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FUNCTIONAL DIFFERENTIAL INEQUALITIES WITH
UNBOUNDED DELAY

ZDZISÃLAW KAMONT AND ADAM NADOLSKI

Abstract. We prove that a function of several variables satisfying a func-
tional differential inequality with unbounded delay can be estimated by a
solution of a suitable initial problem for an ordinary functional differential
equation. As a consequence of the comparison theorem we obtain a Perron-
type uniqueness result and a result on continuous dependence of solutions on
given functions for partial functional differential equations with unbounded
delay. We consider classical solutions on the Haar pyramid.
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1. Differential Inequalities on the Haar Pyramid

For any metric spaces A and B we denote by C(A,B) the class of all con-
tinuous functions defined on A and taking values in B. We will use vectorial
inequalities with the understanding that the same inequalities hold between
their corresponding components.

Suppose that g ∈ C([0, a],Rn
+), R+ = [0, +∞), a > 0, and g = (g1, . . . , gn).

Write

h(t) =

t∫

0

g(τ)dτ, h = (h1, . . . , hn), t ∈ [0, a].

Let H be the Haar pyramid

H =
{
(t, x) = (t, x1, . . . , xn) ∈ R1+n : t ∈ [0, a], −b + h(t) ≤ x ≤ b− h(t)

}

and E = R− × [−b, b], where b = (b1, . . . , bn) ∈ Rn
+ and R− = (−∞, 0]. We

assume that b > h(a). Note that if g(t) = M for t ∈ [0, a] where M =
(M1, . . . , Mn) ∈ Rn

+, then we have a classical Haar pyramid considered in [6],
[9], [10].

Let Y be the space of initial functions ϕ : E → R. We assume that Y is a
linear space with the norm ‖ · ‖Y and that (Y, ‖ · ‖Y ) is a Banach space. For
0 ≤ t ≤ a we put Ht = H ∩ ([0, t] × Rn). Let ‖ · ‖t be the supremum norm in
the space C(Ht,R).

For each t, 0 < t ≤ a, we consider the space Yt consisting of functions
z : E ∪ Ht → R such that z|E ∈ Y . We assume that Yt is a linear space with
the norm ‖ · ‖Yt . Write Y∗ = Ya and ‖ · ‖∗ = ‖ · ‖Ya . Let Ω = H × Y∗ × Rn
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and assume that f : Ω → R and ϕ ∈ Y are given functions. We consider the
functional differential equation

∂tz(t, x) = f(t, x, z, ∂xz(t, x)) (1)

with the initial condition

z(t, x) = ϕ(t, x) for (t, x) ∈ E, (2)

where ∂xz = (∂x1z, . . . , ∂xnz). A function z : E∪H → R is said to be a classical
solution of (1), (2) if and only if

1) the function z|H is continuous and the partial derivatives ∂tz(t, x),
∂xz(t, x) exist for (t, x) ∈ H ∩ ((0, a]× Rn),

2) z|E ∈ Y , z satisfies equation (1) on H ∩ ((0, a]× Rn) and condition (2)
holds.

We assume that f satisfies the following Volterra condition: if z, z̄ ∈ Y∗,
(t, x, q) ∈ H × Rn and z(τ, y) = z̄(τ, y) for (τ, y) ∈ E ∪ Ht then f(t, x, z, q) =
f(t, x, z̄, q). Note that the Volterra condition means that the value of f at the
point (t, x, z, q) ∈ Ω depends on (t, x, q) and on the restriction of z to the set
E ∪Ht only.

It is well known that differential equations with deviated variables and a large
class of integral functional problems can be obtained from (1) by specializing
the operator f .

The aim of this paper is to give uniqueness results for functional differen-
tial problems with unbounded delay. Methods of differential inequalities are
the basic tools in investigations of solutions of initial or initial boundary value
problems for nonlinear differential or differential functional equations with par-
tial derivatives. Uniqueness theorems require assumptions about an estimation
of the right-hand side increase and about the regularity of solutions. Unique-
ness criteria are obtained as a consequence of suitable comparison theorems for
differential or functional differential inequalities.

Equations with partial derivatives of first order have the following property:
the problem of the existence of their classical or generalized solutions is strictly
connected with the problem of solving ordinary differential equations. Ordinary
differential inequalities find numerous applications in the theory of first order
partial differential equations or systems. Such problems as estimates of solutions
of partial equations, estimates of the domain of their solutions, estimates of the
difference between two solutions, criteria of uniqueness, are classical examples
but not the only ones ([6], [9], [10]).

A similar role in the theory of differential functional equations with partial
derivatives is played by differential functional inequalities with ordinary deriva-
tives. The monograph [5] contains an exposition of recent developments of
hyperbolic functional differential inequalities and applications.

Now we present relations between the problem of uniqueness of classical solu-
tions of nonlinear partial differential equations with initial conditions and some
properties of ordinary differential equations.
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Let H̃ be the Haar pyramid

H̃ =
{
(t, x) ∈ R1+n : t ∈ [0, a], −b + Mt ≤ x ≤ b−Mt

}
, (3)

where a > 0, b = (b1, . . . , bn), bi > 0 for 1 ≤ i ≤ n and M = (M1, . . . , Mn) ∈ Rn
+.

We assume that b > Ma. Suppose that f̃ : H̃ ×R×Rn and φ : [−b, b] → R are
given functions. Consider the Cauchy problem

∂tz(t, x) = f̃(t, x, z(t, x), ∂xz(t, x)), (4)

z(0, x) = φ(x) for x ∈ [−b, b], (5)

A function z : H̃ → R is called the function of class D if z ∈ C(H̃,R), the
derivatives ∂tz and ∂xz exist in H̃ ∩ ((0, a]×Rn) and z possesses the total
differential on ∂H̃ ∩ ((0, a)×Rn) where ∂H̃ is the boundary of H̃. We consider
solutions of (4), (5) which are of the class D. We report a result of J. Szarski
([9], Th. 42.1) which is a generalization of Haar’s theorem ([2], see also [3]
Ch. 6, Th. 10.1).

Theorem 1.1. Suppose that

1) the functions f̃ : H̃ × R× Rn → R and φ : [−b, b] → R are continuous,
2) there is a function σ : [0, a]× R+ → R+ such that

(i) σ is continuous and σ(t, 0) = 0 for t ∈ [0, a],
(ii) the maximal solution of the Cauchy problem

η′(t) = σ(t, η(t)), η(0) = 0, (6)

is η̄(t) = 0 for t ∈ [0, a],
(iii) the estimate

∣∣f̃(t, x, p, q)− f̃(t, x, p̄, q̄
∣∣ ≤ σ(t, |p− p̄|) +

n∑
i=1

Mi|qi − q̄i|

holds on H̃ × R× Rn.

Under these assumptions the Cauchy problem (4), (5) admits at most one solu-
tion z : H̃ → R of the class D.

The above theorem is proved by using the method of differential inequalities.
Now we formulate an extension of the above uniqueness result to functional

differential equations. We formulate the problem. Suppose that H̃ is the Haar
pyramid defined by (3) and Ẽ = [−b0, 0] × [−b, b] ⊂ R1+n with b0 ≥ 0. Given
the functions F : H̃ ×C(Ẽ ∪ H̃,R)×Rn → R and Φ : Ẽ → R, we consider the
Cauchy problem

∂tz(t, x) = F (t, x, z, ∂xz(t, x)), (7)

z(t, x) = Φ(t, x) on Ẽ. (8)

A function z : Ẽ∪H̃ → R is called a function of the class D∗ if z ∈ C(Ẽ∪H̃,R)
and the function z |H̃ is of the class D on H̃. We consider solutions of (7), (8)
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which are of the class D∗. We assume that F satisfies the Volterra condition.
We need the operator V : C(Ẽ ∪ H̃,R) → C([−b0, a],R+) defined by

V [z](t) =

{
max

{|z(t, x)| : x ∈ [−b + Mt, b−Mt]
}

for t ∈ [0, a],

max
{|z(t, x)| : x ∈ [−b, b]

}
for t ∈ [−b0, 0].

Note that the continuity of V [z] follows from Theorem 33.1 in [9].
A criterion that implies the uniqueness of solutions of (7), (8) is the following

Perron type condition.

Theorem 1.2. Suppose that

1) the functions F : H̃×C(Ẽ∪H̃,R)×Rn → R, Φ : Ẽ → R are continuous
and F satisfies the Volterra condition,

2) there is a function σ : [0, a]× C([−b0, a],R+) → R+ such that
(i) σ is continuous and satisfies the Volterra condition,
(ii) σ is nondecreasing with respect to the functional variable and

σ(t, θ) = 0 for t ∈ [0, a] where θ(τ) = 0 for τ ∈ [−b0, a],
(iii) the maximal solution of the Cauchy problem

η′(t) = σ(t, η), η(t) = 0 for t ∈ [−b0, 0], (9)

is η̄(t) = 0 for t ∈ [−b0, a],
(iv) the estimate

∣∣F (t, x, z, q)− F (t, x, z̄, q̄)
∣∣ ≤ σ

(
t, V [z − z̄]

)
+

n∑
i=1

Mi|qi − q̄i|

holds on H̃ × C(Ẽ ∪ H̃,R)× R.

Under these assumptions the Cauchy problem (7), (8) admits at most one solu-
tion z : Ẽ ∪ H̃ → R of the class D∗.

The above result is proved by using theorems on functional differential in-
equalities ([5], Ch. 1).

Thus we see that in the uniqueness theory for first order partial differential
functional equations, ordinary differential functional equations are considered
as comparison problems of the Perron type. Uniqueness results with comparison
functions of the Kamke type can be found in [5].

We wish to emphasize that functional differential comparison problems are
the main tool in this research. Adequate examples are given in [5], Ch. 1.

The classical theory of partial differential inequalities is described extensively
in the monographs [6], [9], [10]. Functional differential inequalities and appli-
cations are discussed in [5].

The aim of this paper is to construct comparison problems for partial func-
tional differential equations with unbounded delay. We show that relations
between classical equations (1) and (6) given in Theorem 1.1 and relations be-
tween functional differential equations (7) and (9) given in Theorem 1.2 can be
extended to functional differential equations with unbounded delay. We prove
that under natural assumptions on given functions there is a maximal solution
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of an adequate initial problem. We show that a function satisfying a functional
differential inequality can be estimated by a maximal solution of a suitable
initial problem.

The paper is organized as follows. In Section 2 we consider ordinary functional
differential equations with unbounded delay. We prove that under natural as-
sumptions on given functions there is a maximal solution of an adequate initial
problem. We show that a function satisfying a functional differential inequality
can be estimated by a maximal solution on a suitable initial problem.

In Section 3 we give a comparison result for partial functional differential
inequalities with unbounded delay. We prove that a function of several vari-
ables satisfying an adequate functional differential inequality can be estimated
by a maximal solution of a suitable initial problem for an ordinary functional
differential equation. As a consequence of the comparison theorem we obtain a
Perron type uniqueness result.

Examples are presented in the last part of the paper.
Existence results for nonlinear functional differential equations with unboun-

ded delay can be found in [8].
The theory of ordinary functional differential equations with unbounded delay

has rich literature. It is not our aim to show a full review of the papers dealing
with the problem. We mention only those references which contain such reviews.
These are the monographs [4], [7] and the survey paper [1].

2. Maximal Solutions of Initial Problems

For a function η : (−∞, a] → R and for a point t ∈ (−∞, a] we define a
function ηt : R− → R as follows: ηt(τ) = η(t + τ), τ ∈ R−. The function ηt is
the restriction of η to the set (−∞, t] and this restriction is shifted to R−.

The phase space X for ordinary functional differential equations with un-
bounded delay is a linear space with the norm ‖ · ‖X consisting of functions
mapping R− into R. The fundamental axioms assumed on X are the following.

Assumption H[X]. Suppose that (X, ‖ · ‖) is a Banach space and

1) if η : (−∞, a] → R, a > 0, is a function such that η0 ∈ X and η |[0,a] is
continuous, then
(i) ηt ∈ X for t ∈ [0, a],
(ii) there exist constants L,K, M ∈ R+ (independent of η) such that

|η(t)| ≤ L‖ηt‖X (10)

and

‖ηt‖X ≤ K max
{|η(τ)| : τ ∈ [0, t]

}
+ M‖x0‖X , (11)

where t ∈ [0, a],
2) for η : (−∞, a] → R the mapping t → ηt is a continuous function on

[0, a].
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Let

X+ =
{
w ∈ X : w(t) ≥ 0 for t ∈ R−

}
. (12)

Suppose that σ : [0, a]×X+ → R+ and λ ∈ X+ are given functions. We consider
the Cauchy problem

η′(t) = σ(t, ηt), (13)

η(t) = λ(t) for t ∈ R−. (14)

We say that the function σ : [0, a] × X+ → R+ satisfies the monotonicity
condition W+ if for any (t, w), (t, w̄) ∈ [0, a] × X+ such that w(s) ≤ w̄(s) for
s ∈ R− and w(0) = w̄(0) we have σ(t, w) ≤ σ(t, w̄).

Given w ∈ X, let sw : (−∞, a] → R be a function defined by

sw(t) = w(t) for t ∈ R− and sw(t) = w(0) for t ∈ [0, a].

Theorem 2.1. Suppose that

1) assumption H[X] is fulfilled and λ ∈ X+,
2) the function σ : [0, a]×X+ → R+ is continuous and satisfies the mono-

tonicity condition W+.

Then there is α ∈ (0, a] such that the Cauchy problem (13), (14) has the maximal
solution on the interval (−∞, α].

Proof. There exists M̄ ∈ R+ such that

σ(t, (sλ)t) ≤ M̄ for t ∈ [0, a].

Moreover, there exists b̄ > 0 such that for any w ∈ X+ and t ∈ [0, a] the
condition ‖w − (sλ)t‖X ≤ b̄ implies that

∣∣σ(t, w)− σ(t, (sλ)t)
∣∣ ≤ 1.

Suppose, contrary to our claim, that for any k ∈ N there is a function w(k) ∈ X+

and a point tk ∈ [0, a] such that
∥∥w(k) − (sλ)tk

∥∥
X

< 1/k and
∣∣σ(tk, w

(k))− σ(tk, (sλ)tk)
∣∣ > 1. (15)

We choose a subsequence {tkp} ⊂ {tk} which is convergent to some t̄ ∈ [0, a].
This, together with (15), contradicts the continuity of σ at the point (t̄, (sλ)t̄).

Therefore for any w ∈ X+ such that ‖w − (sλ)t‖X ≤ b̄ for t ∈ [0, a], we have

σ(t, w) ≤ M̄ + 1.

Let hε ∈ X+ be defined by

hε(t) =

{
0 for t ∈ (−∞,−ε],

ε + t for t ∈ (−ε, 0].
(16)

For any ε satisfying

0 ≤ ε ≤ b̄/2 and Kε + M‖hε‖X ≤ b̄/2 (17)
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we consider the Cauchy problem

η′(t) = σ(t, ηt) + ε, (18)

η(t) = λ(t) + hε(t) for t ∈ R−. (19)

Let λε = λ + hε and let w ∈ X be such a function that ‖w − (sλε)t‖X ≤ b̄/2.
Then ∥∥w − (sλ)t

∥∥
X
≤ b̄/2 + Kε + M‖hε‖X ≤ b̄

for t ∈ [0, a] and consequently

σ(t, w) + ε ≤ M̄ + 1 + b̄/2.

Write

α = min

{
a,

b̄/2

K(M̄ + 1 + b̄/2)

}
.

Let us denote by U the set of all functions u : (−∞, α] → R+ such that

u(t) = λε(t) for t ∈ R−,

|u(t)− u(t̄)| ≤ (M̄ + 1 + b̄/2)|t− t̄| for t, t̄ ∈ [0, α].

Let T be the operator defined on U in the following way

T [η](t) = λε(t) for t ∈ R−,

T [η](t) = λε(0) +

t∫

0

[σ(τ, ητ ) + ε]dτ for t ∈ [0, α].

For η ∈ U and t ∈ [0, α] we obtain
∥∥ηt − (sλε)t

∥∥
X
≤ K max

{∣∣u(τ)− (sλε)(τ)
∣∣ : τ ∈ [0, t]

}

≤ K(M̄ + 1 + b̄/2)t ≤ b̄/2 t ∈ [0, α].

This gives

σ(t, ηt) + ε ≤ M̄ + 1 + b̄/2, t ∈ [0, α],

and ∣∣T [η](t)− T [η](t̄)
∣∣ ≤ (M̄ + 1 + b̄/2)|t− t̄| for t, t̄ ∈ [0, α].

We thus get T : U → U . It follows from the Schauder fixed point theorem
that T has a fixed point in U . Therefore problem (18), (19) has a solution on
(−∞, α] for ε satisfying (17). Notice that α is independent of ε.

Suppose that ε, ε̄ satisfy (17) and ε < ε̄. Let w( · , ε) and w( · , ε̄) be solutions of
(18), (19), with ε and ε̄ respectively. Using the method of differential inequalities
we obtain w(t, ε) < w(t, ε̄) for t ∈ [0, α]. Let {εm} be a sequence satisfying the
conditions

(i) for each m, the number εm satisfies (17),
(ii) 0 < εm+1 < εm for all m ∈ N and limm→+∞ εm = 0.
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The sequence {w(·, εm)|[0,a]} forms a family of equicontinuous and uniformly
bounded functions. Then there is w : (−∞, α] → R+ such that w(t) = λ(t) on
R− and

w(t) = lim
m→+∞

w(t, εm) uniformly on [0, α].

One can see that w is a solution of (13), (14). Moreover for any solution ū of
problem (13), (14) we have that

ū(t) < w(t, εm) for t ∈ [0, α], m ∈ N.

Thus ū(t) ≤ w(t) for t ∈ [0, α], which yields that w is the maximal solution of
(13) (14) on (−∞, α].

Now we formulate a comparison result for equations with unbounded delay.
Let us denote by D− the left-hand lower Dini derivative. ¤

Lemma 2.2. Suppose that

1) Assumption H[X] is fulfilled and λ ∈ X+,
2) the function σ : [0, a]×X+ → R+ is continuous and satisfies the mono-

tonicity condition W+,
3) w(·, λ) is the maximal solution of (13), (14) on (−∞, a],
4) the function η̄ : (−∞, a] → R+ satisfies the conditions

(i) η̄0 ∈ X and η̄ |[0,a] is continuous,
(ii) the functional differential inequality

D−η̄(t) ≤ σ(t, η̄t), (20)

holds for t ∈ S+ where

S+ =
{
t ∈ [0, a] : η̄(t) > w(t, λ)

}

(iii) η̄(t) ≤ λ(t) for t ∈ R−.

Then
η̄(t) ≤ w(t, λ) for t ∈ [0, a]. (21)

Proof. First we shall prove that there exists 0 < α ≤ 0 such that η̄(t) ≤ w(t, λ)
for t ∈ [0, α]. Let M̄ > 0, b̄ > 0 be such constants that

σ(t, (sλ)t) ≤ M̄ for t ∈ [0, a]

and ∣∣σ(t, w)− σ(t, (sλ)t

∣∣ ≤ 1

for w ∈ X+ and ‖w − (sλ)t‖X ≤ b̄. Consider ε > 0 satisfying (17). Then the
Cauchy problem (18), (19) has a solution wε(·, λ) on the interval [0, α], where

α = min

{
a,

b̄/2

K(M̄ + 1 + b̄/2)

}
.

We claim that η̄(t) < wε(t, λ) for t ∈ [0, α]. If this assertion is false, then there
exists t0 ∈ [0, α] such that η̄(t) < wε(t, λ) for t ∈ [0, t0) and η̄(t0) = wε(t0, λ).
This implies that t0 ∈ S+ and

D−η̄(t0) ≥ w′
ε(t0, λ) = σ(t0, (wε(·, λ))t0) + ε
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and consequently

D−η̄′(t0) > σ(t0, η̄t0).

This contradicts our assumption that η̄ satisfies (20) at the point t0.
Let ā be the supremum of such numbers α, 0 < α ≤ a, that

η̄(t) ≤ w(t, λ) for t ∈ [0, α].

We shall prove that a = ā. Assume that ā < a. Then η̄(t) ≤ w(t, λ) for t ∈ [0, ā]
and η̄(ā) = w(ā, λ). Consider the Cauchy problem

η′(t) = σ(t, ηt), (22)

η(t) = λ̄(t) for t ∈ (−∞, ā], (23)

where

λ̄(t) =

{
λ(t) for t < 0,

w(t, λ) for t ∈ [0, ā].

Since w(·, λ) is the maximal solution of this problem on (−∞, a], there exists
ε0 > 0 such that ū(t) ≤ w(t, λ) for t ∈ (−∞, ā + ε0], which contradicts the
definition of ā. ¤

Lemma 2.3. Suppose that Assumption H[X] is satisfied and

1) the function σ : [0, a]×X+ → R+ is continuous and satisfies the mono-
tonicity condition W+,

2) λ ∈ X+ and the sequence of functions {λm} satisfies the conditions
(i) λm ∈ X+ for m ∈ N and λ(t) ≤ λm(t) for t ∈ R−, m ∈ N,
(ii) limm→∞ ‖λ− λm‖X = 0,

3) the sequence on numbers { εm} is such that εm ∈ R+ for m ∈ N and
limm→∞ εm = 0.

Then there are α ∈ (0, a] and N ∈ N such that
1) for each m ≥ N , the maximal solution ω( · , λm) of the Cauchy problem

η′(t) = σ(t, ηt) + εm, η(t) = λm(t) for t ∈ R−, (24)

is defined on (−∞, α],
2) the maximal solution ω( · , λ) of problem (9) is defined on (−∞, α] and

lim
m→∞

ω(t, λm) = ω(t, λ) uniformly on [0, α].

Proof. There is M̄ ∈ R+ such that

σ(t, (sλ)t) + εm ≤ M̄ for t ∈ [0, a] m ∈ N.

Moreover, there is b̄ > 0 such that for any w ∈ X+ and t ∈ [0, a], the condition
‖w − (sλ)t‖X ≤ b̄ implies that

σ(t, w)− σ(t, (sλ)t)| ≤ 1.

Therefore, for w ∈ X+ such that ‖w − (sλ)t‖X ≤ b̄, t ∈ [0, a], we have

σ(t, w) + εm ≤ M̄ + 1, m ∈ N.
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Let hε ∈ X+ be the function defined by (16) with ε satisfying

0 ≤ ε ≤ b̄

3
, Kε + M‖hε‖X ≤ b̄

3
. (25)

Consider the Cauchy problem

η′(t) = σ(t, ηt) + εm + ε, (26)

η(t) = λm(t) + hε(t) for t ∈ R−. (27)

There is N ∈ N such that for m ≥ N we have

‖(sλm)t − (sλ)t‖X ≤ b̄

3
, t ∈ [0, a].

Write

α = min

{
a,

b̄/3

K(M̄ + 1 + b̄/3)

}
.

Let m ≥ N be fixed. We denote by Um the set of all functions η : (−∞, α] → R+

such that

η(t) = λm(t) + hε(t) for t ∈ R−,

|η(t)− η(t̄)| ≤ (M̄ + 1 + b̄/3)|t− t̄| for t, t̄ ∈ [0, α].

Let the operator Tm be defined on Um in the following way:

Tm[η](t) = λm(t) + hε(t) for t ∈ R−,

Tm[η](t) = λm(0) + hε(0) +

t∫

0

[ σ(τ, ητ ) + εm + ε] dτ, t ∈ [0, α].

For η ∈ Um and t ∈ [0, α] we have

‖ηt − (sλ)t‖X ≤ ‖ηt − (sλm + shε)t‖X

+ ‖(sλm + shε)t − (sλ + shε)t‖X + ‖(sλε)t‖X

≤ K max
{|η(τ)− (λm + hε)(τ)| : τ ∈ [0, α]

}

+
b̄

3
+ Kε + M‖hε‖X ≤ b̄.

This gives

σ(t, ηt) + εm + ε ≤ M̄ + 1 + b̄/3

and consequently
∣∣Tm[η](t)− Tm[η](t̄)

∣∣ ≤ (M̄ + 1 + b̄/3)|t− t̄| for t, t̄ ∈ [0, α].

Therefore Tm : Um → Um for each m ≥ N. Using Schauder’s fixed point theorem
we get that Tm has a fixed point in Um and problem (26), (27) has a solution
ω( · , λm, ε) on (−∞, α] for ε satisfying (25). It is easy to see that there is

ω(t, λm) = lim
ε→0

ω(t, λm, ε), t ∈ [0, α],
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and ω( · , λm) is a maximal solution of (24). Note that the constant α is inde-
pendent of m ≥ N. In the same way we prove that there is a maximal solution
ω( · , λ) : (−∞, α] → R+ of problem (9)

The functions {
ω( · , λN)|[0,α], ω( · , λN+1)|[0,α], . . .

}

are uniformly continuous and equibounded. The uniqueness of the maximal
solution ω( · , λ) shows that

lim
m→∞

ω(t, λm) = ω(t, λ) uniformly on [0, α].

This proves the theorem. ¤

3. Comparison Theorem for Partial Functional Differential
Equations

We prove that a function u : E ∪H → R satisfying on E an initial inequality
and an adequate functional differential inequality on H can be estimated by
the maximal solution of problem (13), (14). We give also applications of the
comparison result.

Let

∂+
0 H =

n⋃
i=1

{
(t, x) ∈ H : 0 < t ≤ a, xi = bi − hi(t)

}
,

∂−0 H =
n⋃

i=1

{
(t, x) ∈ H : 0 < t ≤ a, xi = −bi + hi(t)

}

and ∂0H = ∂+
0 H ∪ ∂−0 H. Moreover, we define

St =

{
[−b, b] for t ∈ R−,

[−b + h(t), b− h(t)] for t ∈ [0, a].

For a point t ∈ [0, a] and for a function z : E ∪ Ht → R we define a function
Wt[z] : R− → R+ as follows:

Wt[u](τ) = sup
{|u(t + τ, x)| : x ∈ St+τ

}
, τ ∈ R−.

Assumption H[X, Y ]. Suppose that for each function ϕ ∈ Y the function
W0ϕ is such that W0[ϕ] ∈ X.

We say that the function u : E ∪H → R is of the class D if

1) u |E∈ Y and u |H is continuous,
2) the partial derivatives ∂tu(t, x), ∂xu(t, x) exist for (t, x) ∈ H ∩ ((0, a]×

Rn) and u is differentiable on ∂0H.

Theorem 3.1. Suppose that

1) Assumptions H[X], H[X,Y ] are fulfilled, λ ∈ X+,
2) the function σ : [0, a]×X+ → R+ is continuous and satisfies the mono-

tonicity condition W+,
3) w( · , λ) is the maximal solution of problem (13) (14) and w(·, λ) exists

on (−∞, a],
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4) u : E ∪H → R is of the class D on E ∪H and

|u(t, x)| ≤ λ(t) for (t, x) ∈ E,

5) for every (t, x) ∈ H, t > 0, the following functional differential inequality
holds:

|∂tu(t, x)| ≤ σ(t,Wt[u]) +
n∑

i=1

gi(t)|∂xi
u(t, x)|.

Then |u(t, x)| ≤ ω(t, λ) for (t, x) ∈ H.

Proof. Let η(t) = max{|u(t, x)| : x ∈ St} for t ∈ (−∞, a]. Then η is continuous
on [0, a]. Moreover, ηt = Wt[u] for t ∈ [0, a]. We define

I+ =
{
t ∈ (0, a] : η(t) > ω(t, λ)

}
.

We shall prove that

D−η(t) ≤ σ(t, ηt) for t ∈ I+. (28)

Let t ∈ I+. There exists x ∈ St such that η(t) = |u(t, x)|. Consider the case
where η(t) = u(t, x). Let

J+[t, x] =
{
i ∈ {1, . . . , n} : xi = bi − hi(t)

}
,

J+[t, x] =
{
i ∈ {1, . . . , n} : xi = −bi + hi(t)

}
,

J0[t, x] = {1, . . . , n} \ (J+[t, x] ∪ J−[t, x]).

It follows that η(t) > 0 and

∂xi
u(t, x) ≥ 0 for i ∈ J+[t, x],

∂xi
u(t, x) ≤ 0 for i ∈ J−[t, x],

∂xi
u(t, x) = 0 for i ∈ J0[t, x].

We define a function γ : [0, a] → Rn, γ = (γ1, . . . , γn) as follows:

γi(τ) =





bi − hi(τ) for i ∈ J+[t, x],

−bi + hi(τ) for i ∈ J−[t, x],

t for i ∈ J0[t, x],

where τ ∈ [0, a]. One can see that γ(t) = x. Let Γ(τ) = u(τ, γ(τ)) for τ ∈ [0, t].
We thus get Γ(τ) ≤ η(τ) for τ ∈ [0, t] and Γ(t) = η(t), and consequently
D−η(t) ≤ Γ′(t). According to the assumptions 4), 5), we have

D−η(t) ≤ ∂tu(t, x) +
n∑

i=0

∂xi
u(t, x)γ′i(t)

≤ σ(t, ηt) +
n∑

i=0

gi(t)|∂xi
u(t, x)| −

∑

i∈J+[t,x]

∂xi
u(t, x)h′i(t)

+
∑

i∈J−[t,x]

∂xi
u(t, x)h′i(t) ≤ σ(t, ηt).
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We have proved (28) in the case η(t) = u(t, x). In a similar way we prove (28)
when η = −u(t, x). Therefore in virtue of Lemma 2.2 the proof of the theorem
is complete. ¤

Now we give applications of the comparison result.

Assumption H[f, σ]. Suppose that

1) the function f : Ω → R is continuous and satisfies the Volterra condition,
2) there is σ : [0, a]×X+ → R+ such that

(i) σ is continuous and satisfies the monotonicity condition W+,
(ii) the maximal solution of problem (13), (14) with λ(t) = 0 on R− is

η̄(t) = 0 for t ∈ (−∞, a]
(iii) the estimate

∣∣f(t, x, z, q)− f(t, x, z̄, q̄)
∣∣ ≤ σ

(
t,Wt[z − z̄]

)
+

n∑
i=1

gi(t)|qi − q̄i| (29)

is satisfied on Ω.

An immediate consequence of Theorem 3.1 is the following uniqueness result.

Theorem 3.2. If Assumptions H[X], H[X,Y ] and H[f, σ] are satisfied then
the Cauchy problem (1), (2), where ϕ ∈ Y , admits at most one solution of the
class D.

Proof. If u and ũ are solutions of (1), (2) on E ∪ H and they are of the class
D, then the function u − ũ satisfies all the assumptions of Theorem 3.1 with
λ = 0. This gives u = ũ on H.

Let us consider two problems: (1), (2) and the following one

∂tz(t, x) = f̃(t, x, z, ∂xz(t, x)), (30)

z(t, x) = ϕ̃(t, x) for (t, x) ∈ E, (31)

where f̃ : Ω → R and ϕ̃ ∈ Y are given functions. We prove a theorem on the
estimation of the difference between solutions of (1), (2) and (30), (31). ¤

Theorem 3.3. Suppose that Assumptions H[X] and H[X, Y ] are satisfied
and

1) the functions f, f̃ : Ω → R are continuous and they satisfy the Volterra
condition,

2) the functions u, ũ : E∪H → are solutions of problems (1), (2) and (30),
(31), respectively, and they are of the class D,

3) the initial estimate

W0[ϕ− ϕ̃](t) ≤ λ(t), t ∈ R−
is satisfied and λ ∈ X+,

4) there is a function σ : [0, a]×X+ → R+ such that
(i) σ is continuous and satisfies the monotonicity condition W+,
(ii) the maximal solution ω( · , λ) of problem (13), (14) is defined on

(−∞, a],
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(iii) the estimate

∣∣f(t, x, z, q)− f̃(t, x, z̃, q̃)
∣∣ ≤ σ(t,Wt[z − z̄]) +

n∑
i=1

gi(t)|qi − q̃i|

holds on Ω.

Then |u(t, x)− ũ(t, x)| ≤ ω(t, λ) on E.

Proof. The function u− ũ satisfies all the assumptions of Theorem 3.1 and the
assertion follows. ¤

Remark 3.4. If we put f̃(t, x, z, q) = 0 on Ω and ϕ̃(t, x) = 0 on E, then
we obtain from Theorem 3.3 an estimate of solutions of problem (1), (2). For

f̃ = f we get an estimate of the difference between two solutions of equation
(1).

Now we prowe a theorem on continuous dependence of solutions on initial
data and on the right-hand sides of equations. Suppose that the sequences of
functions {fm} and {ϕm} are given, where fm : Ω → R and ϕm ∈ Y. For each
m ∈ N we consider the Cauchy problem

∂tz(t, x) = fm(t, x, z, ∂xz(t, x)), (32)

z(t, x) = ϕm(t, x) on E. (33)

We prove the under natural assumptions on f, fm and ϕ, ϕm, solutions of (32),
(33) tend to a solution of (1), (2).

Theorem 3.5. Suppose that Assumptions H[X], H[X,Y ] and H[f, σ] are
satisfied and

1) for each m ∈ N we have fm ∈ C(Ω, R) and ϕm ∈ Y,
2) there are sequences {εm} and {λm}, where εm ∈ R+, λm ∈ X+ and

(i) the estimates
∣∣f(t, x, z, q)− fm(t, x, z, q)

∣∣ ≤ εm on Ω

and ∣∣ϕ(t, x)− ϕm(t, x)
∣∣ ≤ λm(t) on E

are satisfied for m ∈ N,
(ii) we have

lim
m→∞

εm = 0, lim
m→∞

‖λm‖X = 0

2) u and um are solutions of (1), (2) and (32), (33) on E ∪H, respectively,
and they are of the class D.

Then there are α ∈ (0, a], N ∈ N and a sequence {δm}, δm ∈ R+ such that
∣∣u(t, x)− um(t, x)

∣∣ ≤ δm for (t, x) ∈ H ∩ ([0, α]×Rn and m ≥ N (34)

and limm→∞ δm = 0.
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Proof. It follows that for each m ∈ N the function u−um satisfies the functional
differential inequality

∣∣∂t(u− um)(t, x)
∣∣ ≤ σ

(
t,Wt[u− um]

)
+ εm +

n∑
i=1

gi(t)
∣∣∂xi

(u− um)(t, x)
∣∣,

where (t, x) ∈ H and the initial estimate
∣∣(ϕ− ϕm)(t, x)

∣∣ ≤ λm(t), (t, x) ∈ E

holds. Now the assertion of the theorem follows from Lemma 2.3 and Theorem
3.1. ¤

4. Examples of Function Spaces

We give examples of spaces X and Y satisfying Assumptions H[X] and
H[X,Y ].

Example 4.1. Let Y be the class of all functions ϕ : E → R which are
uniformly continuous and bounded on E. For ϕ ∈ Y we put

‖ϕ‖Y = sup
{‖ϕ(t, x)‖ : (t, x) ∈ E

}
. (35)

Let X be the class of all functions η : R− → R which are uniformly continuous
and bounded on R−. For η ∈ X we put

‖η‖X = sup
{ |η(t)| : t ∈ R−

}
. (36)

Then, Assumptions H[X] and H[X, Y ] are satisfied with all the constants equal
to 1.

Example 4.2. Let γ : R− → (0,∞) be a continuous function. Assume also
that γ is nonincreasing on R−. Let Y be the space of all continuous functions
ϕ : E → R such that

lim
t→−∞

|ϕ(t, x)|
γ(t)

= 0, x ∈ [−b, b].

Write

||ϕ||Y = sup

{ |ϕ(t, x)|
γ(t)

: (t, x) ∈ E

}
.

Let X be the space of all continuous functions η : R− → R such that

lim
t→−∞

|η(t)|
γ(t)

= 0.

For η ∈ X we put

‖η‖X = sup

{ |η(t)|
γ(t)

: t ∈ R−
}

.

Then, Assumptions H[X] and H[X,Y ] are satisfied with K = 1
γ(0)

, M = 1,

L = γ(0).
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Example 4.3. Let Y be the class of all functions ϕ : E → R such that
ϕ ∈ C(E,R) and there exists the limit

lim
t→−∞

ϕ(t, x) = ϕ0(x)

uniformly with respect to x ∈ [−b, b]. The norm in the space Y is defined by
(35).

Let X be the set of all η : R− → R such that there is the limit lim
t→−∞

η(t).

The norm in the space X is defined by (36).
Then, Assumptions H[X] and H[X,Y ] are satisfied with all the constants

equal to 1.

Example 4.4. Let r0 ∈ R+ and p ≥ 1 be fixed. We will denote by Y0 the
class of all ϕ : E → R such that

(i) ϕ is continuous on [−r0, 0]× [−b, b],
(ii) for each t ∈ (−∞,−r0] the function ϕ(t, · ) : [−b, b] → R is continuous

and
−r0∫

−∞

(
S[ϕ](t)

)p
dt ≤ ∞,

where

S[ϕ](t) = max
{ |ϕ(t, x)| : x ∈ [−b, b]

}
, t ∈ (−∞,−r0]. (37)

We define the norm in the space Y0 by

‖ϕ‖Y0 = max
{|ϕ(t, x)| : (t, x) ∈ [−r0, 0]× [−b, b]

}

+

( −r0∫

−∞

( S[ϕ](t) )p dt

)1/p

.

Write Y = Ȳ0 where Ȳ0 is the closure of Y0 with the above-given norm.
Let X be the space of all η : R− → R such that η is continuous on [−r0, 0]

and
−r0∫

−∞

| η(t) |p dt < +∞.

We define the norm in the space X by

‖η‖X = max
{ |η(t)| : t ∈ [−r0, 0]

}
+

( −r0∫

−∞

| η(t) |p dt

)1/p

.

Then Assumptions H[X] and H[X, Y ] are satisfied and K = 1 + a, L = 1,
M = 2.
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Example 4.5. Let Y0 be the space all functions ϕ : E → R which are
bounded and ϕ(t, · ) : [−b, b] → R be continuous for each t ∈ R−. We also
assume that

I[ϕ] = sup

{ −n∫

−(n+1)

S[ϕ](t) dt : n ∈ N
}

< +∞

where S[ϕ] is given by (37) with r0 = 0. The norm in the space Y0 is defined by

‖ϕ‖Y0 = max
{|ϕ(0, x)| : x ∈ [−b, b]

}
+ I[ϕ].

Write Y = Ȳ0, where Ȳ0 is the closure of Y0 with the above-given norm.
Let X be the class of all functions η : R− → R such that

(i) η is bounded on R− and it is continuous on { 0 },
(ii) I?[η] < +∞, where

I?[η] = sup

{ −n∫

−(n+1)

|η(t)| dt : n ∈ N
}

.

The norm in the space X is defined by ‖η‖X = |η(0)|+ I?[η].
Then Assumptions H[X] and H[X, Y ] are satisfied and K = 1 + a, L = 1,

M = 2.

Remark 4.6. All the results of the paper can be extended to weakly coupled
functional differential systems.
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