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ADMISSIBLE DIAGRAMS FOR G(m, 1, n)

HIMMET CAN

Abstract. In this paper, we show that every conjugacy class of the imprimi-
tive complex reflection group G(m, 1, n) can be represented by an admissible
diagram. For this, we introduce a length function for elements of G(m, 1, n)
and study its properties. This then allows us to establish the admissible di-
agram for each conjugacy class of G(m, 1, n). The corresponding results for
Weyl groups and their conjugacy classes are well known.
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1. Introduction

The main objective of this paper is to show that there is a one-to-one cor-
respondence between conjugacy classes in the imprimitive complex reflection
group G(m, 1, n) and admissible diagrams whose connected components all have
type A or B. The group G(m, 1, n) can be viewed as the generalized symmetric
group and its conjugacy classes can be found in Kerber [8]. To establish an
admissible diagram for every conjugacy class of G(m, 1, n), in the second sec-
tion we define a length function for G(m, 1, n) and study its properties. The
corresponding results for Weyl groups were studied by Carter [5].

We first give the basic notation and state some results which are required
later. We refer the reader to [3] and [6] for most of the undefined terminology
and quoted results. As a convention, throughout this paper, we assume that ξ
is a primitive m-th root of unity.

Let V = Cn be the complex vector space of dimension n with standard
unitary inner product (·, ·) and the standard basis {e1, e2, . . . , en}. A reflection
in V is a linear transformation of V of finite order with exactly n−1 eigenvalues
equal to 1. A reflection group G in V is a finite group generated by reflections
in V .

For each non-zero vector α ∈ V , let wα be a reflection in V of order m > 1.
Then there is a primitive m-th root of unity ξ such that

wα(v) = v − (1− ξ)
(v, α)

(α, α)
α

for all v ∈ V . Thus wα(α) = ξα and wα(v) = v if v ∈ 〈α〉⊥, where 〈α〉⊥ is the
orthogonal complement of 〈α〉 with respect to the given unitary inner product.
Define oG : V → N by oG(v) = |G〈v〉⊥| (v ∈ V ). Then oG(v) > 1 if and only if
v is a root of G. In this case, oG(v) is the order of the cyclic group generated
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by the reflections in G with root v. If α is a root of G, then the number oG(α)
is called the order of α.

Let G(m, 1, n) be the imprimitive complex reflection group in V generated by
reflections of order 2 with roots e1−e2, e2−e3, . . . , en−1−en and the reflection
of order m with root en. A root system for G(m, 1, n) may be defined as follows
(see [6]). Let µm = {ξl | l ∈ N, ξ be a primitive m-th root of unity}. Put

R(m, 1, n) = µm

{±(ei − ξlej), ek | i, j, k, l ∈ N, i 6= j, 1 ≤ i, j, k ≤ n
}

and let fm,1,n : R(m, 1, n) → N\{1} be defined by

fm,1,n(α) =

{
m if α ∈ µm{ek | 1 ≤ k ≤ n},
2 otherwise;

then we have that Φ = Φ(m, 1, n) = (R(m, 1, n), fm,1,n) is a root system with
W (Φ) = G(m, 1, n). The group G(m, 1, n) has the following presentation (see
[7]):

G(m, 1, n) = 〈r1, . . . , rn−1, w1, . . . , wn | r2
i = (riri+1)

3 = (rirj)
2 = 1, |i−j| ≥ 2,

wm
i = 1, wiwj = wjwi, riwi = wi+1ri, riwj = wjri, j 6= i, i + 1〉.

2. The Length Function

Let W = G(m, 1, n) denote the imprimitive reflection group corresponding to
Φ = Φ(m, 1, n). In this section we introduce a length function for W and study
its properties.

Now each element w in W can be expressed as a product of reflections w =
ws1

a1
. . . wsk

ak
, where ai ∈ Φ and si ∈ {1, . . . , m − 1}. The length of w, denoted

by l(w) is the smallest value of
k∑

i=1

si in any such expression for w. (Here if

oW (ai) = 2, then si = 1, and if oW (ai) = m, then si ∈ {1, . . . , m − 1}.) By
convention, l(1) = 0. Clearly, l(w) = 1 if and only if w = wa where a ∈ Φ.
It is also clear that if w = ws

a with oW (a) = m and s ∈ {1, . . . , m − 1}, then

l(w) = s. We say that w is a product of k reflections if l(w) =
k∑

i=1

si.

Any element σ ∈ W can be written uniquely (up to reordering) as the product
of disjoint cycles σ = θ1 . . . θt, where

θi =

(
bi1 bi2 . . . biki

ξsi1bi2 ξsi2bi3 . . . ξsiki bi1

)
,

bij ∈ {1, . . . , n}, sij ∈ {1, . . . ,m}, ki is the length of the cycle θi, i = 1, . . . , t.

Let f(θi) =
ki∑

j=1

sij, and put f(σ) =
t∑

i=1

f(θi).

Now, define apq(σ) to be the number of cycles θi of σ of length q such that
f(θi) ≡ p (mod m) for 1 ≤ p ≤ m, 1 ≤ q ≤ n. The m × n matrix (apq(σ)) is
called the type of σ, denoted by Ty(σ) (see [9]). Then σ, π ∈ W are conjugate
in W if and only if Ty(σ) = Ty(π) (see [8]).
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Lemma 2.1. If σ, π ∈ W are conjugate in W , then l(σ) = l(π).

Proof. Let σ = ws1
a1
· · ·wsk

ak
, where ai ∈ Φ and si ∈ {1, . . . , m − 1}. Since σ is

conjugate in W to π, π = wσw−1 for some w ∈ W . But wσw−1 = ws1
b1

. . . wsk
bk

where bi = w(ai) implies that l(σ) =
k∑

i=1

si = l(π). ¤

The above lemma says that two conjugate elements in W have the same
length and each of them is also the product of the same number of reflections.

The lemma below is a well-known property of reflection groups (see [10]).

Lemma 2.2. Let G be a reflection group in an n-dimensional complex vector
space V . If g ∈ G and U is the subspace of V composed of all vectors fixed by g,
then g is a product of the reflections corresponding to the roots in the orthogonal
complement U⊥ of U .

Lemma 2.3. Let w ∈ W . Then l(w) is a sum of the powers of eigenvalues
of w on V which are not equal to 1.

Proof. Suppose that l(w) =
k∑

i=1

si. Then w is a product of k reflections and has

an expression of the form w = ws1
a1
· · ·wsk

ak
, where ai ∈ Φ and si ∈ {1, . . . , m−1}.

Now, let Hai
be the reflecting hyperplane of ai in V and let

H = Ha1 ∩Ha2 ∩ · · · ∩Hak
.

Then w acts trivially on H and dim H ≥ n − k. Thus w has at least n − k
eigenvalues equal to 1, and so at most k eigenvalues ξs1 , ξs2 , . . . , ξsk which are
not equal to 1, by the definition of a reflection. Therefore, the sum of the powers
of these eigenvalues is not more than l(w).

Conversely, suppose w has k eigenvalues ξs1 , ξs2 , . . . , ξsk which are not equal
to 1, where si ∈ {1, . . . , m − 1}. Let U be the subspace of V composed of
all vectors fixed by w, and U⊥ be the orthogonal subspace. Then at once
dim U = n − k and dim U⊥ = k, and by Lemma 2.2 w is a product of the
reflections corresponding to the roots in U⊥.

Suppose that w fixes some vector in V . Then k < n and so dim U⊥ <
dim V . The roots in U⊥ form a root system in the subspace they generate
which has dimension less than n, and w is an element of the reflection group
associated with this root system. Thus, by induction, w is a product of at most

k reflections, i.e., w = ws1
a1

. . . wsk
ak

, and so l(w) ≤
k∑

i=1

si. ¤

An expression ws1
a1
· · ·wsk

ak
∈ W is called reduced if l(ws1

a1
. . . wsk

ak
) =

k∑
i=1

si.

Lemma 2.4. Let a1, . . . , ak ∈ Φ and si ∈ {1, . . . , m − 1} for i = 1, . . . , k.
Then ws1

a1
. . . wsk

ak
is reduced if and only if a1, . . . , ak are linearly independent.
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Proof. Let w = ws1
a1
· · ·wsk

ak
. Suppose that the expression is reduced. Then by

Lemma 2.3, w has k eigenvalues not equal to 1, and so

dim(Ha1 ∩Ha2 ∩ · · · ∩Hak
) = n− k.

(Here, the dimension cannot be larger, since w acts as the identity on this
subspace.) Thus it follows that the roots a1, . . . , ak are linearly independent.

Conversely, suppose that the roots a1, . . . , ak are linearly independent. Now,
consider the subspace im(w − 1), and choose a vector v1 ∈ V such that

v1 ∈ Ha2 ∩ · · · ∩Hak
but v1 6∈ Ha1 .

Then w(v1)− v1 is a non-zero multiple of a1. Thus a1 ∈ im(w− 1). Now, select
once again a vector v2 ∈ V with

v2 ∈ Ha3 ∩ · · · ∩Hak
but v2 6∈ Ha2 .

Then w(v2)−v2 = αa1+βa2, where α, β ∈ C and β 6= 0. Hence a2 ∈ im(w−1).
Repeating this argument will eventually show that a1, . . . , ak ∈ im(w− 1), and
so dim im(w − 1) = k.

Then w is reduced, for if w has a shorter expression w = wρ1

b1
. . . wρl

bl
with

l < k and ρi ∈ {1, . . . , m− 1}, then every element of im(w − 1) can be written
as a linear combination of b1, . . . , bl and so dim im(w − 1) < k, which is a
contradiction. Furthermore, if w has an expression w = wr1

a1
. . . wrk

ak
with ri ≤ si,

then w%k
ak

. . . w%1
a1

w = 1 and w%k
ak

. . . w%1
a1

wr1
a1

. . . wrk
ak
6= 1 where %i = oW (ai) − si

(1 ≤ i ≤ k), a contradiction. ¤

3. Admissible Diagrams

Let Φ(m, p, n) (p = 1, m) be an imprimitive root system with simple system
π(m, p, n) = (B, θ), where

B =

{
{αi = ei − ei+1 (i = 1, . . . , n− 1), αn = en} if p = 1,

{βi = ei − ei+1 (i = 1, . . . , n− 1), βn = en−1 − ξen} if p = m.

Then the Cohen diagrams for Φ(m, 1, n) and Φ(m,m, n) are respectively

Bm
n : j

1
j
2

. . . j
n− 1

j
n

m

where the node corresponding to αi (i = 1, . . . , n) is denoted by i and

Dm
n : j

1
j
2

. . . j
n− 2

¡¡
@@

j
n− 1

j
n

6
1+ξ
2

where the node corresponding to βi (i = 1, . . . , n) is denoted by i.
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A web is a graph of the form j¡¡
@@

j

j
6

1+ξs

2 , where s ∈ {1, . . . , m− 1}.

Any element w = ws1
a1
· · ·wsk

ak
∈ W with l(w) =

k∑
i=1

si can be decomposed as

follows (see [1] or [2]):

w = τwsi+1
ai+1

· · ·wsk
ak

, where τ = wa1 · · ·wai
∈ W (An−1).

For each such decomposition of w, we define the graph Γ as having k nodes,
one corresponding to each of the roots a1, . . . , ak with the value oW (ai). The
nodes corresponding to distinct roots ai, aj are joined by a bond of weight
(ai, aj). If oW (ai) = 2, then the number 2 in the node corresponding to the
root ai is omitted, as in Cohen [6].

If w ∈ W has a decomposition with graph Γ, then any conjugate of w also
has a decomposition with graph Γ. For if w = wa1 · · ·wai

w
si+1
ai+1 · · ·wsk

ak
, where

wa1 · · ·wai
∈ W (An−1), then we have w′ww′−1 = wb1 · · ·wbi

w
si+1

bi+1
· · ·wsk

bk
, where

bj = w′(aj) for j = 1, . . . , k.
Therefore we say that the graph Γ is associated with this conjugacy class.

(Here, we assume that the conjugacy class containing the identity element is
represented by the empty graph.) By Lemma 2.4 the nodes of Γ correspond to
a set of linearly independent roots.

Now we can give our basic definition.

Definition 3.1. Let Γ be a graph, then Γ is called an admissible diagram if
(i) the nodes of Γ correspond to a set of linearly independent roots of Φ,
(ii) each subgraph of Γ which is a cycle is equivalent to a web.

(A subgraph of Γ in this context is a subset of the nodes, together with the
bonds joining the nodes in the subset. A cycle is a graph in which each node is
connected only to two other nodes.)

Lemma 3.2. Every admissible diagram associated with a conjugacy class of
W is the Cohen (Dynkin) diagram of some reflection subgroup of W .

Proof. Let Γ be such a graph. Let J be a set of the roots corresponding to the
nodes of Γ. Denote by W (J) the group generated by all reflections wa,oW (a) with
a ∈ J , then W (J) is a subgroup of W and so is a finite reflection group. Fur-
thermore, J is linearly independent by the definition of an admissible diagram.
Thus, by (4.2) of Cohen [6], Γ is a root graph.

Now, put S = W (J)J , define a map g : S → N\{1} by g(a) = oW (J)(a)
for all a ∈ S, then the pair Ψ = (S, g) is the pre-root system corresponding to
J with W (Ψ) = W (J) by 1.2 (ii) of Can [3]. By 1.2 (iii) of Can [3], the pair
Ψ = (S, g) is a root system and so is a subsystem of Φ. Thus, W (Ψ) is the
reflection group of Ψ, and so Γ is the Cohen (Dynkin) diagram of the reflection
subgroup W (Ψ) of W , as desired. ¤
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Now, recall that Γ may be a union of disconnected graphs Γi, which, say,
satisfy the following: if Γi contains no web, then Γi is either of type A or B,
and if Γi does contain a web, then Γi must be of type D.

The present author [3] has presented an algorithm for obtaining graphs which
are Cohen (Dynkin) diagrams of reflection subgroups of W without any refer-
ence to extended diagrams. In [4], we interpreted this algorithm as a computer
program written by using the Maple symbolic computation system.

We now show that admissible diagrams can be used to parametrize the con-
jugacy classes of W .

Theorem 3.3. Let W = G(m, 1, n). There is a one-to-one correspondence
between conjugacy classes in W and admissible diagrams of the form

m∑
p=1

(B
mp

λ
(p)
1

+ B
mp

λ
(p)
2

+ · · ·+ B
mp

λ
(p)
sp

),

where
m−1∑
p=1

sp∑
q=1

λ(p)
q +

sm∑
q=1

(λ(m)
q + 1) = n and mp =

m

(m, p)
,

where (m, p) is the greatest common divisor of m and p.

Proof. The elements of W operate on the orthonormal basis e1, . . . , en of V
by permuting the basis vectors and multiplying arbitrary subsets of them by
a power of ξ. Ignoring these multiples, each element w of W determines a
permutation of {1, . . . , n} which can be expressed in the usual way as a product
of disjoint cycles. Let (k1k2 · · · kr) be such a cycle written as

ek1 → ξp1ek2 → ξp1+p2ek3 → · · · → ξp1+···+pr−1ekr → ξp1+···+prek1 ,

where pi ∈ {1, . . . ,m}. The cycle (k1k2 · · · kr) is said to be a (ξp, r)-cycle,

denoted by [rξp
], if wr(ek1) = ξpek1 , where

r∑
i=1

pi ≡ p (mod m). Then the

lengths of the cycles together with their values
∑

pi determine the type of w,
and two elements of W are conjugate if and only if they have the same type,
as in Kerber [8]. Thus there is a one-to-one correspondence between conjugacy
classes and types. Now, consider the (ξp, r)-cycle

e1 → e2 → · · · → er−1 → er → ξpe1,

where p ∈ {1, . . . , m}. If p = m, then this can be expressed as the product of
elements (12)(23) · · · (r − 1 r). These factors form a complete set of simple
reflections of the Weyl subgroup of type Ar−1, and so this (1, r)- cycle, denoted
by [r], is represented by an admissible diagram Ar−1, as in type An (see Carter
[5]). If p ∈ {1, . . . , m−1}, then this can be expressed as the product of elements
(12)(23) · · · (r − 1 r)wp

r , where wp
r changes er into ξper and fixes all other ei.

Thus these factors form a complete set of simple reflections of the reflection
subgroup of type B

mp
r , where mp = m

(m,p)
where (m, p) is the g.c.d. of m and p,

and so this (ξp, r)-cycle is represented by an admissible diagram
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B
mp
r (r nodes) : l l . . . l l

wp

mp

(This is a natural choice for the following reason. If for the group G(m, 1, n)
we take n = 1, then we have Cm = G(m, 1, 1) = 〈w | wm = 1〉 which is the
cyclic group of order m. We attach to each non-identity class (element) wp

(1 ≤ p ≤ m− 1) in Cm an admissible diagram

l
wp

mp

i.e., the admissible diagram depends on the order of the element.)
Now consider an arbitrary element of W , expressed as a product of disjoint

(ξp, r)-cycles. Since disjoint cycles operate on orthogonal subspaces of V , the
admissible diagram splits into connected components corresponding to the cycle
decomposition, and so takes form

m∑
p=1

(B
mp

λ
(p)
1

+ B
mp

λ
(p)
2

+ · · ·+ B
mp

λ
(p)
sp

),

where
m−1∑
p=1

sp∑
q=1

λ(p)
q +

sm∑
q=1

(λ(m)
q + 1) = n and mp =

m

(m, p)
,

where (m, p) is the g.c.d. of m and p, as desired. ¤

Remark 3.4. Now, define m partitions λ(1), . . . , λ(m) by

λ(p) = (λ
(p)
1 , . . . , λ(p)

sp
) (p = 1, . . . , m− 1), λ(m) = (λ

(m)
1 + 1, . . . , λ(m)

sm
+ 1),

then there is a one-to-one correspondence between conjugacy classes in W and

m-sets of partitions (λ(1), . . . , λ(m)) of n with
m−1∑
p=1

sp∑
q=1

λ
(p)
q +

sm∑
q=1

(λ
(m)
q +1) = n (see

[8]).
If m = 1, then W = W (An−1) (a Weyl group of type An−1), and if m = 2,

then W = W (Cn) (a Weyl group of type Cn), and so by putting m = 1, 2 in
Theorem 3.3, we recover the results of Carter [5].

The admissible diagrams given in Theorem 3.3 are not the only ones which
can be taken. We know that W contains a reflection subgroup G(m, m, n) =
W (Dm

n ) (see [6]), and so Dm
n is an admissible diagram for W . However since

the admissible diagrams given in Theorem 3.3 are in one-to-one correspondence
with the conjugacy classes of W , we do not need the remaining part of the
proof.
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As an application of Theorem 3.3, we now give the following example.

Example 3.5. Consider the group G(3, 1, 3). Then we have

Cycle type Conjugacy class Admissible diagram
[1 1 1] 1 ∅
[1ξ 1ξ 1ξ] w1w2w3 j3

w j3
w j3

w

[1ξ2
1ξ2

1ξ2
] w2

1w
2
2w

2
3 j3

w2

j3
w2

j3
w2

[1 1ξ 1ξ2
] w2

1w2 j3
w2

j3
w

[1 1 1ξ] w1 j3
w

[1ξ2
1ξ 1ξ] w2

1w2w3 j3
w2

j3
w j3

w

[1 1ξ2
1ξ2

] w2
2w

2
3 j3

w2

j3
w2

[1 1 1ξ2
] w2

1 j3
w2

[1 1ξ 1ξ] w2w3 j3
w j3

w

[1ξ 1ξ2
1ξ2

] w1w
2
2w

2
3 j3

w j3
w2

j3
w2

[2 1] (12) j
[2ξ 1] (12)w2 j j3

w

[2ξ2
1] (12)w2

2 j j3
w2

[2ξ2
1ξ] (12)w2

2w3 j j3
w2

j3
w

[2 1ξ] (12)w3 j j3
w

[2ξ 1ξ] (12)w2w3 j j3
w j3

w

[2ξ 1ξ2
] (12)w2w

2
3 j j3

w j3
w2

[2ξ2
1ξ2

] (12)w2
2w

2
3 j j3

w2

j3
w2

[2 1ξ2
] (12)w2

3 j j3
w2

[3] (12)(23) j j
[3ξ] (12)(23)w3 j j j3

w

[3ξ2
] (12)(23)w2

3 j j j3
w2

The elements in column 2 are representatives of the conjugacy classes of
G(3, 1, 3).
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