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A NOTE ON FOURIER COEFFICIENTS OF FUNCTIONS OF
GENERALIZED WIENER CLASS

RAJENDRA G. VYAS

Abstract. Let f denote a 2π periodic function in L[0, 2π], and f̂(n), n ∈ Z,
be its Fourier coefficients. For a function f of the generalized Wiener class∧

BV(p(n) ↑ ∞) we have proved that

f̂(n) = O

(
1/

( |n|∑

i=1

1
λi

)1/p(k(n))
)

.
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Let f be a 2π periodic function in L[0, 2π], and f̂(n), n ∈ Z, be its Fourier
coefficients. R. Siddiqi [5] extended the classical result “f ∈ BV[0, 2π] implies

its Fourier coefficients f̂(n) = O
(

1
|n|

)
” for the Wiener class. He proved that

“f ∈ BV(p, [0, 2π]) (1 ≤ p < ∞) implies f̂(n) = O
(

1
|n|1/p

)
”. The concept

of Wiener class was generalized by H. Kita and K. Yoneda [1] as generalized
Wiener class BV(p(n) ↑ ∞) and also by Shiba [4] as p-

∧
-bounded variations

(
∧

BV(p)). From these two generalizations, one can define a more generalized
class

∧
BV(p(n) ↑ ∞) as follows.

Definition. Given a subinterval I of [0, 2π], a sequence
∧

= {λm} (m =
1, 2, . . . ) of non-decreasing positive real numbers λm such that

∑
1

λm
diverges

and 1 ≤ p(n) ↑ ∞ as n →∞, we say that f ∈ ∧
BV(p(n) ↑ ∞, I) (that is, f is

a function of p(n)-
∧

-bounded variation over (I)) if

VΛ(f, p(n), I) = sup
n≥1

sup
{Im}

{VΛ({Im}, f, p(n), I) : ρ{Im} > 2π/2n} < ∞,

where

VΛ({Im}, f, p(n), I) =

( ∑
m

|f(am)− f(bm)|p(n)

λm

)1/p(n)

,

ρ{Im} = inf
m
|am − bm|

and {Im} is a sequence of nonoverlapping subintervals Im = [am, bm] ⊂ I =
[a, b].

Note that if p(n) = p for all n, one gets the class
∧

BV(p, I); if λm ≡ 1 for
all m, one gets the class BV(p(n) ↑ ∞); if p(n) = 1 for all n and λm ≡ 1 for all
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m, one gets the class BV(I); if p(n) = 1 for all n and λm ≡ m for all m, one
gets the class Harmonic BV(I).

Schramm and Waterman [3] estimated the Fourier coefficients of function of∧
BV(p). They proved the following theorem.

Theorem A. If f ∈ ∧
BV(p, [0, 2π]) (1 ≤ p < ∞), then

f̂(n) = O

(
1/

( |n|∑
i=1

1

λi

)1/p )
.

For the generalized Wiener class T. Akhobadze [6] proved the following the-
orem.

Theorem B. If f ∈ BV(p(n) ↑ ∞, [0, 2π]), then f̂(n) = O(1/|n|1/p(k(n))),
where k(n) is an integer for which

1 + log2 |n| < k(n) ≤ 2 + log2 |n|. (1)

Here we have extended these two results and estimated the order of the
magnitude of the Fourier coefficients of functions of

∧
BV(p(n) ↑ ∞).

Theorem. Let f ∈ ∧
BV(p(n) ↑ ∞, [0, 2π]), then

f̂(n) = O

(
1/

( |n|∑
i=1

1

λi

)1/p(k(n)))
,

where k(n) is an integer satisfying (1).

Remark. Here, p(n) = p for all n, reduces the class
∧

BV(p(n) ↑ ∞) to

the class
∧

BV(p), and
( ∑|n|

i=1
1
λi

)1/p(k(n))

reduces to
( ∑|n|

i=1
1
λi

)1/p

, that is we

get Theorem A as a particular case. Similarly, λm ≡ 1 for all m, reduces the
class

∧
BV(p(n) ↑ ∞) to the class BV(p(n) ↑ ∞) and we get Theorem B as a

particular case. Thus the theorem generalizes a non-lacunary analogue of our
earlier result [2, Theorem 5].

Proof of the Theorem. We know that

f̂(n) =
1

2π

2π∫

0

f(x)e−inxdx,

f̂(n) =
−1

2π

2π∫

0

f
(
x +

π

n

)
e−inxdx,

f̂(n) =
−1

2π

2π∫

0

(
Tπ

n
f
)
(x)e−inxdx, where

(
Tπ

n
f
)
(x) = f

(
x +

π

n

)
.
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Then

|f̂(n)| = 1

4π

∣∣∣∣
2π∫

0

(
f(x)− (

Tπ
n
f
)
(x)

)
e−inxdx

∣∣∣∣. (1.1)

Because of the periodicity of f(x), we have for any positive integer j

∣∣∣∣
2π∫

0

(
T jπ

n
f − T (j−1)π

n

f
)
(x)dx

∣∣∣∣ =

∣∣∣∣
2π∫

0

(
f(x)− (

Tπ
n
f
)
(x)

)
dx

∣∣∣∣,

this together with (1.1) implies

|f̂(n)| ≤ 1

4π

2π∫

0

∣∣∣
(
T jπ

n
f − T (j−1)π

n

f
)
(x)

∣∣∣dx. (1.2)

For a given natural number |n|, let k(n) be an integer such that

π

2|n| ≤
2π

2k(n)
≤ π

|n| ,

i.e., (1) is true. Let q(k(n)) be such that 1
p(k(n))

+ 1
q(k(n))

= 1, then by the Hölder

inequality, from (1.2) we get

|f̂(n)| ≤ 1

2π

( 2π∫

0

∣∣∣
(
T jπ

n
f − T (j−1)π

n

f
)
(x)

∣∣∣
p(k(n))

dx

)1/p(k(n))( 2π∫

0

1dx

)1/q(k(n))

=

(
1

2π

)1/p(k(n)) ( 2π∫

0

∣∣∣
(
T jπ

n
f − T (j−1)π

n

f
)
(x)

∣∣∣
p(k(n))

dx

)1/p(k(n))

.

Then

|f̂(n)|p(k(n)) ≤ 1

2π

( 2π∫

0

∣∣∣
(
T jπ

n
f − T (j−1)π

n

f
)
(x)

∣∣∣
p(k(n))

dx

)
. (1.3)

Dividing both sides of equation (1.3) by λj and then performing summation
from j = 1 to |n|, we get

|f̂(n)|p(k(n))

( |n|∑
j=1

1

λj

)
≤ 1

2π

( 2π∫

0

|n|∑
j=1

∣∣(T jπ
n

f − T (j−1)π
n

f
)
(x)

∣∣p(k(n))

λj

dx

)
.

Hence |f̂(n)|p(k(n)) ≤ V∧(f,p(n),[0,2π])(P|n|
j=1

1
λj

) . This proves the theorem. ¤
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