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THE NON-VANISHING OF FIRST COHOMOLOGY GROUPS
FOR CERTAIN INFINITE-DIMENSIONAL COMPLEX

MANIFOLDS

E. BALLICO

Abstract. Here, using the ideas of an old paper by S. Dineen (1976), we give
large classes of pairs (X, E) such that X is an infinite-dimensional complex
space very far from a Banach manifold, E is a holomorphic vector bundle on
X and H1(X,E) is infinite-dimensional.
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Let V be a complex locally convex and Hausdorff topological vector space. A
sequence {xn}n≥1 ⊂ V is called a nontrivial very strongly convergent sequence
if the sequence {λnxn}n≥1 converges to 0 ∈ V for all λn ∈ C and xn 6= 0 for
all n. For instance, if V = CN, then the sequence (1, 0, 0, . . . ), (0, 1, 0, . . . ), . . .
is a nontrivial very strongly convergent sequence. By [4], Th. 2.6.13, a Fréchet
space contains CN if and only if it has no continuous norm. Hence a Fréchet
space has a continuous norm if and only if it has a nontrivial strongly convergent
sequence. The aim of this short note is to give the following generalization of
[1], Prop. 1; we will mostly use the ideas contained in [1].

Theorem. Let V be a complex locally convex and Hausdorff topological vector
space which admits a nontrivial very strongly convergent sequence {xn}n≥1 and
X a reduced and locally integral complex space equipped with a holomorphic map
f : X → V with the following property:

(α) for every P ∈ X there are an open neighborhood A of P in X and an
open neighborhood B of f(P ) in V such that f |A is a closed embedding
of A into B and the analytic set f(A) is the zero-locus of finitely many
holomorphic functions on B.

Let E be a holomorphic vector bundle on X such that H0(X, E) 6= 0. Then
H1(X,E) is an infinite-dimensional C-vector space.

In the statement of Theorem we allow the case in which the fibers of E are
infinite-dimensional complex topological vector spaces.

Remark. We use the notation introduced in the statement of Theorem. We
also assume that X is integral. Let g be a meromorphic function on X. Then
g depends locally only on finitely many variables xn in the following sense: for
every P ∈ X we take A and B as in the statement of Theorem. Consider
(g|A) ⊗ (f |f−1(f(A)) as a meromorphic function g′ on f(A). Then there are
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a neighborhood D of f(P ) in B and a meromorphic function g′′ on B′ such
that g′′|f(A) ∩D = g′. By [1], Lemma 1, there is an integer N > 0 such that
∂g′′/∂xn ≡ 0 for every n ≥ N .

Proof of Theorem. By assumption, X is locally finitely determined in the sense
of [3] and hence the set Xreg is an open dense subset of X. Fix s ∈ H0(X, E),
s 6= 0. Hence s does not vanish at each point of a dense open subset of X
whose complement is an analytic subset of X. In particular, s does not vanish
in an open and dense subset of Xreg. Fix P ∈ Xreg such that s(P ) 6= 0.
By assumption (α), near P f(X) is a complex submanifold of V with finite
codimension and hence its tangent space TP f(X) at P is a finite codimensional
affine linear subspace of V . Deleting finitely many members of the sequence
{xn}n≥1, we may assume that the vector space TP f(X) − P contains each
xn. Since X is locally integral, to prove the theorem it is sufficient to prove
it with the additional assumption that X is integral. Let MX be the sheaf
of meromorphic functions on X; for the general theory of MX when X is not
smooth, see [2]. Since OX is a subsheaf of MX , there is an exact sequence

0 → OX →MX →MX/OX → 0. (1)

This is the set-up of the so-called Cousin’s first problem or additive Cousin
problem. Since E is locally free, tensoring (1) with E we obtain an exact
sequence of OX-sheaves

0 → E →MX ⊗OX
E → (MX/OX)⊗OX

E → 0. (2)

Thus to prove Theorem it is sufficient to show that the linear map

ρ : H0(X,MX ⊗OX
E) → H0(X, (MX/OX)⊗OX

E)

has the infinite-dimensional cokernel. First, we will check that ρ is not surjec-
tive. For every integer n ≥ 1, let An ⊂ V be the linear span of {x1, . . . , xn}.
Since An is finite-dimensional, it has a topological supplement in V by Hahn–
Banach theorem. Construct inductively a decreasing sequence of closed sub-
spaces Fn, n ≥ 1, of V such that Fn is a topological supplement of An. Set
U2 := {cx1 + w : c ∈ C, Im(c) < 11/4 and w ∈ F1}. For each n > 2 set
Un := {cx1 + w : c ∈ C, n − 3/4 < Im(c) < n + 3/4 and v ∈ F1}. Set
Xn := f−1(Un). We may define the elements αi ∈ V ′, i ≥ 1 by the relations
v =

∑n
i=1 αi(v)xi + vn with vn ∈ Fn for any v ∈ V . For n ≥ 2 and any x ∈ X

set fn(x) := s(x)αn(f(x))/(α1(f(x))− in). As in [1], using Remark we get that
this definition gives a nontrivial element of Coker(ρ). Now we will check that
H1(X,E) is infinite-dimensional. Assume dim(H1(X, E)) = k < +∞ and fix
z ∈ V ′\{0} such that the set {z(xn)}n≥1 ⊂ C contains at least k + 1 elements.
For every u ∈ H0(V,OV ), f ∗(u) ∈ H0(X,OX) and hence the multiplication by
f ∗(u) induces a linear map f ∗(u)× : H1(X, E) → H1(X,E). For every polyno-
mial q ∈ C[x] we have q(f ∗(u)×) = (f ∗(q(u)))×. Hence by Hamilton–Cayley
there is q ∈ C[x] such that q 6= 0, deg(q) ≤ k and f ∗(q(z))× = 0. Instead of
the section s of E use the section f ∗(q(z))s to obtain a contradiction. ¤
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