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INTERIOR AND EXTERIOR PROBLEMS OF
COUPLE-STRESS AND CLASSICAL ELASTOSTATICS WITH

GIVEN FRICTION

ROLAND GACHECHILADZE

Abstract. We consider an interior problem of statics of couple-stress elastic-
ity for anisotropic nonhomogeneous media with friction taken into account
and the corresponding exterior problem for homogeneous isotropic media.
The question of the existence and uniqueness of weak solutions of these prob-
lems is studied when friction forces occur along the boundary of an elastic
medium or on some part of this boundary.
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In the present paper we consider deformation of an elastic medium with fric-
tion conditions imposed all along its boundary or on some part of the boundary
described by Coulomb’s law. Problems of this kind for bounded domains are
studied mainly in [1]–[6], where these problems are reduced to a variational
inequality in the domain and, after that, the existence and uniqueness of a
solution of this inequality are investigated.

In our case, the considered problems are equivalently reduced to a varia-
tional inequality not in the domain, but on the boundary of an elastic medium.
Boundary variational inequalities make it possible to investigate exterior prob-
lems with friction and are convenient for obtaining approximate solutions. We
begin our consideration with interior problems.

Interior Problems

Let Ω+⊂R3 be the bounded domain with boundary Γ (Γ∈C∞), Ω−=R3\Ω +,
ν(x) be the exterior normal unit vector (with respect to Ω±) at a point x∈Γ;

M(x, ∂) =

∥∥∥∥∥∥∥∥∥

M(1)(x, ∂) |
|
M(2)(x, ∂)

−−−−− | −−−−−
M(3)(x, ∂) |

|
M(4)(x, ∂)

∥∥∥∥∥∥∥∥∥
6×6

be a matrix differential operator of statics of couple-stress elasticity, and

N (x, ∂, ν) =

∥∥∥∥∥∥∥∥∥

N (1)(x, ∂, ν) |
|
N (2)(x, ∂, ν)

−−−−−− | −−−−−−
N (3)(x, ∂, ν) |

|
N (4)(x, ∂, ν)

∥∥∥∥∥∥∥∥∥
6×6
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be a stress operator (the operators M(j)(x, ∂) =
∥∥M(j)

lm(x, ∂)
∥∥

3×3
and

N (j)(x, ∂, ν) =
∥∥N (j)

lm (x, ∂, ν)
∥∥

3×3
, j = 1, 2, 3, 4, are defined in [4], [7]);

U = (u, ω), u = (u1, u2, u3) be a shifting vector, ω = (ω1, ω2, ω3) be a ro-
tation vector, σ(U) = N (1)(x, ∂, ν)u(x) + N (2)(x, ∂, ν)ω(x) be a force vector,
µ(U) = N (3)(x, ∂, ν)u(x) +N (4)(x, ∂, ν)ω(x) be a couple-stress vector; a

T
and

a
N

denote respectively tangential and normal components of a vector a ∈ R3

(with respect to Ω+).
The real functions aijek, bijek, cijek, participating in the definition of the op-

erator M(x, ∂) (physical characteristics of an elastic body) satisfy the following
conditions:

(i) aijek, bijek, cijek ∈ C∞(Ω +);
(ii) aijek = aekij, cijek = cekij;
(iii) ∃ α0 > 0 be such that ∀ x ∈ Ω + and ∀ ξij, ηij

∈ R:

aijek(x) ξij ξek + 2bijek(x) η
ek

ξij + cijek(x) η
ij

η
ek
≥ α0(ξij ξij + η

ij
η

ij
)

(here and in what follows the repetition of the index means summation over
this index from 1 to 3).

We denote by Hs(Ω+), Hs
loc(Ω

−) and Hs(Γ) the Sobolev–Slobodetski space
for s ∈ R ([8]) and assume that w ∈ Xm if each component of the vector
w = (w1, . . . , wm) belongs to some space X.

For each U = (u, ω) ∈ (
H1(Ω+)

)6
and V = (v, w) ∈ (

H1(Ω+)
)6

we define the
bilinear form B(U, V ) as

B(U, V ) =

∫

Ω+

[
aijek(x) ξij(U) ξek(V ) + bijek(x) ξij(U) η

ek
(V )

+ bekij(x) ξij(V ) η
ek

(U) + cijek(x) ηij(U) η
ek

(V )
]
dx, (1)

where ξij(U) =
∂uj

∂xi
− εijk ωk, η

ij
(U) =

∂ωj

∂xi
, and εijk is the Levi-Civita symbol.

Definition. A vector function U ∈ (
H1(Ω+)

)6
is a weak solution of the

equation

M(x, ∂) U(x) + G(x) = 0
(
G ∈ (

L2(Ω+)
)6

)
, (2)

if ∀Φ ∈ (
C∞

0 (Ω+)
)6

B(U, Φ) =
(G, Φ

)
0,Ω+

((
ϕ, ψ

)
0,Ω+ =

∫

Ω+

ϕ ψ dx

)
.

Note that if U ∈ (
H1(Ω+)

)6
and MU ∈ (

L2(Ω+)
)6

, then N (x, ∂, ν)U(x)
∣∣
Γ

can be defined as a functional of the class
(
H−1/2(Γ)

)6
by means of the formula

〈N (x, ∂, ν)U(x)
∣∣
Γ
, Φ

〉
=

(MU, V
)
0,Ω+ + B(U, V ), ∀Φ ∈ (

H1/2(Γ)
)6

and ∀V ∈ (
H1(Ω+)

)6
, V

∣∣
Γ

= Φ. Here the brackets
〈· , ·〉 mean a relation of

duality between the dual pairs
(
H−1/2(Γ)

)6
and

(
H1/2(Γ)

)6
.
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Let Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅ and G ∈ (
L2(Ω+)

)6
, χ ∈ (

H1/2(Γ1)
)6

, FN ∈
L∞(Γ2), ψ ∈ (

L∞(Γ2)
)3

, F : Γ2 → R, F ∈ L∞(Γ2), F ≥ 0, g = F|FN |.
Problem (I)+. Find a vector function U ∈ (

H1(Ω+)
)6

which is a weak
solution of equation (2), tangential component of force on Γ2 is a function of

the class
(
L∞(Γ2)

)3
and the following conditions are fulfilled:

U
∣∣
Γ1

= χ, µ U
∣∣
Γ2

= ψ, σ
N
(U)

∣∣
Γ2

= FN and if
∣∣σ

T
(U)

∣∣
Γ2

< g,

then u
T

= 0, and if
∣∣σ

T
(U)

∣∣
Γ2

= g, then ∃λ ≥ 0 : u
T

= −λσ
T
(U).

Let U0 = (u0, ω0) ∈
(
H1(Ω+)

)6
be a weak solution of equation (2) which

satisfies the conditions U0

∣∣
Γ1

= χ and NU
∣∣
Γ2

= 0 (as is known, this problem

has a unique solution). Then for the vector function V = U − U0 (instead of
which we write U) we obtain

Problem (F)+. Find a vector function U ∈ (
H1(Ω+)

)6
which is a weak

solution of the equation

M(x, ∂) U(x) = 0 (3)

and satisfies the conditions

σ
T
(U)

∣∣
Γ2
∈ (

L∞(Γ2)
)3

, U
∣∣
Γ1

= 0, µU
∣∣
Γ2

= ψ, σ
N
(U)

∣∣
Γ2

= FN and if∣∣σ
T
(U)

∣∣
Γ2

< g, then u
T

= ϕ
T
, and if

∣∣σ
T
(U)

∣∣
Γ2

= g, then ∃λ ≥ 0:

u
T

= ϕ
T
− λσ

T
(U),

where ϕ
T

= −u
0T

∣∣
Γ
∈ (

H1/2(Γ)
)3

.

Let us reduce Problem (F )+ to a boundary variational inequality.

Let G+ :
(
H1/2(Γ)

)6 −→ (
H1(Ω+)

)6
be the Green operator of the Dirichlet

problem, i.e., ∀h∈(
H1/2(Γ)

)6
, G+h∈(

H1(Ω+)
)6

is a weak solution of equation

(3) and G+h
∣∣
Γ

= h (it is easy to prove the existence and uniqueness of such a
solution). By virtue of the trace operator and by applying the Banach theorem

we can prove that there exist constants ci >0, i=1, 2, such that ∀h∈(
H1/2(Γ)

)6
:

c1

∥∥h
∥∥

1/2,Γ
≤

∥∥G+ h
∥∥

1,Ω+ ≤ c2

∥∥h
∥∥

1/2,Γ
. (4)

Define the operator L+ :
(
H1/2(Γ)

)6 −→ (
H−1/2(Γ)

)6
by the formula

L+ h =
{N (x, ∂, ν)(G+ h)(x)

}+

Γ
, ∀h ∈ (

H1/2(Γ)
)6

.

It should be noted that the definition of the operator L+ is correct since

G+ h ∈ (
H1(Ω+)

)6
and M(G+ h) = 0 ∈ (

L2(Ω+)
)6

.
The following properties are valid for the operator L+:

(I)
〈
L+ h, g

〉
=

〈
L+ g, h

〉
, ∀h, g ∈ (

H1/2(Ω+)
)6

;

(II) L+ :
(
H1/2(Γ)

)6 −→ (
H−1/2(Γ)

)6
is a continuous mapping;

(III) ∃ c > 0 :
〈
L+ h, h

〉 ≥ c
∥∥Ph

∥∥2

1/2,Γ
, ∀h ∈ (

H1/2(Γ)
)6

;

(IV) ∃ c > 0 :
〈
L+ h, h

〉 ≥ c
∥∥h

∥∥2

1/2,Γ
, ∀h ∈ (

H1/2(Γ)
)6

, h
∣∣
Γ1

= 0,
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where I−P is the operator of orthogonal projection of the space
(
H1/2(Γ)

)6
(in

a sense of the space H1/2) onto the set of solution of the equation
〈
L+ h, h

〉
= 0

(the space of solutions of this equation coincides with the set of traces on the
boundary Γ of rigid displacement vectors).

Properties (I) and (II) of the operator L+ follow from the continuity of the
bilinear form (1) and inequality (4). We will prove (III). Applying Lemma 1
([4]), we have

〈
L+ h, h

〉
= B(G+ h,G+ h) ≥ c

∥∥P1(G
+ h)

∥∥2

1,Ω+ , ∀h ∈ (
H1/2(Γ)

)6
,

where I − P1 is the operator of orthogonal projection of the space
(
H1(Ω+)

)6

onto the set of rigid displacement vectors R (R = {U = (u, ω) ∈ (
H1(Ω+)

)6
:

u = [a× x] + b, ω = a, a, b ∈ R3}), i.e., ∃Uh ∈ R such that

P1(G
+ h) = G+ h− Uh.

In view of inequality (4) we obtain
∥∥P1(G

+ h)
∥∥

1,Ω+ =
∥∥G+ h−G+(Uh|Γ)

∥∥
1,Ω+ =

∥∥G+(h− Uh|Γ)
∥∥

1,Ω+

≥ c1

∥∥h− Uh|Γ
∥∥

1/2,Γ
≥ c

∥∥P h
∥∥

1/2,Γ
, ∀h ∈ (

H1/2(Γ)
)6

.

Thus (III) is proved. Property (IV) is a simple corollary of (III).

Assume that K =
{
h = (ξ, η) ∈ (

H1/2(Γ)
)6

: h
∣∣
Γ1

= 0
}

and consider, on the

space
(
H1/2(Γ)

)3
, the continuous convex functional

j(ξ) =

∫

Γ2

g|ξ
T
− ϕ

T
| ds

and the following variational inequality: find h0 = (ξ0, η0) ∈ K such that ∀h =
(ξ, η) ∈ K:

〈
L+ h0, h− h0

〉
+ j(ξ)− j(ξ0) ≥

∫

Γ2

[
FN(ξN − ξ0N) + ψ · (η − η0)

]
ds. (5)

Theorem 1. The boundary variational inequality (5) and problem (F )+ are
equivalent.

Proof. It should be noted that the equivalence is understood in the following

sense: if U ∈ (
H1(Ω+)

)6
is a solution of Problem (F )+, then U

∣∣
Γ

= h0 is a
solution of inequality (5) and, conversely, if h0 ∈ K is a solution of inequality

(5), then G+ h ∈ (
H1(Ω+)

)6
is a solution of Problem (F )+.

Let U ∈ (
H1(Ω+)

)6
be a solution of Problem (F )+ and U

∣∣
Γ

= h0 (clearly, by
virtue of the definition of the Green operator, U = G+ h0).

One can easily verify that if the conditions of Problem (F )+ are fulfilled, then
the inequality

σ
T
(G+ h0) · (ξT − ξ0T ) + g(|ξT − ϕ

T
| − |ξ0T − ϕ

T
|) ≥ 0 (6)
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holds on Γ2. After integrating (6) on Γ2, we obtain∫

Γ2

σ
T
(G+ h0) · (ξT − ξ0T )ds +

∫

Γ2

µ(G+ h0) · (η − η0)ds

+

∫

Γ2

σ
N
(G+ h0)(ξN − ξ0N)ds + j(ξ)− j(ξ0)

≥
∫

Γ0

[
σ

N
(G+ h0)(ξN − ξ0N) + µ(G+ h0) · (η − η0)

]
ds,

i.e., (5) is fulfilled.
Conversely, let h0 ∈ K be a solution of inequality (5). By virtue of the

definition of the Green operator, U = G+ h0 is a weak solution of equation (3)
and U

∣∣
Γ1

= G+ h0

∣∣
Γ1

= h0

∣∣
Γ1

= 0 since h0 ∈ K.

Let h ∈ K be such that ξT = ξ0T , η = η0, and ξN = ξ0N ± Θ, where
Θ ∈ H1/2(Γ), supp Θ ⊂ Γ2. Then j(ξ) = j(ξ0) and from (5) it follows that

〈
σ

N
(G+ h0), Θ

〉
=

∫

Γ2

FNΘ ds, ∀Θ ∈ H1/2(Γ), supp Θ ⊂ Γ2.

Therefore
σ

N
(G+ h0)

∣∣
Γ2

= FN . (7)

Analogously, choosing h ∈ K in an appropriate manner, we obtain

µ(G+ h0)
∣∣
Γ2

= ψ. (8)

In view of (7) and (8), inequality (5) can be rewritten as∫

Γ2

[
σ

T
(G+ h0) · χT

+ g|χ
T
|]ds−

∫

Γ2

[
σ

T
(G+ h0) · χ0T

+ g|χ
0T
|]ds ≥ 0, (9)

where χ
T

= ξT − ϕ
T

and χ
0T

= ξ0T − ϕ
T
. Let

Ψ =
{
ζ ∈ (

H1/2(Γ)
)3

: ζ
∣∣
Γ1

= 0
}
.

Replacing χ
T

in (9) by χ
0T
± ζ

T
, where ζ ∈ Ψ, and taking into account that

|ζT | ≤ |ζ|, after some transformations we obtain∣∣∣∣
∫

Γ2

σ
T
(G+ h0) · ζ ds

∣∣∣∣ ≤
∫

Γ2

g|ζ| ds, ∀ ζ ∈ Ψ (10)

and ∫

Γ2

[
σ

T
(G+ h0) · χ0T

+ g|χ
0T
|]ds ≤ 0. (11)

Let us consider the functional

Φ(ζ) =

∫

Γ2

σ
T
(G+ h0) · ζ ds, ζ ∈ Ψ,
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on the set Ψ.
By virtue of (10) the functional Φ on the space Ψ ⊂ (

L1(Γ)
)3

is linear and
continuous in the induced topology and its norm does not exceed one.

Since Ψ
∣∣
Γ2

is dense in
(
L1(Γ2)

)3
, by virtue of the Hahn–Banach theorem

Φ ∈ (
L∞(Γ2)

)3
and ‖Φ‖ ≤ 1, i.e.,

σ
T
(G+ h0) ∈

(
L∞(Γ2)

)3
.

Let us write the functional Φ in a different form:

Φ(ζ) =

∫

Γ2

g−1σ
T
(G+ h0) · gζ ds (12)

(assuming that g ≥ g0 > 0).
Applying our preceding arguments to functional (12), we obtain

∣∣σ
T
(G+ h0)

∣∣ ≤ g. (13)

In view of (13), from (11) we have

σ
T
(G+ h0) · χ0T

+ g|χ
0T
| = 0,

which in turn ensures the fulfilment of the friction condition of Problem
(F )+. ¤

Let us investigate the question of existence and uniqueness of a solution of
inequality (5).

Let mes Γ1 > 0. On the convex closed set K we consider the functional

I(h) =
1

2

〈
L+ h, h

〉
+ j(ξ)−

∫

Γ2

[FNξN + ψ · η]ds, ∀h = (ξ, η) ∈ K.

One can easily easily verify that by virtue of property (I) of the operator L+,
the solution of inequality (5) is equivalent to minimization of the functional
I(h) on the set K.

Taking into account property (IV) of the operator L+ and the fact that
j(ξ) ≥ 0, we obtain

I(h) ≥ c
∥∥h

∥∥2

1/2,Γ
− c1

∥∥h
∥∥

1/2,Γ
, ∀h ∈ K,

i.e., I(h) −→ +∞ as
∥∥h

∥∥
1/2,Γ

−→ ∞. This means that the functional I(h) is

coercive and, on the basis of the known results (see [9], [10]), we conclude that
Problem (F )+ has a unique solution. Thus we arrive at

Theorem 2. If G ∈ (
L2(Ω+)

)6
, FN ∈ L∞(Γ2) and ψ ∈ (

L∞(Γ2)
)3

, then

Problem (F )+ has a unique solution of the class
(
H1(Ω+)

)6
.

Let now Γ1 = ∅. Then Γ2 = Γ and instead of Problem (I)+ we consider

Problem (II)+. Assume that G ∈ (
L2(Ω+)

)6
, FN ∈ L∞(Γ), ψ ∈ (

L∞(Γ)
)3

,
F ∈ L∞(Γ), F ≥ 0 and g = F|FN |. Find a vector function U = (u, ω) ∈
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(
H1(Ω+)

)6
which is a weak solution of equation (2) and satisfies the following

conditions:

σ
T
(U)

∣∣
Γ
∈ (

L∞(Γ)
)3

, µ(U)
∣∣
Γ

= ψ, σ
N
(U)

∣∣
Γ

= FN , and if
∣∣σ

T
(U)

∣∣
Γ

< g,

then u
T

= 0, and if
∣∣σ

T
(U)

∣∣
Γ

= g, then ∃λ ≥ 0 : u
T

= −λσ
T
(U).

Let Ω+ be not a body of rotation, and U0 = (u0, ω0) ∈
(
H1(Ω+

)6
be a weak

solution of equation (2) for which

u
0N

∣∣
Γ

= 0, σ
T
(U0)

∣∣
Γ

= 0 and µ(U0)
∣∣
Γ

= 0

(as is known, there exists a unique solution of this problem).
Then for the vector function V = U − U0 (instead of which, like previously,

we again write U) we obtain

Problem (Ψ)+. Find a vector function U = (u, ω) ∈ (
H1(Ω+)

)6
which is a

weak solution of equation (3) and satisfies, on the boundary Γ, the following
conditions:

σ
T
(U) ∈ (

L∞(Γ)
)3

, σ
N
(U) = ΨN , µ(U) = ψ and if

∣∣σ
T
(U)

∣∣ < g, then

u
T

= ϕ
T
, and if

∣∣σ
T
(U)

∣∣ = g, then ∃λ ≥ 0 : u
T

= ϕ
T
− λσ

T
(U), where

ΨN = FN − σ
N
(U0) and ϕ

T
= −u

0T
.

As before, Problem (Ψ)+ and the following variational inequality are equiva-
lent (the equivalence is understood as in Theorem 1):

Find h0 = (ξ0, η0) ∈
(
H1/2(Γ)

)6
such that ∀h = (ξ, η) ∈ (

H1/2(Γ)
)6

〈
L+ h0, h− h0

〉
+ j(ξ)− j(ξ0) ≥

∫

Γ

[
ΨN(ξN − ξ0N) + ψ · (η − η0)

]
ds, (14)

where

j(ξ) =

∫

Γ

g |ξT − ϕ
T
| ds.

Let h0 ∈
(
H1/2(Γ)

)6
be a solution of inequality (14). Substituting into (14) first

h = (ϕ
T
, η0) and then h = (2ξ0 − ϕ

T
, η0) instead of h = (ξ, η), we obtain

〈
σ(G+ h0), ξ0 − ϕ

T

〉
+ j(ξ0) =

∫

Γ

ΨN ξ0N ds. (15)

Taking into account (15), from (14) we have〈
σ(G+ h0), ξ − ϕ

T

〉
+

〈
µ(G+ h0), η − η0

〉
+ j(ξ)

≥
∫

Γ

[
ΨN ξN + ψ · (η − η0)

]
ds. (16)

Again, substituting into (16) 2ϕ
T
− ξ instead of ξ and 2η0 − η instead of η, we

finally obtain∣∣∣∣
∫

Γ

[
ΨN ξN+ψ · (η−η0)

]
ds−〈

σ(G+ h0), ξ−ϕ
T

〉−〈
µ(G+ h0), η−η0

〉∣∣∣∣ ≤ j(ξ). (17)
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Let now ξ−ϕ
T

= c and η− η0 = a, where c = [a× x] + b, a and b are arbitrary
constant vectors from R3. Since

〈N (G+ h0), ρ
〉
Γ

= 0 (ρ = (c; a)), from (17) it
follows that ∣∣∣∣

∫

Γ

[
ΨN cN + ψ · a]

ds

∣∣∣∣ ≤
∫

Γ

g|c
T
| ds. (18)

Thus if (14) has a solution, then (18) is fulfilled for each ρ which is a solution

of the equation
〈
L+ h, h

〉
= 0 in the class

(
H1/2(Γ)

)6
(the space of solutions of

this equation is denoted by R+).
Let us show that if (18) is fulfilled strictly, i.e.,

∫

Γ

g|c
T
|ds−

∣∣∣∣
∫

Γ

[
ΨN cN + ψ · a]

ds

∣∣∣∣ > 0, ∀ ρ = (c, a) ∈ R+, ρ 6= 0, (19)

then (14) has a solution.
Since R+ is finite-dimensional, from (19) it follows that the following inequal-

ity

∫

Γ

g|c
T
|ds−

∣∣∣∣
∫

Γ

[
ΨN cN + ψ · a]

ds

∣∣∣∣ > M
∥∥ρ

∥∥
0,Γ

, ∀ ρ ∈ R+, ρ 6= 0, (20)

is fulfilled for some positive integer M .

On the space
(
H1/2(Γ)

)6
let us consider the functional

J(h)=
1

2

〈
L+ h, h

〉
+j(ξ)−

∫

Γ

[
ΨN ξN+ψ ·η]

ds, ∀h = (ξ, η) ∈ (
H1/2(Γ)

)6
, (21)

and assume that P is the orthogonal projection operator defined above.
Taking into account (20) and property (III) of the operator L+, after some

simple transformations we obtain the following estimate from (21):

J(h) ≥ c1

∥∥Ph
∥∥2

1/2,Γ
− c2

∥∥Ph
∥∥

1/2,Γ
+ M

∥∥ρ
∥∥

0,Γ
− c3,

where h = Ph + ρ, ρ ∈ R+ and ci, i = 1, 2, 3, are some positive integers.
Hence, passing to the limit as

∥∥h
∥∥

1/2,Γ
−→ ∞, we conclude that J(h) −→

+∞, which proves that the functional J(h) is coercive (it should be noted that
if

∥∥h
∥∥

1/2,Γ
−→ ∞, then for

∥∥Ph
∥∥

1/2,Γ
−→ ∞ we clearly have J(h) −→ +∞,

while for
∥∥ρ

∥∥
1/2,Γ

−→ ∞ it readily follows that
∥∥ρ

∥∥
0,Γ

−→ ∞ and therefore

J(h) −→ +∞). We eventually obtain

Theorem 3. Let Γ1 = ∅ and (19) be fulfilled. Then under the conditions of
Theorem 2 there exists a solution of Problem (Ψ)+. Two arbitrary solutions of
Problem (Ψ)+ differ in the rigid displacement vector.
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Exterior Problems

As different from the interior problems, in this case we consider the homoge-
neous an isotropic exterior domain Ω− and, for the sake of simplicity, investigate
a problem with friction in the classical elasticity theory.

Let

A(∂) =
∥∥Ajk(∂)

∥∥
3×3

, Ajk(∂) = aijek
∂2

∂xi ∂xe

be a matrix differential operator of elastostatics, and

T (∂, ν) =
∥∥Tjk(∂, ν)

∥∥
3×3

, Tjk(∂, ν) = aijek νi
∂

∂xe

,

be a stress operator ([7]), u = (u1, u2, u3) be a displacement vector, and aijek

be elastic constants which satisfy the conditions

aijek = aekij = ajiek

and ∃α0 > 0 such that ∀ εij ∈ R (εij = εji) we obtain

aijek εij εek ≥ α0 εij εij.

If aijek = λδijδek + µ(δieδjk + δikδje), where λ and µ are the Lameé constants,
then we have an isotropic medium.

The bilinear form corresponding to this case has the form

a(u, v) = aijek

∫

Ω−

εij(u) εek(v) dx

(
εij(u) =

1

2

(∂ui

∂xj

+
∂uj

∂xi

))

for every u, v ∈ (
H1

loc(Ω
−)

)3
which in the neighborhood of infinity satisfy the

conditions u, v = O(|x|−1) and ∂ui

∂xj
, ∂vi

∂xj
= O(|x|−2).

A nonhomogeneous problem with friction, analogous to Problem (I)+, can
be reduced, as we have done above, to

Problem (F)−. Find a vector function u ∈ (
H1

loc(Ω
−)

)3
which is a weak

solution of the equation

A(∂) u(x) = 0, x ∈ Ω−, (22)

in the neighborhood of infinity u = O
(

1
|x|

)
and satisfies the conditions1

σ
T
(u)

∣∣
Γ2
∈ (

L∞(Γ2)
)3

, u
∣∣
Γ1

= 0, σ
N
(u)

∣∣
Γ2

= FN , and if |σ
T
(u)| < g, then

u
T

= ϕ
T

on Γ2, and if
∣∣σ

T
(u)

∣∣
Γ2

= g, then ∃λ ≥ 0 : u
T

= ϕ
T
− λσ

T
(u),

where σ(u) = T (∂, ν)u(x), ϕ ∈ (
H1/2(Γ2)

)3
, FN ∈ L∞(Γ2) and g =

F|FN |.
To investigate this problem, let us construct an operator L− analogous to the

operator L+. To this end, we are to find a vector function u ∈ (
H1

loc(Ω
−)

)3

vanishing at infinity and satisfying the condition u
∣∣
Γ

= h, h ∈ (
H1/2(Γ)

)3
. As

1 The condition ∂ui/∂xj = O(|x|−2) is fulfilled automatically (see [11]).
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is known, this problem has a unique solution which is given in the form of a
simple-layer potential

u(x) =

∫

Γ

T (x− y)
(H−1(h)

)
(y) dyS, x ∈ Ω−, (23)

where T is a fundamental solution of the differential operator A(∂) ([7]), while
the operator H is a value of the single-layer potential on the boundary Γ:

H(h)(x) = lim
Ω−3z→x∈Γ

∫

Γ

T (z − y) h(y) dyS.

Note that ([12])

H :
(
Hs(Γ)

)3 −→ (
Hs+1(Γ)

)3
,

H−1 :
(
Hs(Γ)

)3 −→ (
Hs−1(Γ)

)3
, s ∈ R.

(24)

It is clear that for the first exterior problem the Green operator G− is defined
by formula (23), i.e.,

∀h ∈ (
H1/2(Γ)

)3
: A(∂)(G− h)(x) = 0, x ∈ Ω−,

G− h
∣∣
Γ

= h, G− h = O
( 1

|x|
)
.

The operator L− is defined by the formula

L− h =
{
σ(G− h)

}−
Γ
, ∀h ∈ (

H1/2(Γ)
)3

.

Taking into account the properties of the operator G−, from the Green for-
mula we obtain

∀h, g ∈ (
H1/2(Γ)

)3
:
〈
L− h, g

〉
=a(G− h,G− g)=aijek

∫

Ω−

εij(G
− h)εek(G

− g)dx.

The operator L− is a strongly elliptic self-conjugate invertible pseudodiffer-
ential operator of first order on the closed manifold Γ, having the following
properties:

(I)
〈
L− h, g

〉
=

〈
L− g, h

〉
, ∀h, g ∈ (

H1/2(Γ)
)3

;

(II) L− :
(
H1/2(Γ)

)3 −→ (
H−1/2(Γ)

)3
is a continuous mapping;

(III) ∃ c > 0 :
〈
L− h, h

〉 ≥ c
∥∥h

∥∥2

1/2,Γ
, ∀h ∈ (

H1/2(Γ)
)3

.

Properties (I) and (II) are trivial to prove. As to property (III) of operator L,
it immediately follows from a more general result presented in the monograph
by Mclean (see [13], Ch. II).

Analogously to the preceding case, Problem (F )− is equivalently reduced to
the variational inequality:

Find h0 ∈ K such that ∀h ∈ K

〈
L− h0, h− h0

〉
+ j(h)− j(h0) ≥

∫

Γ2

FN(hN − h0N) ds, (25)
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where K =
{
h ∈ (

H1/2(Γ)
)3

: h
∣∣
Γ1

= 0
}

and j(h) =
∫
Γ2

g|hT − ϕ
T
| ds.

The investigation of the existence and uniqueness of the solution (25) is
mainly based on the properties of the operator L− and it turns out that the
corresponding functional

J (h) =
1

2

〈
L−g, h

〉
+ j(h)−

∫

Γ2

FN hN ds

is coercive on the space
(
H1/2(Γ)

)3
regardless whether Γ1 has a positive measure

or is empty. We eventually arrive at

Theorem 4. If FN ∈ L∞(Γ2) and ϕ ∈ (
H1/2(Γ)

)3
, then Problem (F )− has

a unique solution.
The obtained theorem also remains valid in the case where Γ1 = ∅ (Γ2 = Γ).
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