfies 1). Let us denote

T0 =
{
t ∈ ran(f) : λ(f−1(t)) > 0

}
.

Evidently, we have card(T0) ≤ ω. Since f is not a generalized step-function, we
also have λ(R \ f−1(T0)) > 0. Moreover, applying the classical Luzin theorem
to f , we claim that there exists a closed set P ⊂ R \ f−1(T0) with λ(P ) > 0 for
which the restriction f | P is continuous and card(ran(f | P )) > ω.

Let us put h = f | P and T = ran(h). Then λ(h−1(t)) = 0 for each t ∈ T .
Denote by α the least ordinal number of cardinality continuum and let (Pξ)ξ<α

be an injective family of all closed subsets of P having strictly positive λ-
measure. Construct, by using the method of transfinite recursion, a family
{yξ : ξ < α} of points of P . Namely, take an ordinal ξ < α and suppose that
the partial family {yζ : ζ < ξ} has already been defined. Keeping in mind
Lemma 1, it is not difficult to check that

Pξ \ ∪
{
h−1(h(yζ)) : ζ < ξ

} 6= ∅.

Hence there exists a point y belonging to Pξ \ ∪{h−1(h(yζ)) : ζ < ξ}.
We put yξ = y. By proceeding in the same manner as above, the required

family of points {yξ : ξ < α} will be constructed. Denote now Y = {yξ : ξ < α}.
It follows directly from our construction that Y is a partial selector of the
disjoint family of sets {h−1(t) : t ∈ T}. This implies that the restriction h | Y
(consequently, the restriction f | Y ) is injective. Moreover, since Pξ ∩ Y 6= ∅
for each ξ < α, we easily infer that λ∗(Y ) = λ(P ) > 0. This completes the
proof of Lemma 2. ¤

Lemma 3. If f ∈ L(R) is not a generalized step-function, then there exists
a λ-nonmeasurable set X ⊂ R for which the restriction f | X is injective.

Proof. According to Lemma 2, there exists a set Y ⊂ R with λ∗(Y ) > 0 such
that f | Y is an injection. If Y is not measurable in the Lebesgue sense, then we
are done. Suppose now that Y ∈ dom(λ) and hence λ(Y ) > 0. It is well known
(see, e.g., [7] or [8]) that Y contains a nonmeasurable subset with respect to λ.
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Take any such subset and denote it by X. Clearly, f | X is an injection and
the proof is completed. ¤

Theorem 1. Let f ∈ L(R) and suppose that f is not a generalized step-
function. Then there exists a superposition operator Φ : R × R → R satisfying
the following relations:

1) ran(Φ) = {0, 1};
2) for any x ∈ R, the partial function Φ(x, ·) is lower semi-continuous;
3) for any y ∈ R, the partial function Φ(·, y) is lower semi-continuous;
4) Φ is a λ2-measurable operator;
5) the function Φ(f) is not λ-measurable.

Proof. According to Lemma 3, there exists a λ-nonmeasurable set X ⊂ R for
which the restriction f | X is injective. Define the required superposition ope-
rator Φ as follows:

Φ(x, y) = 0 (x ∈ X, y = f(x)),

Φ(x, y) = 1 (x ∈ R \X, y = f(x)),

Φ(x, y) = 1 (x ∈ R, y ∈ R, y 6= f(x)).

For this Φ, relations 1), 2) and 3) are verified directly. Further, since the graph
of f is a λ2-measure zero subset of R2, we claim that Φ is equivalent to 1 and,
consequently, Φ is λ2-measurable. Finally, we have

Φ(x, y) = 0 ⇔ (x ∈ X & y = f(x))

whence it follows that (Φ(f))−1(0) = X and therefore Φ(f) is not λ-measurable.
This ends the proof. ¤

Theorem 2. Let f ∈ L(R) and suppose that f is not a generalized step-
function. Then there exists a superposition operator Ψ : R × R → R such
that:

1) ran(Ψ) = {1, 2};
2) for any x ∈ R, the partial function Ψ(x, ·) is lower semi-continuous;
3) for any y ∈ R, the partial function Ψ(·, y) is lower semi-continuous;
4) Ψ is a λ2-nonmeasurable operator;
5) the function Ψ(f) is λ-nonmeasurable.

Proof. By using the method of transfinite recursion and applying the standard
argument (cf. [9]), we can define an injective function g : R → R whose graph
is λ2-thick in R2 and does not intersect the graph of f . Let Φg denote the
characteristic function of the graph of g (regarded as a subset of R2). We put

Ψ = Φ + 1− Φg ,

where Φ is the superposition operator of Theorem 1. It is easy to verify that
Ψ is the required superposition operator, i.e., Ψ satisfies all the relations 1)–5)
above. ¤

Remark 1. If a superposition operator Φ : R × R → R is λ-measurable with
respect to the first variable, then Φ(f) is λ-measurable for every generalized
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step-function f ∈ L(R). We thus see (in view of Theorem 1) that the generalized
step-functions are exactly those functions f ∈ L(R) for which any superposition
operator Φ measurable with respect to the first variable yields measurable Φ(f).

Remark 2. If a superposition operator Φ : R × R → R is continuous with
respect to the first variable and lower semi-continuous (more generally, Borel)
with respect to the second variable, then Φ is a Borel mapping from R2 into R,
hence Φ is also sup-measurable.

Remark 3. Theorems 1 and 2 admit direct analogues for functions pos-
sessing the Baire property (detailed information about this property can be
found in [6] and [8]). These analogues can be proved by the same scheme as
for Lebesgue measurable functions. Only one essential moment should be men-
tioned. Namely, the proofs of Theorems 1 and 2 are based on the classical Luzin
theorem concerning the structure of λ-measurable functions. Since we cannot
apply the Luzin theorem to functions possessing the Baire property, we must
replace this theorem by an appropriate similar statement. Such a statement is
well known in general topology (see [6]) and is formulated as follows.

Let E1 be a topological space, E2 be a topological space with a countable
base and let f : E1 → E2 be a mapping possessing the Baire property. Then
there exists a first category set Z ⊂ E1 such that the restriction f | (E1 \ Z) is
continuous.

We may assume, without loss of generality, that Z is an Fσ-subset of E1,
hence E1 \ Z is a Gδ-set in E1. If the original space E1 is Polish, then E1 \ Z
is also Polish (by virtue of the Alexandrov theorem). Consequently, if E1 is
a Polish space and E2 = R, we are able to apply Lemma 1 to the continuous
function f | (E1 \ Z).

Under some additional set-theoretical axioms, Lemma 2 admits a significant
generalization. Let us consider some abstract version of this lemma.

Fix an uncountable set E and a proper σ-ideal I of subsets of E, containing all
singletons in E. We shall say that g : E → R is a step-function if card(ran(g)) ≤
ω. We shall say that f : E → R is a generalized step-function with respect to
I if there exists at least one step-function g : E → R for which we have

{
x ∈ E : f(x) 6= g(x)

} ∈ I ,

i.e., f and g are I-equivalent functions. Recall that a family of sets B ⊂ I forms
a base of I if, for any set Y ∈ I, there exists a set Z ∈ B such that Y ⊂ Z.

The following statement is valid.

Theorem 3. Let card(E) = ω1, let I be a proper σ-ideal of subsets of E,
containing all singletons in E and possessing a base whose cardinality does not
exceed ω1, and let f : E → R be a function. Then the following two assertions
are equivalent:

1) f is not a generalized step-function with respect to I;
2) there exists a set X ⊂ E such that X 6∈ I and the restriction f | X is

injective.
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Proof. The implication 2) ⇒ 1) is evident. Let us establish the validity of the
implication 1) ⇒ 2). Suppose that f satisfies 1) and introduce the following
two sets:

T0 =
{
t ∈ ran(f) : f−1(t) 6∈ I}

, T1 =
{
t ∈ ran(f) : f−1(t) ∈ I}

.

According to our assumption, there exists a base {Bξ : ξ < ω1} of the given
σ-ideal I. Only two cases are possible.

1. card(T0) = ω1. In this case we may write T0 = {tξ : ξ < ω1} where tξ 6= tζ
for all ξ < ω1, ζ < ω1, ξ 6= ζ. Consider the family of sets {f−1(tξ)\Bξ : ξ < ω1}.
Obviously, f−1(tξ) \ Bξ 6= ∅ for each ordinal ξ < ω1. Let xξ ∈ f−1(tξ) \ Bξ for
any ξ < ω1, and let X = {xξ : ξ < ω1}. From the definition of X it immediately
follows that the restriction f | X is an injection. Moreover, we have X \Bξ 6= ∅
whenever ξ < ω1. The latter circumstance implies at once that the set X does
not belong to I.

2. card(T0) ≤ ω. In this case we obtain card(T1) = ω1 and f−1(T1) 6∈ I (since
our f is not a generalized step-function with respect to I). Let us construct,
by using the method of transfinite recursion, an ω1-sequence {xξ : ξ < ω1} of
points of f−1(T1). Suppose that, for an ordinal ξ < ω1, the partial family of
points {xζ : ζ < ξ} has already been defined. Clearly, the set (∪{f−1(f(xζ)) :
ζ < ξ}) ∪Bξ belongs to I. Therefore,

f−1(T1) \
(
(∪{f−1(f(xζ)) : ζ < ξ}) ∪Bξ

) 6= ∅.

Choose any element x from the above nonempty set and put xξ = x. Proceeding
in this manner, we are able to construct the required ω1-sequence {xξ : ξ < ω1}.
Finally, put X = {xξ : ξ < ω1}. In view of our construction, X is a partial
selector of the disjoint family of sets {f−1(t) : t ∈ T1}. Hence the restriction of
f to X is injective. Furthermore, X \Bξ 6= ∅ for all ordinals ξ < ω1, whence it
follows that X does not belong to I. ¤

Remark 4. Assume the Continuum Hypothesis (CH) and take as I the σ-
ideal L of all Lebesgue measure zero subsets of R. Let f : R → R be a function
distinct from all generalized step-functions with respect to L. Suppose also
that the graph of f is a set of λ2-measure zero. Then it is not difficult to show
that, for such an f , there always exists a superposition operator Φ : R×R → R
satisfying the relations 1)–5) of Theorem 1. In this connection, let us emphasize
that our f does not need to be a λ-measurable function.

Remark 5. Let E be a set, I be a proper σ-ideal of subsets of E and let S be
a σ-algebra of subsets of E such that I ⊂ S. Elements of S are usually called
measurable sets in E and elements of I are called negligible sets in E. The
triple (E,S, I) is called a measurable space with negligibles (see, e.g., [10]). If
X ⊂ E and X 6∈ I, then, in general, we cannot assert that X contains at least
one subset which does not belong to S. However, in some situations the specific
features of a given σ-ideal I imply that any nonnegligible set in E contains
a nonmeasurable subset. For example, assume again that card(E) = ω1 and
that E is a topological space of second category, whose all singletons are of first
category. Let I = K(E) denote the σ-ideal of all first category subsets of E and
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suppose that this σ-ideal possesses a base whose cardinality does not exceed
ω1. Denote also by B(E) the σ-algebra of all subsets of E having the Baire
property (obviously, K(E) ⊂ B(E)). Then, for any set X ⊂ E, the following
two assertions are equivalent:

(a) X 6∈ K(E) (i.e., X is not of first category in E);
(b) there exists a set Y ⊂ X such that Y 6∈ B(E) (i.e., Y does not have the

Baire property in E).
The proof of the equivalence of (a) and (b) can be found in [11] where some

related results are also presented. Notice once more that this equivalence rests
only on the inner properties of the σ-ideal K(E) and does not touch upon the
structure of the σ-algebra B(E).
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5. M. A. Krasnoselskĭı and A.V. Pokrovskĭı, Systems with hysteresis. (Translation
from Russian) Springer-Verlag, Berlin, 1988.

6. K. Kuratowski, Topology. I. Academic Press, New York-London; Państwowe Wydaw-
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