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BLEIMANN BUTZER AND HAHN OPERATORS BASED ON
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Abstract. In this study, we obtain a Voronovskaja type asymptotic esti-
mate for q-BBH operators. Second purpose of this paper is to obtain the
monotonicity properties of q-BBH operators.
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1. Introduction

In [4], Bleimann, Butzer and Hahn introduced the following positive linear
operators

Ln(f ; x) = (1 + x)−n

n∑

k=0

f

(
k

n− k + 1

)(
n

k

)
xk (1.1)

for x ≥ 0.
Using the test functions

(
x

1+x

)ν
, ν = 0, 1, 2, Jayasri and Sitaraman [8] ob-

tained direct and inverse results for the operators (1.1). Later in [7], Gadjiev
and Çakar established a Bohman–Korovkin type theorem and investigated the
approximation properties of the BBH operators with the help of the same test
functions

(
x

1+x

)ν
. Some generalizations of BBH operators are investigated by

Agratini [1], [2] and the first author in [6].
In [10] and [11], Phillips constructed a generalization for the classical Bern-

stein polynomials based on q-integers.
We start by recalling some definitions about q-integers denoted by [ · ].
For any non-negative integer r, the q-integer of the number r is defined by

[r] =

{
1−qr

1−q
if q 6= 1,

r if q = 1,
(1.2)

where q is a positive real number. The q-factorial is defined as

[r]! =

{
[1][2] · · · [r] if r = 1, 2, . . . ,

1 if r = 0,

and the q-binomial coefficient is defined as[
n
r

]
=

[n]!

[r]![n− r]!
.
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It is obvious that q-binomial coefficients reduce to the ordinary ones when
q = 1.

Let us recall the Euler identity

n−1∏
s=0

(1 + qsx) =
n∑

k=0

q
k(k−1)

2

[
n
k

]
xk. (1.3)

It is clear that, this identity becomes an ordinary binomial expansion of (1+x)n

when q = 1.
In the light of these explanations, in a recent paper [3], we have introduced

and investigated some Bohman–Korovkin type approximation properties and
order of approximation in terms of a modulus of continuity for the following
positive linear operators:

Ln(f ; q; x) =
1

`n(x)

n∑

k=0

f

(
[k]

[n− k + 1]qk

)
q

k(k−1)
2

[
n
k

]
xk, (1.4)

where

`n(x) =
n−1∏
s=0

(1 + qsx).

Observe that the operators (1.4) reduce to the classical BBH operators when
q = 1.

In (1.4), if we take f
(

[k]
[n−k+1]

)
instead of f

(
[k]

[n−k+1]qk

)
then we arrive natu-

rally at a generalization of q-BBH operators. But in this case it is impossible
to obtain explicit formulae for the second moment of (1.4) and in this situation
a Voronovskaja type asymptotic estimate cannot be obtained.

In [3], we have derived the following equalities for the operators (1.4):

Ln(1; q; x) = 1,

Ln

(
t

1 + t
; q; x

)
=

[n]

[n + 1]

x

1 + x
,

Ln

(
t2

(1 + t)2
; q; x

)
=

[n][n− 1]

[n + 1]2
q2 x2

(1 + x)(1 + qx)
+

[n]

[n + 1]2
x

1 + x
.

(1.5)

The aim of this paper is to obtain a Voronovskaja type asymptotic estimate
and the monotonicity properties for the operators defined by (1.4).

2. A Voronovskaja Type Asymptotic Estimate

A Voronovskaja type theorem for the rate of convergence of q-Bernstein poly-
nomials is given by Phillips [11].

In this section, we obtain a Voronovskaja type asymptotic estimate of the
operators (1.4) for the test functions

(
x

1+x

)ν
, ν = 0, 1, 2.

First, let us give the following lemmas for the first and the second central
moment of the operators (1.4):
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Lemma 2.1. For the first central moment of the operators (1.4), we have

µn,1

(
x

1 + x

)
=

1

[n + 1]

−xqn

(1 + x)
(2.1)

where

µn,1

(
x

1 + x

)
= Ln

(
t

1 + t
− x

1 + x
; q; x

)
.

Proof. By (1.5), the proof is obvious. ¤
Lemma 2.2. For the second central moment of the operators (1.4), we have

µn,2

(
x

1 + x

)
=

1

[n + 1]

((
x

1 + x

)2 ( −[n]2q(1− q)

(1 + qx)[n + 1]
+

[n](q − 2)

(1 + qx)[n + 1]
+

+
1

(1 + qx)[n + 1]
+

qx[n]2(1− q)2

(1 + qx)[n + 1]
+

qx([n](2q − 3) + 1)

(1 + qx)[n + 1]

)

+
[n]

[n + 1]

x

1 + x

)
, (2.2)

where

µn,2(
x

1 + x
) = Ln

((
t

1 + t
− x

1 + x

)2

; q; x

)
.

Proof. It is clear that we can write

qk[n− k + 1] = [n + 1]− [k], q[k − 1] = [k]− 1. (2.3)

If we use (2.3) and (1.5) in the equality

µn,2

(
x

1 + x

)
= Ln

((
t

1 + t

)2

; q; x

)
− 2

x

1 + x
Ln

(
t

1 + t
; q; x

)

+

(
x

1 + x

)2

Ln(1; q; x),

after simple calculations, we get (2.2). ¤
Now consider a sequence of positive numbers q = (qn) such that

lim
n→∞

qn = 1, lim
n→∞

qn
n = a, (2.4)

where a > 0, a 6= 1. In the rest of this section [ · ] stands for a qn-integer. We
have

lim
n→∞

[n] = lim
n→∞

[n + 1] = ∞ and lim
n→∞

[n]

[n + 1]
= 1. (2.5)

Lemma 2.3. If the conditions in (2.4) hold, then we have

lim
n→∞

[n + 1] µn,1

(
x

1 + x

)
=

−ax

(1 + x)
, (2.6)
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and

lim
n→∞

[n + 1] µn,2

(
x

1 + x

)
=

(a− 2)x2 + x

(1 + x)3
(2.7)

for q = (qn).

Proof. By using (2.4) and (2.5) in (2.1) we have (2.6).
On the other hand, using (2.4) and (2.5), we can easily show that the following

limits are satisfied:

lim
n→∞

−[n]2qn(1− qn)

(1 + qnx)[n + 1]
=

a− 1

1 + x
, lim

n→∞
[n](qn − 2)

(1 + qnx)[n + 1]
=

−1

1 + x
,

lim
n→∞

1

(1 + qnx)[n + 1]
= 0, lim

n→∞
qnx[n]2(1− qn)2

(1 + qnx)[n + 1]
= 0,

lim
n→∞

qnx([n](2qn − 3) + 1)

(1 + qnx)[n + 1]
=

−x

1 + x
, lim

n→∞
[n]

[n + 1]

x

1 + x
=

x

1 + x
.

If we use these equalities in (2.2), then we obtain (2.7). ¤
Now, we can give the following first main result.

Theorem 2.4. Suppose that the first and the second derivatives of f( x
1+x

)
exist for x ≥ 0, then we have

lim
n→∞

[n + 1]

(
Ln

(
f

(
t

1 + t

)
; qn; x

)
− f

(
x

1 + x

))

=
−ax

(1 + x)
f ′

(
x

1 + x

)
+

(a− 2)x2 + x

2(1 + x)3
f ′′

(
x

1 + x

)
, (2.8)

where the sequence (qn) satisfies conditions (2.4).

Proof. This is analogous to the Voronovskaja’s proof (see [9, p. 22]).
Using Taylor’s formula, we can write

f(α) = f(t) + (α− t)f ′(t) + (α− t)2

(
1

2
f ′′(t) + η(α− t)

)
, (2.9)

where |η(h)| ≤ H for all h and converges to zero as h → 0. By taking α = [k]
[n+1]

and t = x
1+x

in (2.9) we get

f

(
[k]

[n + 1]

)
= f

(
x

1 + x

)
+

(
[k]

[n + 1]
− x

1 + x

)
f ′

(
x

1 + x

)

+

(
[k]

[n + 1]
− x

1 + x

)2 (
1

2
f ′′

(
x

1 + x

)
+ η

(
[k]

[n + 1]
− x

1 + x

))
. (2.10)

Applying the equality (2.10) to the operator (1.4), we have

Ln

(
f

(
t

1 + t

)
; qn; x

)
− f

(
x

1 + x

)

= f ′
(

x

1 + x

)
µn,1

(
x

1 + x

)
+

1

2
f ′′

(
x

1 + x

)
µn,2

(
x

1 + x

)
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+ Ln

((
t

1 + t
− x

1 + x

)2

η

(
t

1 + t
− x

1 + x

)
; qn; x

)
.

Since η(h) → 0 for h → 0, if we use (2.7), then we get

Ln

(
f

(
t

1 + t

)
; qn; x

)
− f

(
x

1 + x

)
= f ′

(
x

1 + x

)
µn,1

(
x

1 + x

)

+
1

2
f ′′

(
x

1 + x

)
µn,2

(
x

1 + x

)
+
O(εn)

[n + 1]
. (2.11)

Multiplying both sides of (2.11) by [n + 1] and using (2.6) and (2.7), we obtain
desired result. This completes the proof of the theorem. ¤

From Theorem 2.1 it follows that if one or two of the following statements

(i) f ′
(

x
1+x

) 6= 0 and x 6= 0,

(ii) f ′′
(

x
1+x

) 6= 0, x 6= 0 and x 6= 1
2−a

are valid, then we can say that the rate of convergence of Ln(f( t
1+t

); qn; x) to
f( x

1+x
) is exactly of order qn − 1.

3. Monotonicity Properties

The first results on the monotonicity properties of classical Bernstein polyno-
mials were obtained by Temple [13]. Later, Stancu [12] obtained nice results on
the monotonicity of the sequence formed by first order derivatives of Bernstein
polynomials.

Also, some useful monotonicity properties for Szász operators and Meyer–
König and Zeller operators were obtained by Cheney and Sharma [5]. They
proved the following two theorems for Meyer–König and Zeller operators Mn

and also for Szász operators Sn which are defined by

Mn(f ; x) = (1− x)n+1

∞∑
ν=0

f

(
ν

ν + n

)(
ν + n

ν

)
xν

and

Sn(f ; x) = e−nx

∞∑
ν=0

f
(ν

n

) (nx)ν

ν!
,

respectively.

Theorem A ([5]). If f is convex, then Mn(f ; x)is decreasing in n, unless f
is linear (in which case Mn(f ; x) = Mn+1(f ; x) for all n).

Theorem B ([5]). If f is convex, then Sn(f ; x)is decreasing in n, unless f
is linear (in which case Sn(f ; x) = Sn+1(f ; x) for all n).

Below we will give a theorem of this type for operators defined by (1.4). Note
that, our result remains valid not only for convex functions but also for linear
functions. Firstly, let us give the following lemmas.
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Lemma 3.1. q-binomial coefficients satisfy the following equalities[
n + 1
k + 1

]
=

[n + 1][n]

[n− k][k + 1]

[
n− 1

k

]

[
n
k

]
=

[n]

[n− k]

[
n− 1

k

]

[
n

k + 1

]
=

[n]

[k + 1]

[
n− 1

k

]
.

(3.1)

Proof. The proof is obvious from the definition of a q-binomial coefficient. ¤
Lemma 3.2. The equalities

λ1 + λ2 = 1 (3.2)

and
[k + 1]

[n− k + 1]qk+1
= λ1α1 + λ2α2 (3.3)

are satisfied for

λ1 =
qn−k[k + 1]

[n + 1]
, λ2 =

[n− k]

[n + 1]
, α1 =

[k]

[n− k + 1]qk
and α2 =

[k + 1]

[n− k]qk+1
.

Proof. From the definition of q-integers, we have

[k + 1] = 1 + q + q2 + · · ·+ qk, [n− k] = 1 + q + q2 + · · ·+ qn−k−1. (3.4)

Then we obtain

λ1 + λ2 =
qn−k[k + 1] + [n− k]

[n + 1]
=

1 + q + q2 + · · ·+ qn

[n + 1]
= 1.

On the other hand, by direct calculations, we have

λ1α1 + λ2α2 =
qn−k[k + 1]

[n + 1]

[k]

[n− k + 1]qk
+

[k + 1]

[n + 1]qk+1

=
[k + 1]

[n + 1]qk+1

qn−k+1[k] + [n− k + 1]

[n− k + 1]
. (3.5)

If we use similar equalities in (3.4), we have

qn−k+1[k] + [n− k + 1] = 1 + q + q2 + · · ·+ qn = [n + 1]. (3.6)

By using (3.6) in (3.5), we get (3.3) and the proof is completed. ¤
Now, let us give our second main result.

Theorem 3.3. If f is convex and decreasing, then Ln(f ; q; x) is decreasing
in n for all x > 0.

Proof.

Ln+1(f ; q; x)− Ln(f ; q; x)

=
1

`n+1(x)

n∑

k=0

f

(
[k]

[n− k + 2]qk

)
q

k(k−1)
2

[
n + 1

k

]
xk
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− 1

`n(x)

n∑

k=0

f

(
[k]

[n− k + 1]qk

)
q

k(k−1)
2

[
n
k

]
xk

=
1

`n+1(x)
q

n(n+1)
2 xn+1

(
f

(
[n + 1]

qn+1

)
− f

(
[n]

qn

))

+
1

`n+1(x)

n−1∑

k=0

f

(
[k + 1]

[n− k + 1]qk+1

)
q

k(k−1)
2 qk

[
n + 1
k + 1

]
xk+1

− 1

`n+1(x)

n−1∑

k=0

f

(
[k]

[n− k + 1]qk

)
q

k(k−1)
2 qn

[
n
k

]
xk+1

− 1

`n+1(x)

n−1∑

k=0

f

(
[k + 1]

[n− k]qk+1

)
q

k(k−1)
2 qk

[
n

k + 1

]
xk+1.

If we use (3.1) in the last equality, we obtain

Ln+1(f ; q; x)− Ln(f ; q; x) =
1

`n+1(x)
q

n(n+1)
2 xn+1

(
f

(
[n + 1]

qn+1

)
− f

(
[n]

qn

))

+
1

`n+1(x)

n−1∑

k=0

{
f

(
[k + 1]

[n− k + 1]qk+1

)
− qn−k[k + 1]

[n + 1]
f

(
[k]

[n− k + 1]qk

)

− [n− k]

[n + 1]
f

(
[k + 1]

[n− k]qk+1

)}
qk [n + 1][n]

[n− k][k + 1]

[
n− 1

k

]
xk+1. (3.7)

Since [n+1]
qn+1 − [n]

qn = 1
qn+1 > 0 and f is decreasing, we get

f

(
[n + 1]

qn+1

)
− f

(
[n]

qn

)
< 0. (3.8)

Since f is convex, we obtain

f

(
[k + 1]

[n− k + 1]qk+1

)
− qn−k[k + 1]

[n + 1]
f

(
[k]

[n− k + 1]qk

)

− [n− k]

[n + 1]
f

(
[k + 1]

[n− k]qk+1

)
≤ 0 (3.9)

by Lemma 3.2.
Using (3.8) and (3.9) in (3.7), we obtain the desired result. ¤

Next, if f is linear, then we can write

f

(
[k + 1]

[n− k + 1]qk+1

)
− qn−k[k + 1]

[n + 1]
f

(
[k]

[n− k + 1]qk

)

− [n− k]

[n + 1]
f

(
[k + 1]

[n− k]qk+1

)
= 0 (3.10)

immediately. As a result of (3.10), we obtain
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Corollary 3.4. We have the following monotonicity properties for the oper-
ators defined by (1.4):

(i) If f is linear and decreasing, then Ln(f ; q; x) is decreasing in n for all
x > 0,

(ii) If f is linear and increasing, then Ln(f ; q; x) is increasing in n for all
x > 0.
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3. A. Aral and O. Doğru, Bleimann, Butzer and Hahn operators based on the q-integers,
(Submitted for publication).

4. G. Bleimann, P. L. Butzer, and L. Hahn, A Bernštĕın-type operator approximating
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