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ON GENERATING RELATIONS INVOLVING GENERALIZED
GEGENBAUER POLYNOMIALS
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Abstract. In this paper, generating relations involving generalized Gegen-
bauer polynomials C

(µ)
n (x, y;α) are obtained by constructing a three-dimen-

sional Lie algebra isomorphic to special linear algebra sl(2). Further, a num-
ber of new interesting relations involving various generalized polynomials are
obtained as applications of these generating relations.
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1. Introduction

Chebyshev polynomials of second kind are defined by [4]

Un(x) =

[n/2]∑

k=0

(−1)k (n− k)! (2x)n−2k

k! (n− 2k)!
, (1.1)

and the generating function for these polynomials is

(1− 2xt + t2)−1 =
∞∑

n=0

Un(x)tn. (1.2)

We note the following integral representation for these polynomials ([3];
p. 418(7))

Un(x) =
1

n!

∞∫

0

e−ttnHn

(
2x,−1

t

)
dt, (1.3)

where Hn(x, y) are two variable Hermite polynomials (2VHP) defined by the
series [3]

Hn(x, y) = n!

[n/2]∑

k=0

xn−2k yk

k! (n− 2k)!
. (1.4)

Chebyshev polynomials are particular cases of the Gegenbauer polynomials
defined by [13]

C(µ)
n (x) =

1

Γ(µ)

[n/2]∑

k=0

(−1)kΓ(n + µ− k) (2x)n−2k

k! (n− 2k)!
, (1.5)
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with the generating function

(1− 2xt + t2)−µ =
∞∑

n=0

C(µ)
n (x)tn. (1.6)

Dattoli et al. [1] used the method of integral transform to generalize Gegen-
bauer polynomials.

We consider the two-variable one-parameter Gegenbauer polynomials
(2V1PGP) defined by ([1]; p. 11(23))

C(µ)
n (x, y; α) =

1

Γ(µ)

[n/2]∑

k=0

Γ(n + µ− k)(2x)n−2k(−y)k

k! (n− 2k)!αn+µ−k
. (1.7)

The generating function for these polynomials is

(α− 2xt + yt2)−µ =
∞∑

n=0

C(µ)
n (x, y; α)tn, (1.8)

and the integral representation for these polynomials in terms of 2VHP Hn(x, y)
is

C(µ)
n (x, y; α) =

1

n! Γ(µ)

∞∫

0

e−αttn+µ−1Hn

(
2x,−y

t

)
dt. (1.9)

Motivated and inspired by the works of Dattoli et al. [1]–[3] and a recent
work on the representation of a Lie algebra G(0, 1) and two-dimensional Hermite

polynomials [8], we derive generating relations involving 2V1PGP C
(µ)
n (x, y; α)

and hypergeometric function 2F1 [13] by constructing a three-dimensional Lie
algebra isomorphic to special linear algebra sl(2), the Lie algebra of the complex
special linear group SL(2) ([10]; p. 7), using Weisner’s method [15].

The reason for our interest in this family of polynomials is due to the fact
that these polynomials include as their special cases various other generalized as
well as known polynomials, which we discuss in Section 2. The Group-theoretic
method is discussed in Section 3. Using the representation of the Lie group
SL(2), generating relations are derived in Section 4. The main interest in our
results lies in the fact that a number of special cases can be used to derive many
new and known results for the polynomials associated with 2V1PGP, which are
obtained in Section 5. Finally, some concluding remarks are given in Section 6.

2. Properties of 2V1PGP C
(µ)
n (x, y; α)

The 2V1PGP C
(µ)
n (x, y; α) satisfy the differential equation

(
(x2 − αy)

d2

dx2
+ (1 + 2µ)x

d

dx
− n(n + 2µ)

)
C(µ)

n (x, y; α) = 0. (2.1)
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The differential and pure recurrence relations satisfied by these polynomials
are

∂

∂x
C(µ)

n (x, y; α) =
1

x

(
nC(µ)

n (x, y; α)− y
∂

∂x
C

(µ)
n−1(x, y; α)

)
,

∂

∂x
C(µ)

n (x, y; α) =
1

(x2 − αy)

(
α(n + 1)C

(µ)
n+1(x, y; α)

− (n + 2µ)xC(µ)
n (x, y; α)

)
,

∂

∂x
C(µ)

n (x, y; α) =
1

(x2 − αy)

(
nxC(µ)

n (x, y; α)

− (n + 2µ− 1)yC
(µ)
n−1(x, y; α)

)
,

α(n + 1)C
(µ)
n+1(x, y; α) + (n + 2µ− 1)yC

(µ)
n−1(x, y; α)

= 2x(n + µ)C(µ)
n (x, y; α).

(2.2)

We note the following special cases of 2V1PGP C
(µ)
n (x, y; α):

1. C
(1)
n (x, y; α) = Un(x, y; α), (2.3)

where Un(x, y; α) denotes the two variable one-parameter Chebyshev polynomi-
als (2V1PCP) defined by the generating function [1]

(α− 2xt + yt2)−1 =
∞∑

n=0

Un(x, y; α)tn. (2.4)

2. C
(1/2)
n (x, y; α) = Pn(x, y; α), (2.5)

where Pn(x, y; α) denotes two variable one-parameter Legendre polynomials
(2V1PLeP) defined by the generating function [1]

(α− 2xt + yt2)−1/2 =
∞∑

n=0

Pn(x, y; α)tn. (2.6)

3. C
(µ)
n (x, y; α) = Pn(2, x, y,−µ, α), (2.7)

where Pn(2, x, y,−µ, α) denotes generalized Humbert polynomials (GHP) de-
fined by the generating function ([7]; p. 697(1.1))

(c−mxt + ytm)p =
∞∑

n=0

Pn(m,x, y, p, c)tn. (2.8)

4. C
(µ)
n (x, 0; α) = C

(µ)
n (x; α) = (µ)n (2x)n

n! αn+µ , (2.9)

where the Pochhammer symbol (µ)n is defined by

(µ)n =





1, if n = 0,

µ(µ + 1)(µ + 2) · · · (µ + n− 1), if n = 1, 2, 3 . . . .

5. Un(x, 0; α) = Un(x; α) = (2x)n

αn+1 . (2.10)
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6. C
(µ)
n (x, 1; 1) = C

(µ)
n (x), (2.11)

where C
(µ)
n (x) are the Gagenbauer polynomials (GP) defined by equation (1.6).

7. C
(1)
n (x, 1; 1) = Un(x), (2.12)

where Un(x) are the Chebyshev polynomials (CP) defined by equation (1.2).

8. C
(1/2)
n (x, 1; 1) = Pn(x), (2.13)

where Pn(x) are the Legendre polynomials (LeP) defined by the generating
function [13]

(1− 2xt + t2)−1/2 =
∞∑

n=0

Pn(x)tn. (2.14)

In the next section, to make use of the Lie group-theoretic method, we con-
struct the partial differential equation corresponding to the differential equation

(2.1) for C
(µ)
n (x, y; α). Further, we use the recurrence relations (2.2) to obtain

first order linear differential operators which form the basis of defining the
transformed function and the multiplier representation of the Lie group SL(2).

3. Group-Theoretic Discussion

In order to use the Lie group-theoretic method, we replace d
dx

by ∂
∂x

, n by

t ∂
∂t

and C
(µ)
n (x, y; α) by f(x, y, t; α) in equation (2.1) to construct the partial

differential equation
(

(x2 − αy)
∂2

∂x2
− t2

∂2

∂t2
+ (1 + 2µ)x

∂

∂x
− (1 + 2µ)t

∂

∂t

)
f(x, y, t; α) = 0. (3.1)

Let L represent the differential operator of equation (3.1), i.e.,

L = L

(
x,

∂

∂x
, t

∂

∂t

)
= (x2−αy)

∂2

∂x2
−t2

∂2

∂t2
+(1+2µ)x

∂

∂x
−(1+2µ)t

∂

∂t
. (3.2)

Therefore f(x, y, t; α) = C
(µ)
n (x, y; α)tn is a solution of equation (3.1), since

C
(µ)
n (x, y; α) is a solution of equation (2.1).
We now seek for linearly independent maintaining, lowering and raising op-

erators J3, J− and J+, each of the form

A1(x, y, t)
∂

∂x
+ A2(x, y, t)

∂

∂y
+ A3(x, y, t)

∂

∂t
+ A4(x, y, t),

defined on F , the complex space of all functions analytic in some neighbourhood
of (x0, y0, t0) ∈ C3, such that

J3[C(µ)
n (x, y; α)tn] = anC(µ)

n (x, y; α)tn,

J−[C(µ)
n (x, y; α)tn] = bnC

(µ)
n−1(x, y; α)tn−1,

J+[C(µ)
n (x, y; α)tn] = cnC

(µ)
n+1(x, y; α)tn+1,

(3.3)

where an, bn and cn are expressions in n which are independent of x, y and t but
not necessarily of α and µ. Each Ai(x, y, t), (i = 1, 2, 3, 4), on the other hand,
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is an expression in x, y and t which is independent of n but not necessarily of
α and µ.

Now using equation (3.3) and the recurrence relations (2.2), we get the oper-
ators

J3 = t
∂

∂t
+ µ,

J− =

(
x2 − αy

yt

)
∂

∂x
− x

y

∂

∂t
,

J+ =

(
x2 − αy

α

)
t

∂

∂x
+

xt2

α

∂

∂t
+

2µxt

α
.

(3.4)

Theorem 3.1. Three linearly independent linear operators J3, J− and J+

given by equation (3.4) defined on F generate a three-dimensional Lie algebra
isomorphic to sl(2), the Lie algebra of the complex special linear group SL(2).

Proof. We observe that the operators J3, J− and J+ satisfy the following com-
mutation relations

[J3, J±] = ±J±, [J+, J−] = 2J3. (3.5)

These commutation relations are identical with the commutation relations
satisfied by the basis elements of the special linear algebra sl(2), the Lie algebra
of the complex special linear group SL(2), which is the abstract matrix group
of all 2× 2 nonsingular matrices

g =

(
a b
c d

)
, a, b, c, d ∈ C , (3.6)

such that det g = 1. The basis elements for sl(2) are provided by the matrices

J + =

(
0 −1
0 0

)
, J − =

(
0 0
0 −1

)
, J 3 =

(
1/2 0
0 −1/2

)
. (3.7)

Thus we conclude that the J-operators J3, J− and J+ generate a three-
dimensional Lie algebra isomorphic to sl(2). ¤

In terms of the J-operators, we introduce the Casimir operator ([10]; p. 32),

C = J+J− + J3J3 − J3 =
(x2 − αy)

αy

(
(x2 − αy)

∂2

∂x2
− t2

∂2

∂t2

+ (1 + 2µ)x
∂

∂x
− (1 + 2µ)t

∂

∂t

)
+ µ(µ− 1). (3.8)

It is easy to verify that the J-operators commute with the Casimir operator
C, that is

[C, J3] = [C, J±] = 0. (3.9)

Equation (3.8) enables us to rewrite equation (3.1) as

Cf(x, y, t; α) = µ(µ− 1)f(x, y, t; α). (3.10)
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Extended forms of the transformation groups generated by the operators
J3, J− and J+ can be expressed as follows:

eτ ′J3

f(x, y, t; α) = eτ ′µf(x, y, teτ ′ ; α),

ec′J−f(x, y, t; α) = f

(
ξ
√

αy√
ξ2 − t2θ

, y,
1√
αy

√
ξ2 − t2θ ; α

)
,

eb′J+

f(x, y, t; α) =

(
αy

φ2 − θ

)µ

f

(
φ
√

αy√
φ2 − θ

, y,
t
√

αy√
φ2 − θ

; α

)
,

(3.11)

where b′, c′ and τ ′ are arbitrary constants; ξ := (xt − αc′); θ := (x2 − αy);
φ := (x− b′yt) and f(x, y, t; α) is an arbitrary function.

Thus it is obvious that

eb′J+

ec′J− [C(µ)
n (x, y; α)tn]

= (αy)µ−n/2(φ2 − θ)−(µ+n/2)
(
α2y2t2 − 2α2c′ytφ + α2c′2(φ2 − θ)

)n/2

× C(µ)
n

( √
αy(αytφ− αc′(φ2 − θ))√

(φ2 − θ)(α2y2t2 − 2α2c′ytφ + α2c′2(φ2 − θ))
, y; α

)
. (3.12)

Now we proceed to compute the multiplier representation [T (g)f ](x, y, t; α),
g ∈ SL(2), induced by the J-operators.

For g ∈ SL(2) and d 6= 0, by straightforward computation we show that

g = exp(b′J +) exp(c′J −) exp(τ ′J 3),

where b′ = − b
d
, c′ = −cd, exp

(
τ ′
2

)
= 1

d
and ad− bc = 1.

Hence the operator T (g) is given by

[T (g)f ](x, y, t; α) = [T (exp(b′J +))T (exp(c′J −))T (exp(τ ′J 3))f ](x, y, t; α)

= eµτ ′
(

αy

φ2 − θ

)µ

f

( √
αy(αytφ− αc′(φ2 − θ))√

(φ2 − θ)(α2y2t2 − 2α2c′ytφ + α2c′2(φ2 − θ))
, y,

√
α2y2t2 − 2α2c′ytφ + α2c′2(φ2 − θ)

αy(φ2 − θ)
eτ ′ ; α

)
(3.13)

which after setting b′ = − b
d
, c′ = −cd, exp

(
τ ′
2

)
= 1

d
and using the fact that

ad− bc = 1, gives

[T (g)f ](x, y, t; α)

=

(
αy

η2 − d2θ

)µ

f

( √
αy(ψη − cdθ)√

ψ2 − c2θ
√

η2 − d2θ
, y,

√
α(ψ2 − c2θ)

y(η2 − d2θ)
; α

)
, (3.14)

where ψ := cx + ayt and η := dx + byt.
In the next section, we derive generating relations by assigning particular

values to the constants b′ and c′ in the transformed function (3.12). Further
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we use multiplier representation (3.14) and determine matrix elements so as to
derive more generating relations.

4. Generating relations

First we obtain generating relations from the operator J3 by considering
the following three cases of the transformed function exp(b′J+) exp(c′J−) ×
[C

(µ)
n (x, y; α)tn].
Case 1. Taking b′ = 0 and c′ = 1 in equation (3.12), we obtain

eJ− [C(µ)
n (x, y; α)tn] =

(
t2 − 2xt

y
+

α

y

)n/2

C(µ)
n


 (xt− α)√

t2 − 2xt
y

+ α
y

, y; α


 .

Now expanding this function, we get

(
t2 − 2xt

y
+

α

y

)n/2

C(µ)
n


 (xt− α)√

t2 − 2xt
y

+ α
y

, y; α




=
n∑

ν=0

(1− 2µ− n)ν

ν!
C

(µ)
n−ν(x, y; α)tn−ν ,

and further taking t−1 = l, we get

(
1− 2xl

y
+

αl2

y

)n/2

C(µ)
n


 (x− αl)√

1− 2xl
y

+ αl2

y

, y; α




=
n∑

ν=0

(1− 2µ− n)ν

ν!
C

(µ)
n−ν(x, y; α)lν . (4.1)

Case 2. Taking b′ = 1 and c′ = 0 in equation (3.12), we obtain

eJ+

[C(µ)
n (x, y; α)tn]

= (α)µ+n/2(yt2 − 2xt + α)−(µ+n/2) C(µ)
n

( √
α(x− yt)√

yt2 − 2xt + α
, y; α

)
tn,

and further expanding this function, we get

(α)µ+n/2(yt2 − 2xt + α)−(µ+n/2)C(µ)
n

( √
α(x− yt)√

yt2 − 2xt + α
, y; α

)

=
∞∑

ν=0

(
n + ν

ν

)
C

(µ)
n+ν(x, y; α)tν . (4.2)
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Case 3. Taking b′c′ 6= 0, b′ = 1 and c′ = −1 in equation (3.12), we obtain

eJ+

e−J− [C(µ)
n (x, y; α)tn]

= αµ+n/2y−n/2(yt2 − 2xt + α)−(µ+n/2)C(µ)
n

( √
y(α− xt)√

yt2 − 2xt + α
, y; α

)
,

and further expanding this function, we get

αµ+n/2y−n/2(yt2 − 2xt + α)−(µ+n/2)C(µ)
n

( √
y(α− xt)√

yt2 − 2xt + α
, y; α

)

=
∞∑

ν=0

(2µ + ν)n

n!
C(µ)

ν (x, y; α)tν . (4.3)

Next, we consider the case where f(x, y, t; α) is a common eigenfunction of C
and J3, i.e., let f(x, y, t; α) be a solution of the simultaneous equations

Cf(x, y, t; α) = µ(µ− 1)f(x, y, t; α),

J3f(x, y, t; α) = (n + µ)f(x, y, t; α)
(4.4)

which yield f(x, y, t; α) = C
(µ)
n (x, y; α)tn.

Thus, from equation (3.14) we have

[T (g)f ](x, y, t; α) = αµ+n/2yµ−n/2(ψ2 − c2θ)n/2(η2 − d2θ)−(µ+n/2)

× C(µ)
n

( √
αy(ψη − cdθ)√

ψ2 − c2θ
√

η2 − d2θ
, y; α

)
, (4.5)

satisfying the relation

C[T (g(f)](x, y, t; α) = µ(µ− 1)[T (g)f ](x, y, t; α).

If n is not an integer, then equation (4.5) has an expansion of the form

[T (g)f ](x, y, t; α) =
∞∑

ν=−∞
jν(g)C

(µ)
n+ν(x, y; α)tn+ν , (4.6)

which simplifies to the identity

αµ+n/2yµ−n/2(ψ2−c2θ)n/2(η2−d2θ)−(µ+n/2)C(µ)
n

( √
αy(ψη − cdθ)√

ψ2 − c2θ
√

η2 − d2θ
, y; α

)

=
∞∑

ν=−∞
jν(g)C

(µ)
n+ν(x, y; α)tn+ν . (4.7)

To determine jν(g), we set x = y = α = 1 in equation (4.7) and thus have

jν(g) =

(
n + ν

n

)
an(−b)νd−(2µ+n+ν)

2F1

[
2µ + n + ν,−n; 1 + ν;

bc

ad

]
. (4.8)
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Substituting the latter expression into equation (4.7) and simplifying, we
obtain the generating relation

αµ+n/2yµ−n/2(ψ2−c2θ)n/2(η2−d2θ)−(µ+n/2)C(µ)
n

( √
αy(ψη − cdθ)√

ψ2 − c2θ
√

η2 − d2θ
, y; α

)

=
∞∑

ν=−∞

(
n + ν

n

)
an(−b)νd−(2µ+n+ν)

× 2F1

[
2µ + n + ν,−n; 1 + ν;

bc

ad

]
C

(µ)
n+ν(x, y; α)tn+ν , (4.9)

where −π < arg(a), arg(d) < π;

∣∣∣∣
bc

ad

∣∣∣∣ < 1.

Further, when n is a nonnegative integer, say, n = k, we obtain the generating
function

αµ+k/2yµ−k/2(ψ2 − c2θ)k/2(η2 − d2θ)µ−k/2 C
(µ)
k

( √
αy(ψη − cdθ)√

ψ2 − c2θ
√

η2 − d2θ
, y; α

)

=
∞∑

ν=0

(
ν

k

)
(−1)νakbν−kd−(2µ+ν)

× 2F1

[
2µ + ν,−k; ν − k + 1;

bc

ad

]
C(µ)

ν (x, y; α)tν . (4.10)

In the next section, we obtain some results as applications of the generating
relations (4.1), (4.2), (4.3), (4.9) and (4.10) which appear to be new. We also
mention some interesting known applications.

5. Applications

We consider some applications of the generating relations obtained in the
preceding section.

I. Taking a = d = t = 1 and c = 0 in the generating relation (4.9), we obtain

(α)µ+n/2(α + 2bx + b2y)−(µ+n/2) C(µ)
n

( √
α(x + by)√

α + 2bx + b2y
, y; α

)

=
∞∑

ν=0

(
n + ν

n

)
(−b)ν C

(µ)
n+ν(x, y; α), (5.1)

which for α = y = 1 and b = −t reduces to ([13]; p. 280(23))

(1− 2xt + t2)−(µ+n/2) C(µ)
n

(
(x− t)√

1− 2xt + t2

)
=

∞∑
ν=0

(
n + ν

n

)
C

(µ)
n+ν(x)tν . (5.2)

Similarly, taking a = d = t = 1 and c = 0, we obtain the result corresponding
to the generating relation (4.10).
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II. Taking a = d = t = 1 and b = 0 in the generating relation (4.9), we get

yµ(y + 2cx + c2α)n/2 C(µ)
n

( √
y(x + cα)√

y + 2cx + c2α
, y; α

)

=
∞∑

ν=0

(1− µ− n)ν

ν!
cν C

(µ)
n−ν(x, y; α), (5.3)

which for α = y = 1 and b = −t reduces to

(1− 2xt + t2)n/2 C(µ)
n

(
(x− t)√

1− 2xt + t2

)
=

∞∑
ν=0

(1− µ− n)ν

ν!
cν C

(µ)
n−ν(x).

Similarly, taking a = d = t = 1 and b = 0, we obtain the results corresponding
to the generating relation (4.10).

III. Taking µ = 1 in the generating relation (4.9), we get

α1+n/2y1−n/2(ψ2 − c2θ)n/2(η2 − d2θ)−(1+n/2) Un

( √
αy(ψη − cdθ)√

ψ2 − c2θ
√

η2 − d2θ
, y; α

)

=
∞∑

ν=−∞

(
n + ν

n

)
an(−b)νd−(2+n+ν)

× 2F1

[
2 + n + ν,−n; 1 + ν;

bc

ad

]
Un+ν(x, y; α)tn+ν , (5.4)

where Un(x, y; α) is given by equation (2.4).

Similarly, taking µ = 1, we obtain the results corresponding to the generating
relations (4.1), (4.2), (4.3) and (4.10).

IV. Taking µ = 1/2 in the generating relation (4.9), we get

α(1+n)/2y(1−n)/2(ψ2−c2θ)n/2(η2−d2θ)−(1+n)/2 Pn

( √
αy(ψη − cdθ)√

ψ2 − c2θ
√

η2 − d2θ
, y; α

)

=
∞∑

ν=−∞

(
n + ν

n

)
an(−b)νd−(1+n+ν)

× 2F1

[
1 + n + ν,−n; 1 + ν;

bc

ad

]
Pn+ν(x, y; α)tn+ν , (5.5)

where Pn(x, y; α) is given by equation (2.6).

Similarly, taking µ = 1/2, we obtain the results corresponding to the gener-
ating relations (4.1), (4.2), (4.3) and (4.10).

V. Taking α = y = 1 in the generating relation (4.9), we obtain

(c2 + a2t2 + 2acxt)n/2(d2 + b2t2 + 2bdxt)−(µ+n/2)
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× C(µ)
n

(
(cd + abt2 + (ad + bc)xt)√

c2 + a2t2 + 2acxt
√

d2 + b2t2 + 2bdxt

)

=
∞∑

ν=−∞

(
n + ν

n

)
an(−b)νd−(2µ+n+ν)

× 2F1

[
2µ + n + ν,−n; 1 + ν;

bc

ad

]
C

(µ)
n+ν(x)tn+ν , (5.6)

where C
(µ)
n (x) is given by equation (1.6).

Similarly, taking α = y = 1, we obtain the result corresponding to the gener-
ating relation (4.10). The generating relations (4.1)–(4.3) reduce to ([9]; pp. 52–
53 (6–8)).

VI. Taking α = y = µ = 1 in the generating relation (4.9), we obtain

(c2 + a2t2 + 2acxt)n/2(d2 + b2t2 + 2bdxt)−(1+n/2)

× Un

(
(cd + abt2 + (ad + bc)xt)√

c2 + a2t2 + 2acxt
√

d2 + b2t2 + 2bdxt

)

=
∞∑

ν=−∞

(
n + ν

n

)
an(−b)νd−(2+n+ν)

× 2F1

[
2 + n + ν,−n; 1 + ν;

bc

ad

]
Un+ν(x)tn+ν , (5.7)

where Un(x) is given by equation (1.2).

Similarly, taking α = y = µ = 1, we obtain the results corresponding to the
generating relations (4.1), (4.2), (4.3) and (4.10).

VII. Taking α = y = 1 and µ = 1/2 in the generating relation (4.9), we obtain

(c2 + a2t2 + 2acxt)n/2(d2 + b2t2 + 2bdxt)−(1+n)/2

× Pn

(
(cd + abt2 + (ad + bc)xt)√

c2 + a2t2 + 2acxt
√

d2 + b2t2 + 2bdxt

)

=
∞∑

ν=−∞

(
n + ν

n

)
an(−b)νd−(1+n+ν)

× 2F1

[
1 + n + ν,−n; 1 + ν;

bc

ad

]
Pn+ν(x)tn+ν , (5.8)

where Pn(x) is given by equation (2.14). For a = d = t = 1, b = −t and c = 0,
equation (5.8) reduces to ([13]; p. 169(7))

(1− 2xt + t2)−(1+n)/2Pn

(
(x− t)√

1− 2xt + t2

)
=

∞∑
ν=−∞

(
n + ν

n

)
Pn+ν(x)tν .
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Similarly, taking α = y = 1 and µ = 1/2, we obtain the results corresponding
to the generating relations (4.1), (4.2), (4.3) and (4.10).

It is interesting to note that we can express the results involving 2V1PGP

C
(µ)
n (x, y; α) in terms of GHP Pn(2, x, y,−µ, α) by using equation (2.7).
In the next section, we will discuss possible future directions of the present

work.

6. Concluding Remarks

In this paper we have derived the generating relations involving 2V1PGP

C
(µ)
n (x, y; α) by using the representation theory of the Lie group SL(2). Also, we

have obtained many new results for the polynomials associated with 2V1PGP.
Further, note that the generating relations obtained in this paper can be used

to find many interesting relations involving other polynomials. As a specific
example, we consider the derivation of a generating relation involving a new
family of two variable orthogonal polynomials Rn(x, y) defined by the generating
function ([2]; p. 368(28))

(1 + 2(x− y)t + (x + y)2t2)−1/2 =
∞∑

n=0

Rn(x, y)tn. (6.1)

The polynomials Rn(x, y) can be expressed in terms of Legendre polynomials
Pn(x) by the relation

Rn(x, y) = (x + y)nPn

(
y − x

x + y

)
, (6.2)

which implies

Pn(x) = Rn

(
1− x

2
,
1 + x

2

)
. (6.3)

We can infer from equations (1.8) and (6.1) that

C(1/2)
n ((y − x), (x + y)2; 1) = Rn(x, y). (6.4)

Now, taking µ = 1
2
, α = 1. Replacing x by (y − x) and y by (x + y)2 in the

generating relation (4.9) and using equation (6.4), we obtain

Y −n/2(a2t2Y + 2actX + c2)n/2(b2t2Y + 2bdtX + d2)−(1+n)/2

× Pn

( √
Y ((adt + bct)X + abt2Y + cd)√

a2t2Y + 2actX + c2
√

b2t2Y + 2bdtX + d2
, Y

)

=
∞∑

ν=−∞

(
n + ν

n

)
an(−b)ν(d)−(1+n+ν)

× 2F1

[
1 + n + ν,−n; 1 + ν;

bc

ad

]
Rn+ν(x, y)tn+ν , (6.5)
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where X := (y − x); Y := (x + y)2; −π < arg(a), arg(d) < π;
∣∣ bc
ad

∣∣ < 1, and
Pn(x, y) denotes two variable Legendre polynomials (obtained by taking α = 1
in equation (2.6)).

By the same procedure we can obtain the results corresponding to the gen-
erating relations (4.1), (4.2), (4.3), (4.10), (5.1) and (5.3).

Similarly, we can derive generating relations involving two variable polyno-
mials Sn(x, y) defined by the generating function ([2]; p. 368(24))

(1− 2yt + (y2 − 4x)t2)−1/2 =
∞∑

n=0

Sn(x, y)tn, (6.6)

which on account of the generating function (2.14) of Legendre polynomials
Pn(x), suggests that

Sn(x, y) = (y2 − 4x)n/2Pn

(
y√

y2 − 4x

)
; (6.7)

also, we note that

Pn(x) = Sn

(
−1

4
(1− x2), x

)
. (6.8)

Now equations (1.8) and (6.6) allow us to conclude that

C(1/2)
n

(
y3/2

√
y2 − 4x

, y; 1

)
=

(
y − 4x

y

)−n/2

Sn(x, y), (6.9)

which can be used to derive generating relations involving Sn(x, y).
It is also worth noting that

C(µ)
n (x, y; α) =

1

αµ

( y

α

)n/2

C(µ)
n

(
x√
αy

)
, (6.10)

from which it follows that

C(µ)
n (x, y; α) =

(2µ)n

(µ + 1
2
)n αµ

( y

α

)n/2

P
(µ− 1

2
,µ− 1

2
)

n

(
x√
αy

)
, (6.11)

where P
(α,α)
n (x) denotes ultraspherical polynomials [13].

Expressions (6.10) and (6.11) can be used to transform the results obtained

for the 2V1PGP C
(µ)
n (x, y; α) to the results for the GP C

(µ)
n (x) or vice-versa.

The theory of special functions of mathematical physics is known to be deeply
rooted in the theory of Lie algebras and groups. In specific irreducible represen-
tations, these functions appear as matrix elements of group operators, and also
as basis vectors of representation spaces. This interpretation provides a vantage
standpoint in the study of the properties of special functions, since generating
relations, orthogonality properties and addition formulas are naturally obtained
within this algebraic setting [10]–[12], [14].

It appears now clear that the so-called basic or q-special functions [6] are sim-
ilarly related to the representation theory of quantum algebras and quantum
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groups. The matrix elements of certain algebra generators in irreducible repre-
sentations are in fact expressible in terms of q-hypergeometric series (see, e.g.,
[5] and the references therein). Taking the quantum algebra Uq (su(1,1)) as an
example, the authors of [5] show that the metaplectic representation of the real
form Uq (su(1,1)) of the quantum algebra Uq(sl(2)) provides a group-theoretic
setting for certain basic orthogonal polynomials generalizing usual Gegenbauer
polynomials.

In a forthcoming investigation, we will consider the possibility of q-generali-
zation of Gegenbauer polynomials. We will also study the connection of q-
generalized Gegenbauer polynomials with quantum algebras.

Moreover, the study of other forms of Gegenbauer and q-Gegenbauer poly-
nomials from the standpoint of both applications and their connections with
various Lie algebras and quantum algebras is also an interesting problem for
further research.
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