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REPRESENTATION OF NUMBERS BY QUADRATIC FORMS.
MAIN RESULTS OF THE RESEARCH DONE IN GEORGIA
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Abstract. This is a survey of the main results obtained by the mathemati-
cians of Georgia on the representation of natural numbers by integral qua-
dratic forms before 2000.
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1. Throughout the 19th century mathematicians were assiduously study-
ing the arithmetic function rs(n) – the number of representations of a natural
number n as a sum of s squares of integers. At first they were satisfied with
considering only the concrete values for the number of representations. Using
the theory of elliptic functions, in 1914 Bulygin [10] for the first time proposed
a general method of deriving formulas for rs(n) for all even s when 2 ≤ s ≤ 24.
These formulas obey a certain general rule. Based on a pure arithmetic ap-
proach, later Bessel [7] reproved Bulygin’s formulas when 2 ≤ s ≤ 16.

Walfisz [146] developed Bessel’s arithmetic method further and confirmed
Bulygin’s formulas for rs(n) when s = 18, 20, 22, 24.

In his effort to develop general formulas for rs(n) with the aid of modular
functions, Mordell ([101], [102]) showed (first for even and then for odd s) the
existence of a function χ(τ) such that

ϑs
00(τ) = χ(τ) +

(s−1)/8∑

k=1

Akϑ
s−8k
00 (τ)ϑ4k

01(τ)ϑ4k
10(τ), (1)

where τ ∈ C, Im τ > 0; ϑij(τ) are Jacobi theta-functions, and Ak are con-
stants chosen properly. He called the function χ(τ) the principal invariant.
Mordell went on to give a method for constructing the principal invariant χ(τ),
separately for even and odd natural numbers s. By performing necessary com-
putations, he confirmed once again Bulygin’s formulas for s = 10, 12, 14, 16 and
produced new formulas for s = 11, 13 and 15. The so-called additional terms in
these formulas are sums taken over all representations of a natural number n
as a sum of respectively 3, 5 and 7 squares. When s is odd, the so-called main
terms in Mordell’s formulas contain factors in the form of certain infinite series.
Mordell observed that, using Jacobi’s well-known identity ϑ

′
1 = ϑ2ϑ3ϑ0 [36], it is

possible to express the additional term of r9(n) as a sum over all representations
of n as sum of 7 squares.
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For the sum of s squares Hardy ([32], [33]) (i) constructed a singular series
%s(n), (ii) gave a classical method for its summation, (iii) introduced a function
θs(τ) whose Fourier coefficients are the sums of the series %s(n) and, (iv) using
modular functions, proved that ϑs

00(τ) = θs(τ) for all 3 ≤ s ≤ 8. As a conse-
quence of these equalities, one has rs(n) = %s(n), 3 ≤ s ≤ 8. Suetuna ([112],
[113]) summed up Hardy’s singular series %s(n) for any s. Estermann [13], using
only the basics of the theory of functions of a complex variable and no modular
functions, reproved Hardy’s formulas for rs(n).

Lomadze ([53], [54], [55]) developed the method of Estermann and, also using
just elements of functions of a complex variable, proved Mordell’s identity (1)
by a single method both for even and odd numbers s. He replaced Mordell’s
complicated principal invariant χ(τ) by Hardy’s singular series %s(n). By the re-
sults of Suetuna and necessary computations Lomadze ([53], [54], [55]) obtained
formulas for rs(n), 9 ≤ s ≤ 32. These formulas coincide with those of Bulygin
for even s, 10 ≤ s ≤ 24, and with those of Mordell for odd s, 11 ≤ s ≤ 15.
Moreover, in case of odd s, Lomadze succeeded for the first time ever in reducing
the infinite series contained as factors in the main terms to a finite expression.

The formulas for rs(n) when s = 9, 17, 25, obtained by Lomadze on the
basis of Mordell’s remark, were of minor interest. It was therefore desirable to
improve them further. To this end, instead of Jacobi’s identity Lomadze later

used Smith’s equality
ϑ
′′
0

ϑ0
− ϑ

′′′
3

ϑ3
= ϑ4

2 [110] and obtained formulas for rs(n) with
the following advantage over the previous formulas: the new worst additional
term is a sum taken over all representations of n as a sum of s − 4 squares as
opposed to the previous version of s− 2 squares [76].

2. Let r(n; f) denote the number of representations of a natural number n by
a positive integral quadratic form f = f(x1, x2, . . . , xs). Finding an exact for-
mula for the function r(n; f) means (i) constructing a singular series %(n; f) that
corresponds to the quadratic form f , (ii) finding its sum, and (iii) constructing
functions

Xk(τ ; f) =
∞∑

n=1

νk(n; f)Qn (here and in what follows Q = exp(2πiτ))

which are regular for Im τ > 0, so that the following equality holds for any
natural number n and properly chosen constants Ak:

r(n; f) = %(n; f) +
ω∑

k=1

Akνk(n; f) (2)

with ω being a finite number depending only on f . It is known that

ϑ(τ ; f) = 1 +
∞∑

n=1

r(n; f)Qn,

where

ϑ(τ ; f) =
∞∑

x1,...,xs=−∞
Qf(x1,...,xs)
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is the theta-series corresponding to the quadratic form f. Therefore if the func-
tion

θ(τ ; f) = 1 +
∞∑

n=1

%(n; f)Qn

is regular for Im τ > 0, then the arithmetic equality (2) is evidently equivalent
to the functional one:

ϑ(τ ; f) = θ(τ ; f) +
ω∑

k=1

AkXk(n; f). (3)

The term ‘exact formula’ is essentially due to Mordell because (1) is a par-
ticular case of equality (3). In what follows functions of the form θ(τ ; f) will
be called the main functions, and those of the form Xk(n; f) – the additional
functions. Further, the coefficients of their Fourier series expansions will be
called the main and additional terms, respectively.

It is known that if the quadratic form f is of one-class genus, then the addi-
tional term is zero and, consequently, for any natural n formula (2) becomes

r(n; f) = %(n; f).

2.1. It is quite natural that, while studying the sums of squares of inte-
gers, mathematicians also got interested in diagonal integral positive primitive
quadratic forms

f = {a1, a2, . . . , as} = a1x
2
1 + a2x

2
2 + · · ·+ asx

2
s. (4)

For example, Liouville alone published up to 100 short papers in which he
presented without proof a lot of formulas for the number of representations of n
by quadratic forms of type (4) mainly in four and six variables (see, e.g., [43]–
[52]). All his formulas are expressed in terms of various arithmetic functions of
divisors of the natural number being represented. Some of Liouville’s formulas
have also additional terms with a simple arithmetic meaning. Namely, they are
sums taken over certain representations of integers by binary quadratic forms.

Walfisz developed an elementary method for obtaining exact formulas for the
number of representations of a natural number by integral positive quaternary
quadratic forms of special kind. This method, now known as the Jacobi–Walfisz
method, is a further development of an elementary method of Jacobi. It is
based on some trigonometric identities (also due to Walfisz) obtained by simple
transformations of infinite series. Using his method, Walfisz ([147], [148], [149])
gave exact formulas for the number of representations of a natural number by
73 quaternary quadratic forms, a big part of which were early published by
Liouville without proof. Some of Walfisz’ formulas were beyond reach of the
previous methods (see also [61]).

Using Hardy–Littlewood’s method, Kloosterman [41] defined and summed up
a singular series corresponding to the quadratic form f = {1, 1, a, a}, where a is
any prime or double prime number, and proved that the corresponding function
θ(τ ; 1, 1, a, a) is regular for Im τ > 0. Therefore the function θ(τ ; 1, 1, a, a) can



754 G. LOMADZE

be used as the main function. Then, individually for a = 5, 6, 7, he determined
the additional functions as products of certain Jacobi theta-functions and, using
modular functions, proved identities of type (3). When a = 3, the additional
function is identically zero because the quadratic form f = {1, 1, 3, 3} belongs
to one-class genus. one can use a method by Kloosterman for other quaternary
quadratic forms of type (4). However, for an individual quadratic form that
method requires complex formulas from the theory of Jacobi theta-functions
and, moreover, involves laborous calculations connecting with studying the be-
havior of the corresponding modular functions in their fundamental domains.
Also, the mentioned method cannot be used for binary and ternary quadratic
forms of type (4).

Maass [99] was the first to develop a general method, based on modular func-
tions and Jacobi theta-functions, for obtaining exact formulas for the number of
representations of a natural number by ternary quadratic forms of type (4). But
Maass’ investigation was restricted to the quadratic forms of one-class genera
and, moreover, with only square-free coefficients.

Using the Hecke theory of entire modular forms and theta-functions with
characteristics, Streefkerk [111] obtained exact formulas for the number of rep-
resentations of an integer as a sum of certain generalized polygonal numbers.

2.2. Combining and further developing the afore-mentioned methods of
Hardy, Mordell, Hecke, Kloosterman, Maass and Streefkerk, Lomadze [56]
worked out a uniform general way for obtaining exact formulas for the num-
ber of representations of a natural number by any quadratic form of type (4),
independently of the number of variables and the genus. To this end, he (sim-
ilarly to Hardy) defined the following singular series for the quadratic form
f = {a1, a2, . . . , as}:

%(n; a1, a2, . . . , as) =
πs/2

Γ(s/2)∆1/2
ns/2−1

∞∑
q=1

q−s
∑

h mod q
(h, q)=1

e

(
− hn

q

) s∏

k=1

S(akh, q),

where ∆ is the determinant of f , Γ(s/2) is the gamma-function, and S(akh, q)
is the Gaussian sum. Lomadze also introduced the function

θ(τ ; a1, a2, . . . , as)=1 +
∞∑

n=1

%(n; a1, a2, . . . , as)Q
n.

It is a regular function for Im τ > 0 and s > 4 because in this region the singular
series %(n; a1, a2, . . . , as) is absolutely convergent. But for s ≤ 4 Lomadze (simi-
larly to Hecke and Streefkerk) introduced an auxiliary variable z and considered
the function

ψ(τ, z; a1, a2, . . . , as)=1 +
(i/2)s/2

2∆1/2

∞∑′

q;H=−∞
(H, q)=1

is(sgnq−1)/2

∏s
k=1 S(−akH sgn q, |q|)

qs/2(qτ + H)s/2|qτ + H|z ,
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where
∑′ means that the sum has no terms with q = 0. This function is regular

for Re z > 2− s
2

and fixed τ .
In order to illustrate the method, from quaternary quadratic forms of kind

(4), Lomadze [56] considered arbitrary quadratic forms f = {a, a, a′, a′}, f =
{a, a, a, a′} and proved that (i) the functions ψ(τ, z; a, a, a′, a′) and
ψ(τ, z; a, a, a, a′), which, by definition, are regular for Re z > 0, can be analyti-
cally extended in a neighborhood of z = 0; (ii) θ(τ ; a, a, a′, a′) =
ψ(τ, z; a, a, a′, a′)|z=0 and θ(τ ; a, a, a, a′) = ψ(τ, z; a, a, a, a′)|z=0; (iii) the func-
tions θ(τ ; a, a, a′, a′) and θ(τ ; a, a, a, a′) are regular for Im τ > 0 and also are the
modular forms of weight 2 and level 4aa′. Both functions are used by him as
main functions. Further, using Hardy–Kloosterman’s method he obtained com-
putationally convenient formulas to compute sums of the series θ(τ ; a, a, a′, a′)
and θ(τ ; a, a, a, a′). Finally, for each concrete quadratic form he individually
found additional functions in the form of sums of products of theta functions
with characteristics which are cusp forms of the same level and weight as the cor-
responding main functions; using the theory of entire modular forms he proved
identities of type (3). This combined method needs long calculations, but they
are quite elementary and standard. This method does not need any longer the
construction of fundamental regions which in turn need difficult calculations. In
particular, Lomadze ([56], [57], [62]) obtained exact formulas for the number of
representations of a natural number by 13 concrete quaternary quadratic forms
of type (4).

Using the same method, Beridze [2] obtained exact formulas for the number
of representations of a natural number by 4, Gelashvili [15] by 3, Gogishvili
[17] by 4 concrete quaternary quadratic forms of type (4). Among quadratic
forms of type (4), Gongadze [29] considered quadratic forms f = {1, a1, a2, a},
where a is the least common multiple of a1 and a2; for the sum of singular series
ρ(n; 1, a1, a1, a) corresponding to these quadratic forms she obtained compu-
tationally convenient formulas and derived exact formulas for the number of
representations of a natural number by 5 concrete quadratic forms of the same
type.

In order to illustrate the method in the case of quadratic forms with six
variables of type (4), Lomadze ([64], [65]) considered the quadratic form

f = {a1, a1, a2, a2, a3, a3}. (5)

He proved that the function θ(τ ; a1, a1, a2, a2, a3, a3) is the entire modular form
of level 4a (a is the least common multiple of a1, a2 and a3) and weight 3. For the
sums of singular series corresponding to this quadratic form, using again Hardy–
Kloosterman’s method Lomadze obtained computationally convenient formulas,
for each concrete form found additional functions in the form of the sum of
products of theta-functions with characteristics, and proved identities of type
(3). In particular, he obtained exact formulas for the number of representations
of a natural number by 14 concrete quadratic forms of such kind. In the same
manner, Beridze and Gogishvili [6] obtained exact formulas for the number of
representations of a natural number by the quadratic forms {1, 1, 1, 1, 1, 7} and
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{1, 7, 7, 7, 7, 7}. By the same method Beridze [5] considered the quadratic forms
with eight variables

f1 = {a, a, a, a, a′, a′, a′, a′} and f2 = {a, a, a′, a′, a′, a′, a′, a′}. (6)

For the sums of the corresponding singular series she obtained computationally
convenient formulas and, for each concrete quadratic form, determined an addi-
tional term. She also showed the existence of identities of type (3) and derived
exact formulas for the number of representations of a natural number by four
concrete forms of type f1 and by eight concrete forms of type f2. The quadratic
forms studied by the Georgian mathematicians belong to multi-class genera.

Now let us consider the quadratic forms f = {a1, a2}. The singular series
corresponding to these quadratic forms are divergent. Therefore, unlike the
case of quadratic forms with s ≥ 4 variables, one cannot say that θ(τ ; a1, a2)
generates a singular series of the quadratic form f = {a1, a2}. But Lomadze
([60], [63]) proved that the function ψ(τ, z; a1, a2) which, by definition, is reg-
ular for Re z > 1, can be analytically extended in a neighborhood of z = 0.
Accordingly, he defined the function θ(τ ; a1, a2) by the equality

θ(τ ; a1, a2) = ψ(τ, z; a1, a1)
∣∣
z=0

.

Furthermore, using the lemmas, essentially due to Streefkerk, Lomadze proved
that the so defined function θ(τ ; a1, a2) is an entire modular form of level 4a1a2

and weight 1. By the functional equation of the Dirichlet L-function and some
results of Hecke, he determined the Fourier expansion of θ(τ ; a1, a2):

θ(τ ; a1, a2) = 2 +
∞∑

n=1

ρ(n; a1, a2)Q
n.

Here ρ(n; a1, a2) simply denotes the Fourier coefficient of θ(τ ; a1, a2) and not a
singular series. Lomadze took the function 1

2
θ(τ ; a1, a2) as the main function

and its Fourier coefficient 1
2
ρ(n; a1, a2) as the main term. Next, he obtained

computationally convenient formulas for computing the values of ρ(n; a1, a2).
We will call the function ρ(n; a1, a2) a “generalized singular series” and its value
a “sum of a generalized singular series”. Finally, for each quadratic form f =
{a1, a2} Lomadze chose an individual additional function again as a sum of
products of theta-functions with characteristics and established identities of
type (3). For the first time he ([60], [63]) obtained exact formulas for the number
of representations of a natural number by eight concrete binary quadratic forms
of type (4) belonging to multi-class genera.

In the same lines, Beridze [3] obtained formulas for the number of representa-
tions of a natural number by two concrete pairs of binary quadratic forms of type
(4). Using the Dirichlet formulas for the number of representations of a natural
number by all primitive binary quadratic forms with a negative discriminant,
in combination with the formulas of Lomadze for the number of representations
of a natural number by diagonal binary quadratic forms, Vepkhvadze [133] ob-
tained exact formulas for the number of representations of a natural number
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by all primitive non-diagonal quadratic forms with discriminants −44, −68 and
−80.

Let us now consider the quadratic forms f ={a1, a2, a3}. In this case Lomadze
[59] proved that the function ψ(τ, z; a1, a2, a3), regular for Re z> 1

2
by definition,

allows an analytical extension in a neighborhood of the point z = 0. Assuming
(similarly to the case f = {a1, a2}) that θ(τ ; a1, a2, a3) = ψ(τ, z; a1, a2, a3)

∣∣
z=0

,
he proved that the function θ(τ ; a1, a2, a3) is regular for Im z > 0 and determined
the Fourier expansion

θ(τ ; a1, a2, a3) = 1 +
∞∑

n=1

ρ(n; a1, a2, a3)Q
n.

The weight of the function θ(τ ; a1, a2, a3) is 3
2
. In order to avoid the study of

entire modular forms with half-integral weight, Lomadze considered the function

ψ(τ) =
3∏

k=1

ϑ00(τ ; 0, 2ak)− θ(τ ; a1, a2, a3)

−
ω∑

k=1

Ak

3∏
i=1

ϑgki
hki

(τ ; 0, 2Nki
), (7)

where Ak is any constant and ϑ00(τ ; 0, 2ak), ϑgki
hki

(τ ; 0, 2Nk) are theta-functions

with characteristics. He proved that if the function ψ(τ) satisfies certain con-
ditions, then ψ4(τ) is an entire modular form of level 4a (a is the least com-
mon multiple of a1, a2, a3) and weight 6. Lomadze also proved that the sin-
gular series corresponding to the quadratic form f = {a1, a2, a3} is convergent
but not absolutely convergent. Therefore the Fourier coefficients ρ(n; a1, a2, a3)
of the function θ(τ ; a1, a2, a3) are in fact singular series of the quadratic form
f = {a1, a2, a3} and θ(τ ; a1, a2, a3) is the generating function just like in the
case where the number of variables of the quadratic form f = {a1, a2, . . . , as} is
more than 3. He obtained convenient formulas for computing the sum of the se-
ries ρ(n; a1, a2, a3) ([70], [58], [59], [68]). Consequently, for the quadratic forms
f = {a1, a2, a3} the function θ(τ ; a1, a2, a3) is the main function. Finally, for
each quadratic form f = {a1, a2, a3} Lomadze chose additional functions in the
form of sums of products of such theta-functions with characteristics that the
function defined by (7) is identically equal to zero. For the first time he ([67],
[78]) obtained formulas for the number of representations of a natural number
by 8 concrete ternary quadratic forms of type (4) and of multi-class genera.

Using the same method, Sulakvelidze [114] obtained exact formulas for the
number of representations of a natural number by 6 concrete ternary quadratic
forms of type (4) belonging to multi-class genera.

Remark. Throughout the section we followed the convention that (i) if the
number of variables of a quadratic form f is s ≥ 3, then θ(τ ; f) denotes the
generating function of the singular series ρ(n; f) and (ii) if s = 2, then θ(τ ; f) =
ψ(τ, z; f)

∣∣
z=0

and ρ(n; f) is its Fourier coefficient called the “generalized singular
series”.
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2.3. Lomadze’s general combined method for obtaining exact formulas for
the number of representations of a natural number by diagonal binary quadratic
forms was extended by Vepkhvadze ([131], [132], [135], [136]) to all (not neces-
sarily diagonal) integral positive binary quadratic forms. To this end, he first
established several relations between double Gaussian sums, defined a function
ψ(τ, z; f) (similar to the function defined in Subsection 2.2) for non-diagonal
binary quadratic forms f – separately for the cases of even and odd discrimi-
nants, and then proved that the latter function can be extended analytically in
a neighborhood of z = 0. Next Vepkhvadze obtained convenient formulas for
computing the sum of the corresponding generalized singular series and derived
exact formulas for the number of representations of a natural number by 23
particular non-diagonal binary quadratic forms of multi-class genera. His re-
sults also include exact formulas for the number of representations of a natural
number by 3 quadratic forms of the same genus. Such formulas were earlier
obtained by Van der Blij [8], but his method does not extend to exact formulas
for the number of representations by other binary quadratic forms.

Jones and Pall [37] proved that there exist only 82 primitive positive quadratic
forms of type f = {a1, a2, a3} and of one class genus. Using the formulas for the
singular series ρ(n; a1, a2, a3), Lomadze ([59], [68], [70]) derived formulas for the
number of representations of a natural number by all these 82 quadratic forms.
Some of these formulas, using a different method, were previously obtained by
Uspenskij ([125], [126]) and, also, by Maass [99]. But Lomadze’s formulas are all
stated in a computationally very convenient form. Further, these formulas di-
rectly imply the results of Dickson and Jones (see, e.g., [11, pp. 111–113]) on the
arithmetic progressions whose terms are exactly the numbers not representable
by the mentioned quadratic forms.

Lomadze’s general combined method for deriving exact formulas for the num-
ber of representations of a natural number by diagonal ternary quadratic forms
was extended by Sulakvelidze ([117], [116], [119]) to any ternary non-diagonal
integral positive quadratic forms. To this end, using an argument of Vep-
khvadze ([135], [136]), he (i) established several important relations between
triple Gaussian sums, (ii) proved that the singular series, corresponding to any
non-diagonal ternary positive quadratic form, is convergent but not absolutely
convergent, (iii) obtained computationally convenient formulas for the sum of
this series, and (iv) derived exact formulas for the number of representations of
a natural number by 21 particular non-diagonal ternary quadratic forms (5 of
which are of one-class and the rest 16 of two-class genera). He also determined
those arithmetic progressions whose terms and only those are not representable
by the 5 afore-mentioned quadratic forms. As for the other 16 quadratic forms
(of two-class genera), he only managed to determine those arithmetic progres-
sions whose terms are not representable by these forms.

3.1. The exact formulas for the number of representations of a natural num-
ber by quadratic forms of multi-class genera with two, three, four, six and eight
variables, obtained by Kloosterman and the Georgian mathematicians, are not
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of the Liouville type. The arithmetic nature of the sums of singular series, cor-
responding to positive integral quadratic forms, is straightforward – these sums
are simple arithmetic functions depending only on the divisors of the natural
numbers being represented. But the additional terms of these exact formulas
are defined only as Fourier coefficients of the products of Jacobi theta-functions
or theta-functions with characteristics. The clarification of the arithmetic na-
ture of these additional terms is a big challenge. Consequently, the problem
was posed to define additional functions whose Fourier coefficients have a sim-
ple arithmetic meaning. Lomadze [64] proved that for a natural number N the

function
s∏

k=1

ϑgkhk
(τ ; 0, 2Nk) is an entire modular form of level 4N and weight

− s
2

provided that 2 | s, 2 | gk, Nk | N (k = 1, 2, . . . , s) and 4 | N
s∑

k=1

h2
k

Nk
. This

result made it possible to reveal the arithmetic meaning of the additional terms
for the exact formulas that were constructed by him for the above-mentioned
14 quadratic forms in six variables. These additional terms turned out to be
sums over certain representations of integers by quaternary quadratic forms.
Vepkhvadze [134] investigated quadratic forms of type f = {a, a, a, a′, a′, a′},
summed up the corresponding singular series, and obtained computationally
convenient formulas for its sum. Namely, for 3 quadratic forms of this type he
obtained exact formulas similar to those by Lomadze [64]. Using the same result
of Lomadze, Beridze [4] revealed the arithmetic meaning of the additional terms
of the exact formulas for the afore-mentioned 12 concrete quadratic forms with
eight variables of type (6). The result was similar to that for six variables. She
derived also 4 exact formulas for quadratic forms f = {a1, a2, . . . , a8} where the
coefficients of an odd number of variables are equal to 1 and the rest coefficients
are equal to 2.

For quaternary quadratic forms the question remained open. Also, as we saw
in the case of quadratic forms with six and eight variables, the obtained formulas
are not of the Liouville type. The only exceptions are Vepkhvadze’s ([130], [129])
Liouville type formulas for the number of representations of a natural number
by the quadratic forms {1, 1, 1, 1, 4, 4}, {1, 1, 4, 4, 4, 4} and {1, 1, 2, 2, 4, 4}, first
published without proof by Liouville ([49], [50], [51]), and also the quadratic
form {1, 1, 1, 3, 3, 3}. In the latter case an incomplete formula was earlier pub-
lished by Uspenskij [125]. Vephkhvadze’s all four formulas are of the Liouville
type and based on the above-mentioned result of Lomadze.

3.2. In order to fill the existing gap, Lomadze [71] studied how the first and
second derivatives of theta-functions with characteristics behave with respect to
the action of a linear substitution of the congruence group Γ0(4N). This offered
a possibility to construct cusp forms whose Fourier coefficients have a simple
arithmetic meaning. Namely, Lomadze proved that if certain conditions are met
(similar to those mentioned in Subsection 3.1), then for a natural number N :

(i) the function ϑ′g1h1
(τ ; 0, 2N1)ϑg2h2(τ ; 0, 2N2) is a cusp form of weight 2 and

character χ(δ) =
(

∆
|δ|

)
with respect to the congruence group Γ0(4N) (here ∆
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refers to the determinant of any integral positive quaternary quadratic form for
which this function is used, and

( ·
·
)

here and in what follows stands for Jacobi
symbol if not being defined otherwise),

(ii) the functions

ϑ′g1h1
(τ ; 0, 2N1)ϑ

′
g2h2

(τ ; 0, 2N2)

and
1

N1

ϑ′′g1h1
(τ ; 0, 2N1)ϑg2h2(τ ; 0, 2N2)− 1

N2

ϑg1h1(τ ; 0, 2N1)ϑ
′′
g2h2

(τ ; 0, 2N2)

are cusp forms of weight 3 and character χ(δ) = sgn δ
(−∆
|δ|

)
with respect to con-

gruence group Γ0(4N) (∆ is the determinant of any positive integral quadratic
form with six variables for which this function is used).

Using the function (i), Lomadze ([66], [69]) obtained exact Liouville type
formulas for the number of representations of a natural number by the quadratic
forms {1, 1, 1, 6}, {1, 1, 1, 7}, {1, 1, 1, 9}, {1, 1, 1, 15}, {1, 1, 1, 24}, {1, 1, 1, 32}
and {3, 8, 8, 8}; Beridze [2] did the same for the quadratic forms {1, 6, 6, 6},
{1, 7, 7, 7}, {2, 2, 2, 3} and {2, 3, 3, 3}; and Gongadze [30] for the quadratic forms
{1, 2, 32, 32}, {1, 8, 32, 32} and {1, 32, 32, 32}.

The described method for producing Liouville type formulas was further
extended by Gogishvili ([19], [21]) to any diagonal integral quaternary positive
quadratic forms and obtained handy formulas for the sums of the singular series’
corresponding to these forms. He also showed in this general case that the
function θ(τ ; a1, a2, a3, a4), which is an entire modular form of level 4a (a =
lcm(a1, a2, a3, a4)) and weight 2, can serve as a main function. For several par-
ticular quadratic forms individually, again using the function (i), Gogishvili
([20], [21]) found additional functions and proved equalities of type (3). In
particular, he was the first to obtain Liuoville type exact formulas for the num-
ber of representations of a natural number by the quadratic forms {1, 1, 2, 12},
{1, 1, 16, 32}, {1, 2, 8, 32}, {1, 3, 36, 36}, {1, 4, 9, 36}, {1, 4, 16, 32}, {1, 8, 8, 32},
{1, 12, 36, 36}, {1, 16, 16, 32}, {3, 4, 9, 36} and {4, 9, 12, 36}. Using these results
by Gogishvili, the function (1) and his own results on non-diagonal binary qua-
dratic forms, Vepkhvadze [137] obtained Liuoville type exact formulas for the
number of representations of a natural number by 3 non-diagonal quaternary
quadratic forms which are the sums of two binary non-diagonal quadratic forms.

Using the functions (ii), Lomadze [73] obtained Liouville type exact formu-
las for the number of representations of a natural number by quadratic forms
{1, 1, 1, 5, 5, 5}, {1, 1, 1, 7, 7, 7} and {1, 1, 1, 8, 8, 8}. He computed the sums of
the corresponding singular series with the use of Vepkhvadze’s [134] formulas
mentioned in Subsection 3.1.

Malyshev [100] constructed, studied and represented in terms of an infinite
product the most general Hardy–Littlewood singular series Hg;b1,...,bs(f ; n) that
corresponds to the integral positive quadratic form f with s ≥ 4 variables.
Malyshev also showed that by means of this series the main term of an asymp-
totic formula for the number of all entire representations (x1, x2, . . . , xs) of n
by f can be expressed if xi ≡ bi (mod g) (i = 1, . . . , s). Using some arguments
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of Streefkerk, Beridze [1] summed up this series, namely: if it is assumed that
the determinant of the quadratic form f is ∆ = r2ω (ω is square-free) and
v =

∏
p|n

p-2∆g

pw, then for even s

Hg;b1,...,bs(f ; n) = χ(2)
∏

p|∆g
p>2

χ(p)
∏

p|rg
p>2

(
1−

(
(−1)s/2ω

p

)
p−s/2

)−1

× L
(s

2
, (−1)s/2ω

) ∑

d|v

(
(−1)s/2∆

d

)
d1−s/2, (8)

where
( (−1)s/2ω

p

)
is the Legendre symbol. She also obtained a similar formula

for odd s. Using the functions (ii), Beridze and Gogishvili [6] obtained Liouville
type exact formulas for the number of representations of a natural number by
the quadratic forms {1, 1, 1, 1, 1, 5}, {1, 5, 5, 5, 5, 5} and {1, 8, 8, 8, 8, 8}. The
sums of singular series corresponding to these quadratic forms were calculated
by means of formula (8). Sulakvelidze [121] used the functions (ii) to obtain
Liouville type formulas for the number of representations of a natural number
by eight non-diagonal quadratic forms in six variables. He calculated the sums
of the singular series corresponding to these quadratic forms by means of (8).

3.3. Jones and Pall [37] proved that there exist only 20 so-called regular
primitive integral positive quadratic forms

f = {a1, a2, a3} = a1x
2
1 + a2x

2
2 + a3x

2
3,

which belong to multi-class genera. They also discovered such arithmetic pro-
gressions related to the genera of these quadratic forms, whose terms are not
representable by the corresponding form f . They also gave all other quadratic
forms from the afore-mentioned multi-class genera, which are the so-called semi-
regular primitive quadratic forms. Below we shall use the following notation:

g = {c11, c22, c33, c23, c13, c12}
= c11x

2
1 + c22x

2
2 + c33x

2
3 + 2c23x2x3 + 2c13x1x3 + 2c12x1x2.

Jones and Pall also found the integers which, like the numbers of the afore-
mentioned arithmetic progressions, are not representable by the corresponding
form g. Lomadze ([67], [78]) proved that if the function

ψ(τ) =
3∏

k=1

ϑ00(τ ; 0, 2ak)− θ(τ ; a1, a2, a3)− Aϑ′gh(τ ; 0, 2N)

satisfies certain conditions, then for a given natural number N the function
ψ4(τ) is a cusp form of level 4N and weight 6. He used this result to obtain
exact formulas for the number of representations of a natural number by the
following six regular quadratic forms f belonging to two-class genera and by
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the corresponding semi-regular quadratic forms g:

f1 = {1, 1, 16}; g1 = {2, 2, 5,−1,−1, 0};
f2 = {1, 4, 16}; g2 = {4, 4, 5, 0,−2, 0};
f3 = {1, 16, 16}; g3 = {4, 9, 9, 1, 2, 2};
f4 = {1, 8, 64}; g4 = {4, 8, 17, 0,−2, 0};
f5 = {1, 3, 36}; g5 = {3, 4, 9};
f6 = {1, 12, 36}, g6 = {4, 9, 12}.

Formulas for the number of representations of an integer by some of these qua-
dratic forms had been known previously, but all of them were ineffective when
used for computations, while the formulas obtained by Lomadze turned out
very convenient. Thus, for instance, if n = 2αu (α ≥ 0, 2 - u), u = s2k (k is
square-free), then for n = s2

r(n, f1) = ρ(n; f1) +

(−1

s

)
2s, r(n, f4) = ρ(n; f4) +

(−2

s

)
s,

and for all other values of n

r(n, f1) = ρ(n; f1), r(n, f4) = ρ(n; f4).

The sums of the singular series ρ(n; fi) are calculated by Lomadze’s formulas
which had already been discussed above. Since the quadratic forms fi and the
corresponding semi-regular quadratic forms gi belong to the same two-class gen-
era, by a theorem of Siegel ρ(n; fi) = ρ(n; gi) and the corresponding additional
terms differ only in sign. The obtained formulas immediately imply the results
of Jones and Pall on the numbers not representable by quadratic forms of type
f and g.

Sulakvelidze ([117], [119], [120]) obtained exact formulas for the number of
representations of a natural number by twelve non-diagonal positive regular
and semi-regular ternary quadratic forms, which belong to two-, three- and
even four-class genera. The additional terms in his formulas have the same
simple arithmetic meaning as in Lomadze’s formulas. Using his own formulas,
Sulakvelidze established the arithmetic progressions whose terms and only they
are not representable by the corresponding quadratic forms.

Watson [150] proved that there exists the so-called universal class of posi-
tive integral ternary quadratic forms. It is also known that there is a finite
number of universal classes of positive integral quaternary quadratic forms. Su-
lakvelidze [122] called the genus of integral positive quadratic forms universal
if any natural number is representable at least by one quadratic form from this
genus. He proved that there exists no universal genus of ternary quadratic forms
and there exists an infinite number of universal genera of quaternary quadratic
forms. Moreover, he gave an effective method of defining the numbers which
are not representable by these genera.
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3.4. It is a well known fact that for any odd natural n

∑

(6x1+1)2+(6x2+1)2+(6x3+1)2=3n

(−1)x1+x2+x3 =

{(−1
s

)
s if n = s2, s > 0,

0 otherwise,

∑

x2
1+4x2

2+4x2
3=n

2-x1, x1>0

(−1)x3 =

{(−1
s

)
s if n = s2, s > 0,

0 otherwise.

Both equalities were proved by means of the theory of elliptic functions, the
first of them by Jacobi and the second by Liouville. Venkov ([127], [128]) used
his own arithmetic theory of quaternions to show that both equalities are true
and that for any odd natural n

∑

x2
1+x2

2+x2
3=11n

2-x1, 2-x2, 2-x3
x1>0, x2>0, x3>0

(
11

x1x2x3

)
=

{
−3

(−1
s

)
s if n = s2, s > 0,

0 otherwise.

Lomadze [84] proved the above three equalities as well as some others by means
of the theory of entire modular forms. One of these equalities was

∑

x2
1+x2

2+x2
3=9n

2-x1, 2-x2, 2-x3
x1>0, x2>0, x3>0

(
3

x1x2x3

)
=

{
−3

(−1
s

)
s if n = s2, s > 0,

0 otherwise.

3.5. Lomadze [90] proved that if for a given natural N the functions

(i) ψ5(τ) =
5∏

k=1

ϑ00(τ ; 0, 2ak)− θ(τ ; a1, . . . , a5)

− Aϑ′g1h1
(τ ; 0, 2N1)

3∏

k=2

ϑgkhk
(τ ; 0, 2Nk),

(ii) ψ7(τ) =
7∏

k=1

ϑ00(τ ; 0, 2ak)− θ(τ ; a1, . . . , a7)

− A

2∏

k=1

ϑ′gkhk
(τ ; 0, 2Nk)ϑg3h3(τ ; 0, 2N3),

(iii) ψ9(τ) =
9∏

k=1

ϑ00(τ ; 0, 2ak)− θ(τ ; a1, . . . , a9)

− A

3∏

k=1

ϑ′gkhk
(τ ; 0, 2Nk)

(9)

with any constant A satisfying certain conditions, then they are cusp forms
with the corresponding multiplier systems with respect to the congruence group



764 G. LOMADZE

Γ0(4N) and with weights 5
2
, 7

2
, 9

2
, respectively. In formula (9) Lomadze assumed

that a1 = · · · = a9 and chose functions ϑgkhk
(τ ; 0, 2Nk) such that the function

ψ9(τ) satisfy the requirements. Thus it became possible to choose a constant
A such that the function ψ9(τ) identically vanishes. For the Fourier coefficients
of the expansion of ψ9(τ) he obtained the formula [87]

r9(n) = ρ9(n) +
32

17

∑

x2
1+x2

2+x2
3=3n

x1>0, x2>0, x3>0

(
x1x2x3

3

)
x1x2x3,

where
(

x1x2x3

3

)
is the generalized Legendre symbol and ρ9(τ) stands for the sum

of the singular series that corresponds to the sum of nine squares of integers
(cf. [53], [76]). This formula essentially improves Mordell’s conjecture that the
number of integral representations of a natural number n by the quadratic form
f = x2

1 +x2
2 + · · ·+x2

9 can be defined by solving an equation consisting of seven
squares.

Not long ago Lomadze [97] obtained exact formulas for the number of repre-
sentations of a natural number by the quadratic form x2

1 + x2
2 + · · · + 4x2

9. In
this case, too, the problem reduces to solving an integral equation consisting of
three squares.

4.1. Throughout this subsection f will denote an integral primitive positive
quadratic form with s variables. The question is posed as to the existence of
formulas of the type

r(n; f) = ρ(n; f). (10)

Rankin [105] proved that such formulas do not exist in particular cases where
f is the sum of s squares of integers, s > 8. Gogishvili [22] extended this result
of Rankin to any quadratic form f . Namely, he showed that for a quadratic
form f with s ≥ 4 variables there is a constant C = C(f) such that formulas
of type (10) do not exist if the determinant ∆ of f is greater than C. Hence it
follows that there exists only a finite number of those classes of quadratic forms
f for which such formulas exist. In particular, all quadratic forms with s ≥ 4
variables for which ∆ > C belong to multi-class genera.

The following result is also due to Gogishvili [24]: ρ(n; f) → 0 as s →∞ if the
number n representable by f is chosen properly. Such numbers n are constructed
explicitly and a formula of type (10) does not exist for any of the quadratic forms
f with s ≥ 34. Later he [25] proved the nonexistence of formulas of type (10) for
any quadratic form f with s variables, where 11 < s < 34, perhaps except for
some quadratic forms with s = 12 and s = 16 variables. In addition, Gogishvili
[23] showed that for diagonal ternary quadratic forms f , formulas of type (10)
exist only if these quadratic forms belong to one-class genera.

For s ≥ 4, the results by Malyshev [100] imply that

ρ(n; f) = O
(
ns/2−1+ε∆1/2

)
,

where ε is any positive number.
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Gogishvili [27] essentially improved this estimate by proving

ρ(n; f) = O
(
n∆−1/3 ln ln ∆ ln ln n

)
if s = 4,

ρ(n; f) = O
(
ns/2−1∆−(s−2)/2(s−1)

)
if s ≥ 5. (11)

Estimate (11) cannot be further improved since for any s ≥ 5 there is a quadratic
form with s variables for which estimate (11) is unimprovable.

4.2. Let F (τ ; f) denote a theta-series of a genus containing a primitive
integral quadratic form f . Siegel [108] proved that if the number of variables of
a quadratic form f (both positive-definite and indefinite) is s > 4, then

F (τ ; f) = E(τ ; f), (12)

where E(τ ; f) is the Eisenstein series defined by

E(τ ; f) = 1 +
e(2m−s)πi/4

|d|1/2

∞∑
q=1

∞∑
H=−∞
(H,q)=1

S(fH, q)

qs/2(qτ −H)m/2(qτ −H)(1−m)/2
.

Here Im τ > 0, m and d are respectively the inertia index and the discriminant
of f , S(fH, q) is the Gaussian sum. From formula (12) follows the well-known
Siegel’s theorem [108]: the sum of the singular series corresponding to the qua-
dratic form f is equal to the average number of representations of a natural
number by a genus that contains the form f .

Later Ramanathan [104] proved that for any primitive integral quadratic form
f with s ≥ 3 variables (except for zero forms with variables s = 3 and zero forms
with variables s = 4 whose discriminant is a perfect square), there is a function

E(τ, z; f) = 1+
e(2n−s)πi/4

|d|1/2

∞∑
q=1

∞∑
H=−∞
(H,q)=1

S(fH, q)

qs/2(qτ −H)m/2(qτ −H)(s−m)/2|qτ −H|z ,

which he called the Eisenstein–Siegel series and which is regular for any fixed τ
when Im τ > 0 and Re z > 2− s

2
, analytically extendable in a neighborhood of

z = 0, and that
F (τ ; f) = E(τ, z; f)

∣∣
z=0

. (13)

For s > 4 the function E(τ, z; f)|z=0 coincides with the function E(τ ; f), and
the formula (13) with Siegel’s formula (12).

Vepkhvadze ([139], [140]) proved that the function E(τ, z; f) is analytically
extendable in a neighborhood of z = 0 also in the case where f is any nonzero
integral binary quadratic form (both positive-definite and indefinite) and that

F (τ ; f) =
1

2
E(τ, z; f)

∣∣
z=0

. (14)

As has already been said in Subsection 2, the Georgian mathematicians proved
this fact at first only for diagonal positive quadratic forms with s ≥ 2 variables
and for an arbitrary positive binary quadratic form. Ramanathan believed that
this result fails to hold for positive and nonzero indefinite binary quadratic
forms.
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It follows from (14) that half of “the sum of a generalized singular series”
that corresponds to a binary quadratic form is equal to the average number
of representations of a natural number by the genus containing this quadratic
form. In particular, if a quadratic form belongs to a one-class genus, then for
natural n

r(n; f) =
1

2
ρ(n; f). (15)

Vepkhvadze [138] also showed the existence of positive integral binary forms
which belong to multi-class genera, but for which equality (15) is true.

Gogishvili [26] proved that formulas of type (15) for any natural n exist only
for a finite number of classes of integral primitive binary quadratic forms f with
integral coefficients. According to him, a formula of type (15) does not exist for
any binary form of the genus with the number of classes ≥ 3.

Van der Blij [9] considered the function

E(τ ; f,B, g) = δ +
e(2m−s)πi/4

gs/2|d|1/2

∞∑
q=1

∞∑
H=−∞
(H,q)=1

S(fH, q, B, g)

qs/2(qτ −H)m/2(qτ −H)(s−m)/2
,

where g is a natural number, B = (b1, b2, . . . , bs) is a one-column matrix with
integer entries, δ = 1 if bj ≡ 0 (mod g) (j = 1, 2, . . . , s) and δ = 0 otherwise,
S(fH, q, B, g) is the Gaussian sum of certain type. He proved that if f is
an integral positive quadratic form with s variables, s > 4, then the Fourier
coefficients of the Eisenstein series are the Hardy–Littlewood singular series
that corresponds to the system of equations

f(x1, x2, . . . , xs) = n x ≡ B (mod g).

Here n is a natural number and x is a variable column vector with s components.
Vepkhvadze [140] proved that the function

E(τ, z; f, B, g)

= δ +
e(2m−s)πi/4

gs/2|d|1/2

∞∑
q=1

∞∑
H=−∞
(H,q)=1

S(fH, q, B, g)

qs/2(qτ −H)m/2(qτ −H)(s−m)/2|qτ −H|z

regular for any fixed τ with Im τ > 0 and Re z > 2 − s
2
, can be analytically

extended in a neighborhood of z = 0 when f is any integral quadratic form with
s ≥ 2 variables (exceptions are zero forms with s = 2 or 3 variables and zero
forms with s = 4 variables whose discriminant is a perfect square) and when
f(b1, . . . , bs) ≡ 0 (mod g). In addition, for positive quadratic forms he derived
formulas for computing the Fourier coefficients of the series E(τ, z; f,B, g)|z=0.

5.1. Hecke [34] constructed a basis of a space of second order spherical
functions with respect to a positive integral quadratic form with an even number
of variables, and Lomadze [72] constructed a basis of a space of fourth order
spherical functions with respect to the above-mentioned form. Lomadze ([75],
[79]) used this result to construct a basis of a space of cusp forms of type
(−6, q, 1) when q = 3, 5, 7, 11, and the basis of a space of cusp forms of type
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(−6, q, χ) when q = 5, 13, 17 in the form of generalized four-fold theta-series
with spherical functions. Kachakhidze [38] constructed a basis of a space of
cusp forms of type (−6, q, 1) when q = 13, 17. Using Hecke’s basis of a space of
second order spherical functions constructed again in terms of generalized four-
fold theta-series with spherical functions, Gongadze [31] constructed a basis of
a space of cusp forms of type (−4, q, 1) when q = 5, 7, 11 and Shavgulidze[106]
when q = 13, 19, 23. Shavgulidze [107] also constructed a basis of a space of
cusp forms of type (−4, q, χ) when q = 13, 29. It should be remarked here that
the construction of the latter basis required the finding of a reduced positive
quaternary quadratic form with discriminant q2. Shavgulidze proposed quite a
simple method of finding such a form when q is an arbitrary odd prime number.
Until then such quadratic forms had been known only when q = 3, 5, 7 (Germann
[16]), q = 11 (Hecke [34]) and q = 17 (Hermann [35]).

Lomadze, Gongadze, Shavgulidze and Kachakhidze also showed that the con-
structed bases of spaces of cusp forms can be used to derive exact formulas for
the number of representations of a natural number by quadratic forms of the
respective type. Later Lomadze ([74], [77], [80]) constructed the bases of spaces
of spherical functions of arbitrary order with respect to the quadratic forms
mentioned above and used these bases for constructing as generalized four-fold
theta-series the bases of spaces of cusp forms

of type (−8, q, 1) for q = 3, 5, 7,
of type (−8, q, χ) for q = 5, 13,
of type (−10, q, 1) for q = 3, 5, and
of types (−10, 5, χ) and (−12, 5, χ).

5.2. Let F1 = x2
1 + x1x2 + ax2

2, where a is a given natural number, be the
quadratic form with a negative odd discriminant q, and Fk be the direct sum
of k quadratic forms F1. Denote by r(n; Fk) the number of representations of a
natural number n by the quadratic form Fk. For the first time ever Petersson
[103] obtained exact formulas for the function r(n; F2) when a = 1, 2, 3, 6, i.e.,
when q = −3,−7,−11,−23, respectively; for the function r(n; F3) when a =
1, 2; for the function r(n; Fk) when k = 4, 5, 6 and a = 1. Lomadze ([82], [81],
[83]) obtained exact formulas for the function r(n; Fk) for all 2 ≤ k ≤ 20 when
F1 = x2

1 + x1x2 + x2
2, and for all 2 ≤ k ≤ 11 when F1 = x2

1 + x1x2 + 2x2
2.

To this end, for all k individually he constructed the bases of spaces of cusp
forms Sk(Γ0(3), χk) and Sk(Γ0(7), χk) in terms of generalized multiple theta-
series with spherical functions. His tools were the standard spherical functions
discussed in Subsection 5.1, also Hecke’s results on cusp forms and Eisenstein
series. The obtained formulas like the formulas for the function r2k(n) from
Section 1, obey a certain law.

Kachakhidze [39] succeeded in obtaining for the function r(n; Fk) somewhat
different exact formulas for all k, 6 ≤ k ≤ 17, when F1 = x2

1 + x1x2 + x2
2. He

constructed not one basis but a whole system of bases of the space Sk(Γ0(3), χk)
for k ≥ 6. He also constructed a system of bases of the space Sk(Γ(7), χk) for
k ≥ 3 and he obtained formulas for the function r(n; Fk) for all 3 ≤ k ≤ 11 when
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F1 = x2
1 +x1x2 +2x2

2. Further, he constructed a basis of the space Sk(Γ(11), χk)
for any integer k ≥ 3 and derived formulas for the function r(n; Fk) for all
3 ≤ k ≤ 8 when F1 = x2

1 + x1x2 + 3x2
2. The formulas obtained by Kachakhidze

obey a certain law.
Let now Φ2 be the integral positive reduced quadratic form whose discrim-

inant is d = 5 or 13, and Φ2m be the direct sum of m quadratic forms Φ2.
Kachakhidze [40] constructed the bases of spaces of cusp forms S2m(Γ0(d), χm)
for m ≥ 2 and use these bases to obtain exact formulas for the function r(n; Φ2m)
for all m, 2 ≤ m ≤ 5, when d = 5, and for all m, 2 ≤ m ≤ 4, when d = 13.

6.1. As has been mentioned above, mathematicians searched for the addi-
tional terms of exact formulas for the number of representations of a natural
number by a positive integral quadratic form that have a simple arithmetic
meaning among the products of Jacobi theta-series or among the products of
theta-series with characteristics and their derivatives or among the Fourier co-
efficients of generalized multiple theta-series with spherical functions.

Kloosterman [42] generalized an ordinary theta-function with characteristics.
The next generalization of this function is due to Vepkhvadze ([141], [143]). Let
f be an integral positive quadratic form with s variables, A be its matrix and N
be its level, X be a variable column vector with s components, τ be a complex
variable (Im τ > 0), z be a column vector with s complex components, g and h
be special vectors with respect to the matrix A and with integral components
for which Ag ≡ 0 (mod N) and Ah ≡ 0 (mod N), Pν(X) be a spherical function
of order ν with respect to the quadratic form f . Then the function

ϑgh(z | τ ; Pν , f) =
∑

X≡g (mod N)

(−1)
hT A(X−g)

N2 Pν(X)e
πiτXT AX

N2 e
2πiXT Az

N

is a generalized s-fold theta-series with characteristics and spherical functions.
Vepkhvadze established the basic properties of this function and studied its
behavior with respect to the subgroup of linear permutations Γ0(N). He proved
the theorem which gives a necessary and sufficient condition for a certain linear
combination of such theta-functions to be an entire modular form of the type(− (

s
2

+ ν
)
, N, v(L)

)
, where ν is the order of a spherical function with respect

to a positive integral quadratic form with s ≥ 2 variables, N is the level of this
quadratic form, and v(L) is a system of multipliers with respect to the group
Γ0(N) (L is any permutation matrix of Γ0(N)). As has already been said in
Section 3, the sufficient condition of Vepkhvadze’s theorem had been obtained
by Lomadze previously only for a few particular cases and only for an ordinary
theta-function with characteristics. Vepkhvadze ([142], [144]) used his theorem
to derive exact formulas for the number of representations of a natural number
by quadratic forms of the type

f =

s1∑
i=1

x2
i + 2

s2∑
i=s1+1

x2
i + 4

5∑
i=s2+1

x2
i
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with five variables when 1 ≤ s1 ≤ 4 and 1 ≤ s2 ≤ 4, and by quadratic forms of
the type

f =
s∑

i=1

x2
i + 2

7∑
i=s+1

x2
i

with seven variables when 1 ≤ s ≤ 6, which belong to multi-class genera. The
additional terms of the obtained formulas are the sums extended to certain
representations of integers by positive diagonal ternary quadratic forms which
belong to one-class genera.

Using the generalized theta-functions with characteristics and spherical func-
tions introduced by Vepkhvadze, Tsalugelashvili [123] constructed the bases of
spaces of cusp forms corresponding to positive diagonal quadratic forms of level
8 and with an even number of variables, i.e., to quadratic forms of the type

f =
k∑

i=1

x2
i + 2

s∑

i=k+1

x2
i , 2 | s.

Vepkhvadze and Tsulugelashvili [145] used these bases to obtain exact formulas
for the number of representations of a natural number by all such forms when
s = 10.

6.2. Lomadze ([71], [86], [88]) studied the behavior of n-th order deriva-
tives of ordinary theta-functions with characteristics with respect to the group
Γ0(4N). He proved that if certain conditions are satisfied, then for a given
natural number N the functions

(i)
1

N1

ϑ′′′g1h1
(τ ; 0, 2N1)ϑ

′
g2h2

(τ ; 0, 2N2)− 1

N2

ϑ′′′g2h2
(τ ; 0, 2N2)ϑ

′
g1h1

(τ ; 0, 2N1),

(ii)
1

N2
1

ϑ
(4)
g1h1

(τ ; 0, 2N1)ϑg2h2(τ ; 0, 2N2) +
1

N2
2

ϑ
(4)
g2h2

(τ ; 0, 2N2)ϑg1h1(τ ; 0, 2N1)

− 6

N1N2

ϑ′′g1h1
(τ ; 0, 2N1)ϑ

′′
g2h2

(τ ; 0, 2N2),

(iii)

{
1

N1

ϑ′′g1h1
(τ ; 0, 2N1)ϑg2h2(τ ; 0, 2N2)− 1

N2

ϑ′′g2h2
(τ ; 0, 2N2)ϑg1h1(τ ; 0, 2N1)

}

× ϑ′g3h3
(τ ; 0, 2N3)ϑg4h4(τ ; 0, 2N4),

(iv)
3∏

k=1

ϑ′gkhk
(τ ; 0, 2Nk)ϑg4h4(τ ; 0, 2N4)

are cusp forms with respect to the group Γ0(4N) which are of weight 5 and
have the character χ(δ) = sgn δ

(−∆
|δ|

)
(∆ is the determinant of a positive inte-

gral quadratic form with ten variables for which these functions are used). He
constructed similar cusp forms with respect to the group Γ0(4N) whose weight
is 6 and the character is χ(δ) =

(
∆
|δ|

)
(here ∆ is the determinant of a posi-

tive integral quadratic form with twelve variables for which these functions are
used). These cusp forms enable one to obtain exact formulas for the number of
representations of a natural number by some integral positive quadratic forms
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with ten and twelve variables, whose additional terms have a sufficiently simple
arithmetic meaning. For the sake of simplicity, among quadratic forms with
ten variables of type (4), Lomadze chose for consideration a primitive quadratic
form of the type

f = {a1, a1, a2, a2, a3, a3, a4, a4, a5, a5}
and derived convenient formula for computing the sums of the singular series
that corresponds to this quadratic form [89]. He and Daneliya [98] further
obtained exact formulas for the number of representations of a natural number
by fourteen such quadratic forms whose coefficients are 1 and 2 or 1 and 4 or
1,2, and 4. To this end, among the four functions presented above they chose,
for each concrete quadratic form, additional functions and proved identities of
type (3).

Lomadze [91] derived exact formulas for the number of representations of a
natural number by the quadratic forms F3, F2 ⊕Φ1, F1 ⊕Φ2 and Φ3 which are
the direct sums of binary reduced quadratic forms of discriminant 23

F1 = x2
1 + x1x2 + 6x2

2 and Φ1 = 2x2
1 + x1x2 + 3x2

2.

He [94] also derived explicit exact formulas for the number of representations
of a natural number by three quadratic forms which are the direct sums of
quaternary reduced quadratic forms of discriminant 192. The additional terms
of these formulas have a simple arithmetic meaning.

Lomadze ([92], [93], [95], [96]) proposed a method of obtaining explicit exact
formulas for the number of representations of a natural number by positive
diagonal integral quadratic forms with 12 and 14 variables when the pairwise
adjacent coefficients are equal.
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127. B. Venkov, Über die Arithmetik der Quaternionen. IV. (Russian) Bull. Ac. Sc.
Leningrad (7) 2(1929), 535–562.
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1 This is in fact the English translation of one of the chapters from George Lomadze’s
booklet “Main results of the research in number theory done in Georgia” published in the
Georgian language (Tbilisi University Press, Tbilisi, 2000, 76 pages). A slightly revised
Russian version of this survey appeared in the Proceedings of Tbilisi University (Trudy Tbiliss.
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