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A NOETHER THEOREM ON UNIMPROVABLE
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Abstract. We obtain a version of Noether’s invariance theorem for opti-
mal control problems with a finite number of cost functionals. The result is
obtained by formulating E. Noether’s result for optimal control problems sub-
ject to isoperimetric constraints, and then using the unimprovable (Pareto)
notion of optimality. It was A. Gugushvili who drew the author’s attention
to a result of this kind that was posed as an open mathematical question of
a great interest in applications of control engineering.
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1. Introduction

E. Noether’s theorem, which relates symmetries and conservation laws, de-
scribes the fundamental fact that “invariance with respect to some group of
parameter transformations gives rise to the existence of conservation laws”. A
typical application of conservation laws is to lower the order of systems. They
are also a useful tool for many other reasons, e.g., they allow one to prove
regularity of minimizers in the calculus of variations and optimal control [10].
Noether’s theorem comprises all results on conservation laws known to classical
mechanics. Thus, e.g., the invariance relative to translation with respect to
time yields conservation of energy, while conservation of linear and angular mo-
menta reflects, respectively, translational and rotational invariance. Noether’s
theorem is applicable also in quantum mechanics, field theory, electromagnetic
theory, and has deep implications in the general theory of relativity. It is useful
to explain a myriad of things, from the fusion of hydrogen to the motion of
planets orbiting the sun [7]. Moreover, it turns out that Noether’s theorem
is much more than a theorem: it is a principle which can be formulated as a
theorem in many different contexts, under many different assumptions. It is
possible, e.g., to formulate the classical Noether’s theorem of the calculus of
variations for bigger classes of nonsmooth admissible functions [11], in a more
general context of optimal control [1, 2, 8], or to obtain discrete-time versions
[9]. For an account of Noether’s symmetry principle in the context of opti-
mal control, the use of conservation laws to integrate and decrease the order
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of equations given by the Pontryagin maximum principle [5], and for practical
examples such as the problem of synchronization of difficult control systems we
refer the reader to [2]. Here we are interested in generalizing the previous results
to cover optimal control problems which, in place of a single cost functional,
have a vector-valued functional to minimize. For the introduction to problems
of optimal control with multiple objectives we refer the reader to Salukvadze’s
book [6]. Multiobjective optimal control attracts more and more attention,
and is the source of many open questions [3]. The motivation for the present
study was a challenge proposed to the author by A. Gugushvili on November
18, 2003. A. Gugushvili wanted to generalize the symmetry and conservation
laws to multiobjective problems of optimal control: “We would like to develop
E. Noether’s theory for multicriteria optimal control systems. If you have any
ideas and work on these problems, please, let us know.” Theorem 4.2 is, to the
best of our knowledge, the first attempt in this direction.

2. Optimal Control with Isoperimetric Constraints

It is well known that necessary optimality conditions for optimal control
problems subject to isoperimetric constraints, are also necessary for unimprov-
able (Pareto) optimality in the problem with a vector-valued cost (cf., e.g., [4,
Ch. 17], [6, p. 22]). Consider a nonlinear control system,

ẋ(t) = ϕ (t, x(t), u(t)) (1)

of n differential equations, subject to k isoperimetric equality constraints,

b∫

a

gi (t, x(t), u(t)) dt = ξi , i = 1, . . . , k , (2)

m isoperimetric inequality constraints,

b∫

a

gj (t, x(t), u(t)) ≤ ξj , j = k + 1, . . . , k + m, (3)

and 2n boundary conditions

x(a) = α , x(b) = β . (4)

The problem consists in finding a piecewise-continuous control function u(·) =
(u1(·), . . . , ur(·)) taking values on a given set Ω ⊆ Rr, and the corresponding
state trajectory x(·) = (x1(·), . . . , xn(·)), satisfying (1), (2), (3), and (4), and
minimizing (or maximizing) the (scalar) integral cost functional

I[x(·), u(·)] =

b∫

a

L(t, x(t), u(t))dt .

This problem is denoted in the sequel by (P1). Both the initial time a and the
terminal time b, a < b, are fixed. The boundary values α, β ∈ Rn, and constants
ξi, i = 1, . . . , k + m, are also given. The functions L(·, ·, ·), ϕ(·, ·, ·) and g(·, ·, ·)



A NOETHER THEOREM ON UNIMPROVABLE CONSERVATION LAWS 175

are assumed to be continuously differentiable with respect to all variables. The
celebrated Pontryagin’s maximum principle [5] gives necessary optimality con-
ditions to be satisfied by the solutions of optimal control problems. The for-
mulation of the maximum principle for problems with isoperimetric constraints
can be found, e.g., in [4, §13.12].

Theorem 2.1 (Pontryagin’s Maximum Principle for (P1)). Let u(t), t ∈
[a, b], be an optimal control for the isoperimetric (scalar) optimal control problem
(P1), and x(·) the corresponding state trajectory. Then there exist a constant
ψ0 ≤ 0, a continuous costate n-vector function ψ(·) having piecewise-continuous
derivatives, and constant multipliers λi, i = 1, . . . , k + m, where (ψ0, ψ(·), λ) 6=
0, satisfying the pseudo-Hamiltonian system

{
ẋ(t) = ∂H

∂ψ
(t, x(t), u(t), ψ0, ψ(t), λ) ,

ψ̇(t) = −∂H
∂x

(t, x(t), u(t), ψ0, ψ(t), λ) ,

the maximality condition

H (t, x(t), u(t), ψ0, ψ(t), λ) = max
u∈Ω

H (t, x(t), u, ψ0, ψ(t), λ) ,

where the Hamiltonian H is defined by

H(t, x, u, ψ0, ψ, λ) = ψ0L(t, x, u) + ψ · ϕ(t, x, u) + λ · g(t, x, u) . (5)

Moreover, λj ≤ 0, j = k + 1, . . . , k + m, where λj = 0 if

b∫

a

gj (t, x(t), u(t)) < ξj ,

and H(t, x(t), u(t), ψ0, ψ(t), λ) is a continuous function of t and, on each interval
of continuity of u(·), is differentiable and satisfies the equality

dH

dt
(t, x(t), u(t), ψ0, ψ(t), λ) =

∂H

∂t
(t, x(t), u(t), ψ0, ψ(t), λ) . (6)

3. Vector-Valued Optimal Control Problems

When optimal control is used to model a real problem, it is natural that
several (conflicting) cost functionals (“objectives”) are desired to be taken into
account (see [6] for many practical situations). The problem is then to minimize
a vector-valued functional with components

Ii[x(·), u(·)] =

b∫

a

Li(t, x(t), u(t))dt , i = 1, . . . , N ,

subject to the dynamical control system (1), and the boundary conditions (4).
We denote this problem by (P ).
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Definition 3.1. An admissible pair (x̃(·), ũ(·)) is said to be an unimprovable
solution, compromise solution, or a Pareto solution for (P ) if and only if there
does not exist an admissible pair (x(·), u(·)) verifying

Ii[x(·), u(·)] ≤ Ii[x̃(·), ũ(·)] ,
for i ∈ {1, . . . , N}, with a strict inequality for at least one Ii.

It turns out that necessary conditions for optimal control problems with
isoperimetric constraints are also necessary for the Pareto optimality of op-
timal control problems with a vector-valued cost. Theorem 3.1 is a simple
consequence of Definition 3.1 (cf., e.g., [4, Theorem 17.1]).

Theorem 3.1. If (x̃(·), ũ(·)) is a Pareto solution of problem (P ), then it is
a minimizer for isoperimetric optimal control problems with an integral scalar-
valued cost

Ii[x(·), u(·)] , i ∈ {1, . . . , N} ,

and isoperimetric constraints

Ij[x(·), u(·)] ≤ Ij[x̃(·), ũ(·)] , j = 1, . . . , N and j 6= i .

From Theorems 3.1 and 2.1 (Pontryagin’s maximum principle for problems
with isoperimetric constraints) follows the so-called “general theorem of optimal
control” (cf. [6, p. 22]).

Theorem 3.2. If (x(·), u(·)) is a Pareto-solution of problem (P ), then there
exist a continuous costate n-vector function ψ(·) having piecewise-continuous
derivatives, and constant multipliers λ = (λ1, . . . , λN), where (ψ(·), λ) 6= 0,
satisfying the pseudo-Hamiltonian system

{
ẋ(t) = ∂H

∂ψ
(t, x(t), u(t), ψ(t), λ) ,

ψ̇(t) = −∂H
∂x

(t, x(t), u(t), ψ(t), λ) ,

the maximality condition

H (t, x(t), u(t), ψ(t), λ) = max
u∈Ω

H (t, x(t), u, ψ(t), λ) ,

where the Hamiltonian H is defined by

H(t, x, u, ψ, λ) = λ · L(t, x, u) + ψ · ϕ(t, x, u) . (7)

Moreover, λj ≤ 0, j = 1, . . . , N , and H(t, x(t), u(t), ψ(t), λ) is a continuous
function of t and, on each interval of continuity of u(·), is differentiable and
satisfies the equality

dH
dt

(t, x(t), u(t), ψ(t), λ) =
∂H
∂t

(t, x(t), u(t), ψ(t), λ) .
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4. Main Results: Noether-type Theorems

Theorem 4.1 asserts that the presence of symmetry for optimal control prob-
lems involving equality and inequality isoperimetric constraints, implies that
their Pontryagin extremals (and solutions) preserve a well-defined quantity
(there exists a conservation law associated with each symmetry). The result
is formulated, like in the case of the problems of the calculus of variations [11]
and for the unconstrained scalar-valued continuous [1, 8] and discrete-time [9]
optimal control problems, as an instance of Noether’s universal principle.

Definition 4.1. An equation C (t, x(t), u(t), ψ0, ψ(t), λ) = constant, valid in
t ∈ [a, b] for any quintuple (x(·), u(·), ψ0, ψ(·), λ) satisfying Pontryagin’s maxi-
mum principle (Theorem 2.1), is called a conservation law for problem (P1).

Theorem 4.1 (Noether’s theorem for optimal control problems with isoperi-
metric constraints). If (x(·), u(·), ψ0, ψ(·), λ) satisfy the conditions of Theo-
rem 2.1 and there exists a C2-smooth one-parameter group of transformations

hs : [a, b]× Rn × Rr → R× Rn × Rr ,

hs(t, x, u) = (T (t, x, u, s), X(t, x, u, s), U(t, x, u, s)) ,

s ∈ (−ε, ε) , ε > 0 ,

with h0(t, x, u) = (t, x, u) for all (t, x, u) ∈ [a, b]× Rn × Rr, and satisfying

L (t, x(t), u(t)) = L ◦ hs (t, x(t), u(t))
d

dt
T (t, x(t), u(t), s) , (8)

d

dt
X (t, x(t), u(t), s) = ϕ ◦ hs (t, x(t), u(t))

d

dt
T (t, x(t), u(t), s) , (9)

g (t, x(t), u(t)) = g ◦ hs (t, x(t), u(t))
d

dt
T (t, x(t), u(t), s) , (10)

U (t, x(t), u(t), s) ∈ Ω ,∀s ∈ (−ε, ε) , (11)

then,

ψ(t) · ∂

∂s
X (t, x(t), u(t), s)|s=0

−H(t, x(t), u(t), ψ0, ψ(t), λ)
∂

∂s
T (t, x(t), u(t), s)|s=0 = const

is a conservation law for problem (P1), with H the Hamiltonian (5) associated
to problem (P1).

Proof. Using the fact that h0(t, x, u) = (t, x, u), from condition (8) one gets

0 =
d

ds

(
L ◦ hs (t, x(t), u(t))

d

dt
T (t, x(t), u(t), s)

)∣∣∣∣
s=0

=
∂L

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂L

∂x
· ∂X

∂s

∣∣∣∣
s=0

+
∂L

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ L
d

dt

∂T

∂s

∣∣∣∣
s=0

, (12)
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while conditions (9) and (10) yield

d

dt

∂X

∂s

∣∣∣∣
s=0

=
∂ϕ

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂ϕ

∂x
· ∂X

∂s

∣∣∣∣
s=0

+
∂ϕ

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ ϕ
d

dt

∂T

∂s

∣∣∣∣
s=0

, (13)

0 =
∂g

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂g

∂x
· ∂X

∂s

∣∣∣∣
s=0

+
∂g

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ g
d

dt

∂T

∂s

∣∣∣∣
s=0

. (14)

Multiplying (12) by ψ0, (13) by ψ(t), and (14) by λ, we can write

ψ0

(
∂L

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂L

∂x
· ∂X

∂s

∣∣∣∣
s=0

+
∂L

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ L
d

dt

∂T

∂s

∣∣∣∣
s=0

)

+ ψ(t) ·
(

∂ϕ

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂ϕ

∂x
· ∂X

∂s

∣∣∣∣
s=0

+
∂ϕ

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ ϕ
d

dt

∂T

∂s

∣∣∣∣
s=0

− d

dt

∂X

∂s

∣∣∣∣
s=0

)

+ λ ·
(

∂g

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂g

∂x
· ∂X

∂s

∣∣∣∣
s=0

+
∂g

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ g
d

dt

∂T

∂s

∣∣∣∣
s=0

)
= 0 . (15)

According to the maximality condition of Pontryagin’s maximum principle, and
given (11), the function

ψ0L (t, x(t), U (t, x(t), u(t), s)) + ψ(t) · ϕ (t, x(t), U (t, x(t), u(t), s))

+ λ · g (t, x(t), U (t, x(t), u(t), s))

attains an extremum for s = 0. Therefore

ψ0
∂L

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ ψ(t) · ∂ϕ

∂u
· ∂U

∂s

∣∣∣∣
s=0

+ λ · ∂g

∂u
· ∂U

∂s

∣∣∣∣
s=0

= 0

and (15) simplifies to

ψ0

(
∂L

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂L

∂x
· ∂X

∂s

∣∣∣∣
s=0

+ L
d

dt

∂T

∂s

∣∣∣∣
s=0

)

+ ψ(t) ·
(

∂ϕ

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂ϕ

∂x
· ∂X

∂s

∣∣∣∣
s=0

+ ϕ
d

dt

∂T

∂s

∣∣∣∣
s=0

− d

dt

∂X

∂s

∣∣∣∣
s=0

)

+ λ ·
(

∂g

∂t

∂T

∂s

∣∣∣∣
s=0

+
∂g

∂x
· ∂X

∂s

∣∣∣∣
s=0

+ g
d

dt

∂T

∂s

∣∣∣∣
s=0

)
= 0 . (16)

From the adjoint system ψ̇ = −∂H
∂x

and equality (6), we know that

ψ̇ = −ψ0
∂L

∂x
− ψ · ∂ϕ

∂x
− λ · ∂g

∂x
,

d

dt
H = ψ0

∂L

∂t
+ ψ · ∂ϕ

∂t
+ λ · ∂g

∂t
,

and one concludes that (16) is equivalent to

d

dt

(
ψ(t) · ∂X

∂s

∣∣∣∣
s=0

−H
∂T

∂s

∣∣∣∣
s=0

)
= 0 .



A NOETHER THEOREM ON UNIMPROVABLE CONSERVATION LAWS 179

The proof is complete. ¤

We now introduce the notion of unimprovable or Pareto conservation law.

Definition 4.2. An equation C (t, x(t), u(t), ψ(t), λ) = constant, valid in
t ∈ [a, b] for any quadruple (x(·), u(·), ψ(·), λ) satisfying “the general theorem
of optimal control” (Theorem 3.2), is called an unimprovable conservation law
or a Pareto conservation law for problem (P ).

Given the relation between problems (P1) and (P ) (cf. Section 3), we obtain
from Theorem 4.1 the following corollary.

Theorem 4.2 (Noether’s theorem for vector-valued optimal control systems).
If (x(·), u(·), ψ(·), λ) satisfy the conditions of Theorem 3.2 and there exists a C2-
smooth one-parameter group of transformations

hs : [a, b]× Rn × Rr → R× Rn × Rr ,

hs(t, x, u) = (T (t, x, u, s), X(t, x, u, s), U(t, x, u, s)) ,

s ∈ (−ε, ε) , ε > 0 ,

with h0(t, x, u) = (t, x, u) for all (t, x, u) ∈ [a, b]× Rn × Rr, and satisfying

U (t, x(t), u(t), s) ∈ Ω ,∀s ∈ (−ε, ε) ,

d

dt
X (t, x(t), u(t), s) = ϕ ◦ hs (t, x(t), u(t))

d

dt
T (t, x(t), u(t), s) , (17)

L (t, x(t), u(t)) = L ◦ hs (t, x(t), u(t))
d

dt
T (t, x(t), u(t), s) (18)

(L = (L1, . . . , LN)), then

ψ(t) · ∂

∂s
X (t, x(t), u(t), s)|s=0

−H(t, x(t), u(t), ψ(t), λ)
∂

∂s
T (t, x(t), u(t), s)|s=0 = const (19)

is an unimprovable conservation law for problem (P ), with H the Hamiltonian
(7) associated to problem (P ).

Remark 4.1. Theorems 4.1 and 4.2 remain still valid in the situation where the
boundary values of the state variables and/or the initial-terminal moments of
time (a, b) are not fixed. We have considered conditions (4) and fixed both initial
and terminal times only to simplify the presentation of Pontryagin’s maximum
principle: initial and terminal transversality conditions are not relevant to the
proof of our Noether type theorems.

In the next section we illustrate Theorem 4.2 with an example of five state
variables (n = 5), two controls (r = 2), and two functionals to minimize (N =
2).
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5. Example for the Flight of a Pilotless Aircraft

We borrow from [6, §3.4] the problem of optimizing a vector-valued functional
with two components representing fuel consumption (I1) and flight time (I2),

I1 =

T∫

0

u1(t)dt , I2 =

T∫

0

1dt ,

subject to a dynamical control system describing the motion of a pilotless air-
craft 




ẋ1(t) = x3(t) ,

ẋ2(t) = x4(t) ,

ẋ3(t) = c1
u1(t)
x5(t)

cos(u2(t)) ,

ẋ4(t) = c1
u1(t)
x5(t)

sin(u2(t))− c2 ,

ẋ5(t) = −u1(t) .

Here x1 is the range of the aircraft, x2 the altitude, x3 the horizontal component
of the velocity, x4 the vertical component of the velocity, x5 the mass of the
aircraft (which depends on its fuel quantity), u1 the rate of fuel consumption,
u2 the thrust angle relative to the horizontal, c1 and c2 given constants. A full
description of the model and a complete analysis of its solution, can be found in
[6, §3.4]. Our objective here is to obtain a nontrivial unimprovable conservation
law for the problem with the help of Theorem 4.2. As to the model, it is enough
for our purposes to say that there are physical constraints on the control values,
under which it makes sense to consider tan(u2) (cf. [6, (3.42)]). Two trivial
unimprovable conservation laws are ψ1(t) = const (obtained from Theorem 4.2
by setting T = t, X1 = x1 + s, Xi = xi, i = 2, . . . , 5, Uj = uj, j = 1, 2),
and ψ2(t) = const (obtained from Theorem 4.2 by setting T = t, X2 = x2 + s,
Xi = xi, i = 1, 3, 4, 5, Uj = uj, j = 1, 2). We claim that

ψ1x1(t) + 2ψ2x2(t) + ψ3(t)x3(t) + 2ψ4(t)x4(t) = const (20)

is also an unimprovable conservation law for the problem. We remark that
(20) is nontrivial, and difficult to obtain without Theorem 4.2. To prove it
with the help of Theorem 4.2, one just needs to show that the problem is
invariant (satisfies conditions (17) and (18)) with T = t, X1 = esx1, X2 =
e2sx2, X3 = esx3, X4 = e2sx4, X5 = x5, U1 = u1, and U2 = arctan (es tan u2)
(sin U2 = e2s sin u2, cos U2 = es cos u2). This is done by direct calculations
( d

dt
T = 1):

d

dt
X1 = esẋ1 = esx3 = X3

d

dt
T ,

d

dt
X2 = e2sẋ2 = e2sx4 = X4

d

dt
T ,

d

dt
X3 = esẋ3 = c1

u1

x5

es cos u2 = c1
U1

X5

cos U2
d

dt
T ,
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d

dt
X4 = e2sẋ4 = c1

u1

x5

e2s sin u2 − c2 =

(
c1

U1

X5

sin U2 − c2

)
d

dt
T ,

d

dt
X5 = ẋ5 = −u1 = −U1

d

dt
T ,

and therefore equations (17) are verified,

L1 = u1 = U1
d

dt
T ,

L2 = 1 =
d

dt
T ,

and equations (18) are also satisfied. Equality (19) takes then form (20).
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