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SET-THEORETIC PROPERTIES OF SCHMIDT’S IDEAL

MARCIN KYSIAK AND ENRICO ZOLI

Abstract. We study some set-theoretic properties of Schmidt’s σ-ideal on
R, emphasizing its analogies and dissimilarities with both the classical σ-
ideals on R of Lebesgue measure zero sets and of Baire first category sets.
We highlight the strict analogy between Schmidt’s ideal on R and Mycielski’s
ideal on 2N.
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1. Introduction

Let X stand for either R or the Cantor space 2N (i.e., the space of functions
from the set N of nonnegative integers into {0, 1}, equipped with the natural
topology, product measure and additive group structure).

Recall that a σ-ideal J on X is said to be proper if X /∈ J ; uniform if
{x} ∈ J for all x ∈ X; translation invariant if x + J ∈ J whenever x ∈ X and
J ∈ J . We say that two σ-ideals J0 and J1 on X are orthogonal, and write
J0 ⊥ J1 if X = J0 ∪ J1 for some J0 ∈ J0 and J1 ∈ J1. A Sierpiński–Erdős
(J0,J1)-map is an involutive map f : X → X such that f(J0) ∈ J1 iff J0 ∈ J0.

Throughout the paper, B and A will denote, respectively, the Borel σ-algebra
of X and the family of analytic subsets of X. If J is a σ-ideal on X, by σ(B∪J )
we mean the σ-algebra of X generated by B and J . It consists of the sets
A = B4J , where B ∈ B and J ∈ J . We say that J is Borel generated if for
every J ∈ J there exists B ∈ B ∩J containing J ; that has the countable chain
condition (c.c.c.) if any disjoint family of sets in B \ J is countable; that has
the Steinhaus property if 0 belongs to the topological interior of B−B for each
B ∈ B \J . A σ-ideal J on R has the Ruziewicz property if for every B ∈ B \J
and every A ⊆ R with |A| < ℵ0 there exists an affine copy of A contained in
B. Moreover, J is invariant under diffeomorphisms if for any J ∈ J , any open
interval I, and any diffeomorphism f : I → R there holds f(I ∩ J) ∈ J (by a
diffeomorphism f : I → R we mean a C1-mapping such that f ′(x) 6= 0 for every
x ∈ I).

The most important examples of proper, uniform, translation invariant, and
Borel generated σ-ideals on X are those of measure (i.e., the family of Lebesgue
measure zero sets) and of category (i.e., the family of Baire first category sets).
We denote these ideals by L and K, respectively, and by E the σ-ideal generated
by closed measure zero sets. It is well known that E ( K∩L; that L ⊥ K; and
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that A ⊆ σ(B ∪ L) ∩ σ(B ∪ K). Further, L, K and L ∩ K have the c.c.c. and
the Steinhaus property. In the real line case, L, K and L∩K are also invariant
under diffeomorphisms and have the Ruziewicz property (see, e.g., [22]).

Under CH (or MA) there exists a Sierpiński–Erdős (L,K)-map f : X → X
(see [16], Theorem 19.3). Being an isomorphism between L and K, such a
mapping clearly preserves all their purely set-theoretic properties. However,
according to [3] and [11] it cannot be additive, thus it does not preserve the
properties involving the algebraic structure of the space.

Since the beginning of set-theoretic Real Analysis, a significant part of the
mathematical literature has been devoted to the investigation of analogies (and
differences as well) between L and K. The notion of σ-ideal is in fact essential
for the abstract formalization of the “smallness” of subsets of X. Moreover, the
orthogonality relation between σ-ideals on X efficaciously expresses how certain
different concepts of smallness for sets can be, in some cases, even antithetical.

In certain applications, the ideals of measure and category turn out not to be
suitable ones. In these situations one may try to use another workable σ-ideal
on X alternative to L and K. Here “workable” stands for “having some of the
good descriptive, algebraic and geometric properties shared by L and K”.

In 1966, Schmidt introduced in [21] the so-called (α, β)-games and studied,
from a number-theoretic viewpoint, the σ-ideal of losing sets related to them.
The definitions of Schmidt’s games and σ-ideal are postponed until the next
section.

Inspired by the work of Schmidt, Mycielski introduced in [15] a σ-ideal M
on 2N. His work inspired many authors to study ideals in the Cantor space
related to games (to list only some: [2], [6], [8], [17], [18], [19], [20]). We limit
ourselves to stating roughly that M consists of “losing” sets associated with
certain games with perfect information played by two competitors.

Theorem 1.1 (Mycielski). The σ-ideal M on 2N is proper, uniform, trans-
lation invariant, and Gδ-generated. Moreover, M is orthogonal to E (a fortiori,
to both L and K).

See [15], Propositions 1, 2, 5, and Theorems 3, 4, 10. While Theorem 1.1
collects some of analogies between M and both L and K, the next theorem
illustrates a few dissimilarities:

Theorem 1.2 (Mycielski, RosÃlanowski). M has neither the c.c.c. nor the
Steinhaus property. Moreover, A * σ(B ∪M) (hence, σ(B ∪M) is not closed
under the Souslin operation).

The first statement is due to Mycielski [15], Propositions 11 and 12; the
second one to RosÃlanowski [18], Theorem 2.4.

A natural question then arises: what can be said about the real line?
In our paper (following [23]) we study an ideal S being a minor – but seem-

ingly necessary for obtaining good descriptive results – a modification of the
original Schmidt’s σ-ideal (for this reason also S will be referred to as Schmidt’s
ideal). It turns out that S plays in R the same role as M does in 2N. Moreover,
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from the point of view of number-theoretic applications, with which Schmidt’s
paper is mainly concerned, S proves to be useful in much the same way.

One of the aims of this paper is to stress a very close analogy between
Schmidt’s and Mycielski’s σ-ideals. We wish to clarify, however, that such a
parallelism is far from being immediate: because of the “discrete” nature of
games defined in the Cantor space, Mycielski’s games are easier to deal with
(this is what Mycielski writes at the beginning of his paper). On the other
hand, Schmidt’s (α, β)-games are necessarily more involved and require a dif-
ferent approach. As an example, the reader is invited to compare Theorem 3.2
below and the corresponding Theorem 10 in [15].

Let us now summarize the main results of our paper. After collecting in
Theorem 2.2 a few necessary Schmidt’s results about S, in the third section we
prove that S is Gδ-generated (this sharpens Theorem 12 in [23]). We also prove
in Theorem 3.3 that S is invariant under diffeomorphisms (our ad hoc proof
is simpler than that of Theorem 1 in [21]). Observe the exact correspondence
between Theorem 1.1 (holding for M on 2N) and Theorems 2.2–3.3 (holding for
S on R).

In the fourth section we present some consequences of Theorems 2.2–3.3. In
particular, in Corollary 4.3 we derive the existence of a purely transcendental
uncountable subfield of R all of whose irrational numbers are badly approx-
imable. It is worth remarking that the existence of such a field cannot be de-
duced by appealing to the celebrated Mycielski’s theorems [13], [14], for the set
of badly approximable numbers is neither residual nor of full Lebesgue measure
(it is, instead, both of the first category and Lebesgue measure zero). Proposi-
tion 4.4 establishes, under CH, the existence of Sierpiński–Erdős (S,J )-maps
f : R→ R, where J is equal to any one of the following: L, K, L ∩ K, E .

Finally, in the last section we collect some of the differences between S and
both L and K. More precisely, by means of a suitable Cantor-like construc-
tion we prove in Theorem 5.1 that S has neither the c.c.c., nor the Steinhaus
property, nor the Ruziewicz property. Moreover, appealing to a theorem of
Balcerzak [1] we show that A * σ(B ∪ S). Once more, we stress the precise
correspondence between Theorem 1.2 and our Theorem 5.1.

2. Schmidt’s (α, β)-Games and σ-Ideal S
From now on, we let Q := (0, 1

2
)∩Q. By IR we denote the set of all nontrivial

compact subintervals of R. For I ∈ IR, `(I) is the length of I. If δ ∈ (0, 1),
then

Bδ(I) := {C ∈ IR : C ⊆ I and `(C) = δ`(I)}.

Take α, β ∈ Q and A ⊆ R. The Schmidt (α, β)-game relative to A between
the two players Adam and Eve is defined as follows. Adam selects A0 ∈ IR.
Then Eve chooses E0 ∈ Bα(A0). Adam selects in his turn A1 ∈ Bβ(E0), and so
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on. In general, the rules of the game can be summarized as below:

A0 ∈ IR;
En ∈ Bα(An) for all n ∈ N;

An+1 ∈ Bβ(En) for all n ∈ N.

Clearly,
∞⋂

n=0

En =
∞⋂

n=0

An = {x}

for a unique x ∈ R (called the result of the game). If x /∈ A, we say that Eve
wins the (α, β)-game. An (α, β)-strategy relatively to A (for Eve) is a map
σA = σA(α, β) associating with every finite sequence of Adam’s legal moves
A0, . . . , An an interval En = σA(α, β; n; A0, . . . , An) ∈ Bα(An) . We say that an
(α, β)-strategy σA relatively to A is winning if for any legal sequence (An)∞n=0

of Adam’s moves it holds
∞⋂

n=0

En =
∞⋂

n=0

An * A.

According to [23], we say that A is (α, β)-losing, and that its complement
E := R \ A is (α, β)-winning, in case there exists a winning (α, β)-strategy
relative to A (for Eve). We say that A is losing if it is (α, β)-losing for every
α, β ∈ Q. Consistently, we then say that E is winning.

By S we denote the family of all losing subsets of R. We call S Schmidt’s σ-
ideal. Our definition makes sense, for it is shown in [21] (for all real parameters)
and in [23] (for the rational ones) that the family of losing sets is indeed a σ-ideal
on R.

Remark 2.1. In Schmidt’s original paper all real parameters α ∈ (0, 1
2
) and

β ∈ (0, 1) are considered. Following [23], here we focus exclusively on rational
ones. Observe that in this way we define an ideal possibly larger than the
original one (unfortunately we do not know whether this inclusion is strict).

Recall that a real number x is said to be badly approximable if |x − p
q
| > c

q2

for some c > 0 and all rationals p
q

(as a few examples of badly approximable

numbers we mention the “golden ratio” g := 1+
√

5
2

and, more generally, all the
quadratic irrationals).

Theorem 2.2 (Schmidt). S is a proper, uniform and translation invariant
σ-ideal on R. Moreover, S ⊥ E .

Proof. It follows from Theorem 2 in [21] (see also [23], Theorem 10) that S is a
σ-ideal. Obviously S is proper, uniform and translation invariant.

Further, we infer from Theorem 3 in [21] that the class of badly approximable
numbers is winning. On the other hand, the very same set is immediately seen
to be an Fσ-set of the first category and, according to Khintchine’s theorem
([9], Theorems 23 and 29), it has Lebesgue measure zero. Hence S ⊥ E . ¤
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3. “Nice” Properties of S
It is shown in [23] that S is coanalytic generated. Here we strengthen that

result by showing that S is Gδ-generated. We begin with an obvious lemma,
whose verification is omitted.

Lemma 3.1. Let K, β ∈ (0, 1) and I ∈ IR. Then there is a finite subset

B̂Kβ(I) of BKβ(I) with the property that any C ∈ Bβ(I) includes an element

of B̂Kβ(I). ¤
Theorem 3.2. S is Gδ-generated.

Proof. We will show that the complement E of any losing set A includes a
winning Fσ-set W . Since |Q| = ℵ0, it suffices to show that for fixed α, β ∈ Q
the set E contains an (α, β)-winning Fσ-set W (α, β), and then to take W :=⋃

α,β∈Q W (α, β).

Let us fix α, β ∈ Q. We shall define an (α, β)-strategy σW (α,β) (for Eve)
and an Fσ-set W (α, β) ⊆ E being the set of all possible results determined by
σW (α,β). Clearly, such a set is (α, β)-winning.

To this end, we will define an auxiliary game with parameters α′, β′ ∈ Q in
such a way that

A0 ⊇ A′
0 ⊇ E ′

0 ⊇ E0 ⊇ · · · ⊇ An ⊇ A′
n ⊇ E ′

n ⊇ En ⊇ · · · , (3.1)

where the sequences (An, En)∞n=0 and (A′
n, E

′
n)∞n=0 form legal gameplays in the

(α, β)-game and in the (α′, β′)-game, respectively. In constructing the strategy
σW (α,β) we will use Eve’s winning strategy σ′A in the (α′, β′)-game as an oracle.
Observe that by (3.1) the result of the (α, β)-game is a result of the associated
(α′, β′)-game. Thus, in order to ensure that σW (α,β) is a winning strategy (that
is, W (α, β) ⊆ E) we only need to check that in the associated (α′, β′)-game Eve
follows her winning strategy σ′A.

We will also take care of the following conditions concerning the (α′, β′)-game:

(1) A′
0 is an interval with rational endpoints;

(2) for all n ∈ N \ {0}, A′
n belongs to a finite set depending only on A′

0.

Notice that, in view of (2), A′
0 determines a compact set of all possible results of

the game. Thus, by (1), the set of all possible results of the game is an Fσ-set.
We will choose constants k,K ∈ R in such a way that for all n ∈ N

`(A′
n)

`(An)
= K and

`(En)

`(E ′
n)

= k. (3.2)

Let us choose rational α′ and β′ such that

α < α′ <
1

2
and α′β′ = αβ. (3.3)

Now we can describe Eve’s strategy σW (α, β). Suppose that Adam’s first
move is the compact interval A0. Eve finds a compact subinterval A′

0 with
rational endpoints of length K`(A0) for some real constant K ∈ ( α

α′ , 1). Treating
A′

0 as Adam’s first move in the (α′, β′)-game, she follows her strategy σ′A to select
an interval E ′

0 of length α′`(A′
0). Finally, she chooses E0 being the “leftmost”
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subinterval of E ′
0 of length k`(E ′

0), where k is the real constant determined by
the following

kK =
α

α′
. (3.4)

It remains to check that E0 is indeed a legal move in the (α, β)-game. In
fact, we can now verify that our choice of constants k,K guarantees legality of
both games also in subsequent moves. Indeed, if An+1 and E ′

n are legal moves
in the (α, β)-game and in the (α′, β′)-game respectively, then we get, by (3.2)
and (3.4),

`(En)

`(An)
=

`(En)

`(E ′
n)
· `(E ′

n)

`(A′
n)
· `(A′

n)

`(An)
= kα′K =

αα′

α′
= α

and, by (3.3),

`(A′
n+1)

`(E ′
n)

=
`(A′

n+1)

`(An+1)
· `(An+1)

`(En)
· `(En)

`(E ′
n)

= Kβk =
αβ

α′
=

α′β′

α′
= β′.

Now suppose that Eve’s (n+1)-th move En has been just played. Adam’s next
move An+1 in the (α, β)-game is supposed to be a subinterval of En of length

β`(En). In view of Lemma 3.1, Eve finds a finite nonempty family B̂Kβ(En)
of subintervals of En of length Kβ`(En) (so being Adam’s legal moves in the
(α′, β′)-game!) such that any possible Adam’s choice of An+1 contains one of
them.

When Adam plays his (n + 2)-th move An+1, Eve’s strategy is to find a

member A′
n+1 of B̂Kβ(En) contained in it. Regarding it as Adam’s (n + 2)-th

move in the (α′, β′)-game, she follows her strategy σ′A in the (α′, β′)-game to pick
a subinterval E ′

n+1 of length α′`(A′
n+1) and shrinks it, choosing its “leftmost”

subinterval En+1 of length k`(E ′
n+1).

By finiteness of B̂Kβ(En), condition (2) is satisfied. This ends the construc-
tion of the strategy. ¤

We remark that the proof of Theorem 3.2 depends on the countability of
Q. Our considering, differently from Schmidt, only rational αs and βs is (we
believe) a necessary device. In view of Freiling’s result [7], we suppose that S
contains strictly Schmidt’s original σ-ideal (i.e., that obtained by admitting all
real parameters). We do not know whether the latter is Gδ-generated.

The next theorem establishes that S is invariant under diffeomorphisms. Our
proof is ad hoc and simpler than that of Theorem 1 in [21]. In the proof below,
I[x, %] stands for the compact subinterval of R with centre x ∈ R and radius
% > 0.

Theorem 3.3. S is invariant under diffeomorphisms.

Proof. We have to prove that for any losing set A, any α, β ∈ Q, any open
interval I and diffeomorphism f : I → R, the set f(A ∩ I) is (α, β)-losing.

Assume, without loss of generality, that Adam’s first move A0 is entirely
contained in I. Let k,K be positive rationals such that

k ≤ |f ′(x)| ≤ K for all x ∈ f−1(A0) (3.5)
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or, equivalently,

1

K
≤ |(f−1)′(y)| ≤ 1

k
for all y ∈ A0. (3.6)

In view of the continuity of f ′ and by possibly reducing `(A0) we may also
assume K

k
α < 1

2
. With Adam’s (n + 1)-th move An := I[an, %n] we associate

A′
n := I[f−1(an), %n

K
]. Let us now consider a closed interval E ′

n accordingly to a

winning (K
k
α, k

K
β)-strategy relative to A ∩ I. Thus

E ′
n := I

[
e′n,

α%n

k

]
= σA∩I

(
K

k
α,

k

K
β; n; A′

0, . . . , A
′
n

)
∈ B

K
k

α(A′
n).

Finally, let En := I[f(e′n), α%n]. In view of (3.5), (3.6), and the Lagrange
Theorem from elementary analysis, for all n ∈ N we have:

E ′
n ∈ B

K
k

α(A′
n) implies En ∈ Bα(An);

An+1 ∈ Bβ(En) implies A′
n+1 ∈ B

k
K

β(E ′
n).

Consequently,
⋂∞

n=0 A′
n =

⋂∞
n=0 E ′

n = {limn→∞ e′n} * A ∩ I, which gives, the
map f being continuous,

⋂∞
n=0 An =

⋂∞
n=0 En = {limn→∞ f(e′n)} * f(A∩I). ¤

4. Some Consequences

Recall that a subset A of R is said to be algebraically independent (over
Q) if for any n ∈ N, any nonnull polynomial P ∈ Q(X0, . . . , Xn), and any
choice of distinct elements a0, . . . , an ∈ A, it holds P (a0, . . . , an) 6= 0. If A is
algebraically independent, then the subfield Q(A) of R generated by A is called
purely transcendental.

Two celebrated theorems of Mycielski (see [13] and [14]) state that if Y ⊆ R
is of full Lebesgue measure or residual in R, then there exists an algebraically
independent perfect set P such that the field Q(P ) generated by P — easily
seen to be an Fσ-set — is contained in Y ∪ Q. In particular, there is a purely
transcendental uncountable subfield of R all of whose irrational elements are
included in (and, alternatively, excluded from) the set of Liouville numbers
([16], Chapter 2). For the sake of completeness, we recall that an irrational
number x is said to be Liouville if for each n ∈ N \ {0} there exists a rational
p
q
, with q ∈ N \ {1}, such that |x− p

q
| < 1

qn .

However, Mycielski’s theorems cannot be applied to prove the existence of
purely transcendental uncountable subfields of R contained, up to Q, in the
class of badly approximable numbers (recall Theorem 2.2). Resorting to The-
orems 2.2 and 3.3, here we show that such fields do indeed exist. Admittedly,
our result is weaker than those of Mycielski, for it provides no information on
descriptive complexity.

Lemma 4.1. Let J be a σ-ideal on R that is uniform and invariant under
diffeomorphisms, and f a nonconstant rational real function. If J ∈ J , then
f−1(J) ∈ J .
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Proof. Put f := P
Q

, where P and Q are coprime polynomials not both constant.

Let D be the domain of f (it coincides with R, up to a finite set). We may
assume J ⊆ f(D). Further, let C denote the (finite) set of roots of f ′. Clearly,
there exists n ∈ N such that D\C =

⋃n
i=0 Ii, the Iis being disjoint open intervals.

For every i ∈ {0, . . . , n} let fi := f|Ii
(note that the maps f−1

i : fi(Ii) → R are
diffeomorphisms). We have

f−1(J) = f−1(J ∩ f(D)) = f−1(J ∩ f(C)) ∪
n⋃

i=0

f−1
i (J ∩ fi(Ii)).

To end the proof, it is sufficient to observe that |f−1(J ∩ f(C))| < ℵ0 and that
for all i ∈ {0, . . . , n} it holds f−1

i (J ∩ fi(Ii)) ∈ J , by assumption. ¤
Theorem 4.2. Let J be a proper and uniform σ-ideal that is invariant

under diffeomorphisms. If J ∈ J , then there exists a purely transcendental
uncountable subfield of R included in (R \ J) ∪Q.

Proof. By transfinite induction. Suppose that A is algebraically independent,
countable and such that Q(A) ⊆ (R \ J) ∪ Q. As J is proper and uniform,
by Lemma 4.1 there is x ∈ R \ algRQ(A) such that x /∈ ⋃

f∈FA
f−1(J), where

algRQ(A) and FA stand respectively for the (necessarily countable) algebraic
closure of Q(A) in R and the (necessarily countable) family of all nonconstant
rational functions with coefficients in the field Q(A). By construction, Q(A ∪
{x}) is purely transcendental, includes Q(A) strictly, and is included in (R \
J) ∪Q. ¤

From Theorems 2.2 and 3.3 we infer the following particular case of Theo-
rem 4.2.

Corollary 4.3. There exists a purely transcendental uncountable subfield of
R all of whose irrational numbers are badly approximable.

The next proposition, an application of Theorems 2.2 and 3.2, concerns the
existence of many maps a la Sierpiński–Erdős:

Proposition 4.4. Let J be any one of the following: L, K, L∩K, E. If CH
holds, then there exists a Sierpiński–Erdős (S,J )-map f : R→ R.

Proof. It suffices to apply Theorem 7.7 from [5]. ¤
Remark 4.5. Observe that the very same proof of Theorem 4.4 applies to M

on 2N. In other words, under CH there exists a Sierpiński–Erdős (M,J )-map
f : 2N → 2N, J being any one of the following: L, K, L ∩ K, E .

We do not know whether such Sierpiński–Erdős (S,J )-maps can be additive.
In particular, we do not know what is the minimal cardinal number κ such that
S is not κ-translatable (an ideal J is κ-translatable if for every set A ∈ J we
can find a larger set B ∈ J such that any union of κ translates of A is contained
in some translate of B). Recall that, in the real line case, K is ℵ0-translatable
[4] but L is not 2-translatable [11], which in particular shows that no additive
Sierpiński–Erdős (K,L)-map can exist.
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It is easy to see that there are subsets of R not belonging to the algebra
σ(B ∪S). For instance, by the argument from [10], no Bernstein set belongs to
this algebra. We wish to formulate two more results concerning Schmidt’s ideal
and measurability. In the next two propositions we shall write A for the set of
badly approximable numbers, and S for its complement.

Proposition 4.6. There exists a set X ∈ S, disjoint from A, such that
X + X 6∈ σ(B ∪ S).

Proof. Since S has full Lebesgue measure, it is easily seen that S + S = R and
therefore S + S 6∈ S. Taking into account that S ∈ S and that S is uniform
and Borel generated, a straightforward application of Corollary 1.7 in [12] yields
that there exists X ⊆ S such that X + X 6∈ σ(B ∪ S). ¤

Proposition 4.7. There exists a subset X of A such that X + X is not
Lebesgue measurable and does not have the Baire property.

Proof. Since S ∈ S and S is invariant under diffeomorphisms (in particular,
under translations and the reflection map x 7→ −x), we easily get A + A = R.
By Theorem 1.2 in [12], there exist X0, X1 ⊆ A such that X0 + X0 is not
Lebesgue measurable and X1 + X1 does not have the Baire property. A careful
examination of the proof of that theorem reveals that X := X0 ∪X1 has both
the required properties. ¤

Let us recall the following cardinal coefficients for a given σ-ideal J on a
set X:

add(J ) = min{|H| : H ⊆ J and
⋃H 6∈ J };

cov(J ) = min{|H| : H ⊆ J and
⋃H = X};

non(J ) = min{|Y| : Y ⊆ X and Y 6∈ J };
cof(J ) = min{|H| : H ⊆ J and H generates J }.

It is shown in [23] that cof(S) ≤ c (this obviously follows also from Theorem
3.2). RosÃlanowski computed in [18] the coefficients of Mycielski’s ideal, showing
that add(M) = cov(M) = ℵ1 and non(M) = cof(M) = c. This motivates the
following conjecture.

Conjecture 4.8. add(S) = cov(S) = ℵ1 and non(S) = cof(S) = c.

Obviously, our conjecture follows from the Continuum Hypothesis. We now
show that it is also consistent with the negation of CH.

Proposition 4.9. It is relatively consistent with ZFC that

ℵ1 = add(S) = cov(S) < non(S) = cof(S) = c = ℵ2.

Assuming MA, we have non(S) = cof(S) = c.

Proof. A theorem of Rothberger (see for instance Theorem 7.3 in [5]) states that
if J0 and J1 are proper, uniform, translation invariant, and orthogonal σ-ideals
on R, then ℵ1 ≤ cov(J0) ≤ non(J1). We therefore infer that cov(S) ≤ non(K)
and non(S) ≥ cov(K). Adding ℵ2 Cohen reals to a model of CH, we get
non(K) = ℵ1 and cov(K) = ℵ2 = c, so the first statement is true in that model.
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It is well known that, under MA, cov(K) = c. Hence we infer the second
assertion, again by Rothberger’s theorem. ¤

In the proof of the first part of the proposition one can also use the model
obtained by adding ℵ2 random reals (either by the random algebra or by the
countable support iteration) to a model of CH. The conclusion is derived by the
same argument applied to the measure ideal.

5. “Nasty” Properties of S
Section 3 has been devoted to some similarities between Schmidt’s ideal and

those of measure and category. One should not rather expect S to reveal many
similarities with either L or K. We shall indeed establish in Theorem 5.1 that S
is different from L and K in many respects. On the other hand, the very same
theorem highlights the strict connection between S, as an ideal on the real line,
and Mycielski’s ideal M on the Cantor space.

We begin with some additional notation. Let C denote the set of those reals
in [0, 1] which admit in their 11-expansions only digits in {1, 3, 5, 7, 9}, i.e.,

C :=

{ ∞∑
n=1

xn

11n
: xn ∈ {1, 3, 5, 7, 9}

}
.

Given s ∈ 2N, we put

Cs :=

{ ∞∑
n=1

xn

11n
: (xn ∈ {3, 7} iff sn−1 = 0) and (xn ∈ {1, 5, 9} iff sn−1 = 1)

}
.

Hence, a number x ∈ [0, 1] is in Cs iff the (n + 1)-th digit xn+1 in the 11-
expansion of x belongs to {3, 7} or to {1, 5, 9}, according to whether sn = 0 or
sn = 1.

Theorem 5.1. Schmidt’s σ-ideal S has neither the c.c.c., nor the Steinhaus
property, nor the Ruziewicz property. Moreover, A * σ(B ∪S) (so, σ(B ∪S) is
not closed under the Souslin operation).

Proof. Let C and Cs, with s = (sn)∞n=0 ∈ 2N, be the Cantor-like sets defined
above.

Let us first check that for no s ∈ 2N the Cantor set Cs is ( 5
11

, 1
5
)-losing. In

fact, we now show that Adam has a winning strategy to “hit” Cs in the ( 5
11

, 1
5
)-

game. Adam is going to select his intervals in such a way that his (n + 1)-th
move determines the (n+1)-th digit (in 11-expansion) of the result of the game.
Let Adam’s first move be A0 := [0, 1]. No matter how Eve chooses her response

E0 ∈ B
5
11 (A0), Adam can force the first digit to be a member of {3, 7} or

{1, 5, 9} (according to s0) by an appropriate choice of A1. The same argument
works also for subsequent moves.

As the c sets Cs are pairwise disjoint, S does not have the c.c.c.
To prove that S does not have the Steinhaus property, it suffices to observe

that C −C is of Lebesgue measure zero. This is certainly true, inasmuch as no
number in C − C admits in its 11-expansion the two-digits block 99. (We only
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sketch a proof: let x, y ∈ C and z := x− y. For all n ∈ N \ {0} let xn, yn and
zn be the n-th digits of x, y and z, respectively. We can have zn = 9 only if
xn − yn = −2. By elementary arithmetic rule, the equalities zn = zn+1 = 9 are
incompatible.)

That S does not have the Ruziewicz property follows from the geometri-
cally evident observation that C cannot contain any affine copy X of the set
{0, 1, . . . , 10}. (To justify this, we limit ourselves to noticing that if the set X
were contained in[

1

11
,

2

11

]
∪

[
3

11
,

4

11

]
∪

[
5

11
,

6

11

]
∪

[
7

11
,

8

11

]
∪

[
9

11
,
10

11

]
,

i.e., in the set of those reals in [0, 1] whose first 11-digit belongs to {1, 3, 5, 7, 9},
then it would be contained in exactly one of the intervals above. By induction,
we would conclude that X reduces to a singleton, contrary to our assumption.)

Finally, Theorem 1.2 and Corollary 2.3 in [1] yield A * σ(B ∪ S). ¤
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