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Abstract. The monomiality principle was introduced (see [1] and the ref-
erences therein) in order to derive the properties of special or generalized
polynomials starting from the corresponding ones of monomials. We show
a general technique of extending the monomiality approach to multi-index
polynomials in several variables. Application of this technique to the case of
Hermite, Laguerre-type and mixed-type (i.e., between Laguerre and Hermite)
polynomials is given.
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1. Introduction

In the preceding articles [2], [3], the monomiality technique (see [1] and the
references therein) was used to introduce general polynomial sets in several vari-
ables, including the Hermite–Kampé de Fériet or Gould–Hopper polynomials
[4], [5], [6], and new sets of Laguerre-type polynomials.

Although in the early 40s of the last century J. F. Steffensen [7] suggested
the concept of poweroid, it is only recently that the concept of monomiality has
shown all its importance and flexibility (see [1]).

Y. Ben Cheikh proved in refs. [8], [9] that all polynomial families can be
viewed as quasi-monomials with respect to a suitably defined derivative and
multiplication operators, but in general such operators are expressed by formal
series of the derivative so that it is impossible to obtain formulas sufficiently
simple to handle. However, for particular polynomials sets related to suitable
generating functions the above-mentioned formal series reduce to finite sums,
so that the relevant properties can be easily derived (see, e.g., [10], [11], [12],
[13]).

In this paper, by employing the two-variable monomiality technique, we de-
rive some two-index polynomial sets, and we extend the results obtained in
[2], [3], introducing the many-variable two-index Hermite, Laguerre-type and
mixed-type (i.e., composed by both Hermite and Laguerre) polynomials.

The results are easily extended to the case of many-variable many-index poly-
nomials. A brief survey in this direction is presented in the last Section.
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2. The Two-Variable Monomiality Principle

The two-variable monomiality principle is defined as follows.

Definition 2.1. Let {pn,m(x, y)}(n,m)∈N0×N0
(N0 := N∪0) be a two-variable

two-index polynomial set with deg pn,m(·, y) = n and deg pn,m(x, ·) = m.
{pn,m(x, y)} ≡ {pn,m(x, y)}(n,m)∈N0×N0

is said to be quasi-monomial if four

operators, not depending on n and m, denoted by P̂x, P̂y, M̂x, M̂y, exist in such
a way that

{
P̂x pn,m(x, y) = n pn−1,m(x, y) ,

P̂y pn,m(x, y) = mpn,m−1(x, y) ,
(2.1)

{
M̂x pn,m(x, y) = pn+1,m(x, y) ,

M̂y pn,m(x, y) = pn,m+1(x, y) .
(2.2)

Note that the commutation properties[
P̂x, M̂x

]
= 1,

[
P̂y, M̂y

]
= 1 (2.3)

follow from equations (2.1), (2.2), so that the above operators display Weyl
group structures.

Under the above hypotheses, the main properties of the polynomial set under
consideration can be easily derived, since

• If the operators P̂x, P̂y, M̂x, M̂y have a differential realization, then we
find

M̂xP̂x pn,m(x, y) = n pn,m(x, y) , M̂yP̂y pn,m(x, y) = mpn,m(x, y) , (2.4)

i.e., two (independent) differential equations satisfied by the polynomial
set.

• Assuming p0,0(x, y) ≡ 1, the explicit expression of {pn,m(x, y)} is
given by

pn,m(x, y) = M̂n
x M̂m

y (1) . (2.5)

• The exponential generating function of {pn,m(x, y)} (p0,0(x, y) ≡ 1) is
given by

et M̂x+τM̂y(1) =
∞∑

n=0

∞∑
m=0

(tM̂x)
n (τM̂y)

m

n! m!

=
∞∑

n=0

∞∑
m=0

tn

n!

τm

m!
pn,m(x, y) . (2.6)

3. A Quasi-Monomiality Criterion

In this section, we extend a result given in [2] to two-variable two-index
polynomial sets.
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We start from a quasi-monomial set {pn,m(x, y)}, and suppose to know the

relevant derivative operators P̂x, P̂y. Then we derive a monomiality criterion
for a four-variable two-index polynomial set.

Theorem 3.1. Consider two operators Φ̂x and Ψ̂y commuting respectively

with P̂x and P̂y and such that

ez Φ̂x+tΨ̂y(1) = 1 .

Put

Qn,m(x, y; z, t) := ez Φ̂x+tΨ̂ypn,m(x, y) , (3.1)

and suppose that there exist two operators M̂1,x(z, t) M̂1,y(z, t) such that

Qn,m(x, y; z, t) =
(
M̂1,x(z, t)

)n (
M̂1,y(z, t)

)m

(1) (3.2)

and, furthermore, ∀ z, t
[
P̂x, M̂1,x(z, t)

]
=

[
P̂y, M̂1,y(z, t)

]
= 1 .

Then the polynomial set Qn,m(x, y; z, t) is quasi-monomial with respect to the

operators P̂x, P̂y, M̂1,x(z, t), M̂1,y(z, t).

Proof. Indeed, since P̂x is commuting with Φ̂x, and Ψ̂y it is also commuting

with ezΦ̂x+tΨ̂y , we have

P̂x[Qn,m(x, y; z, t)] = ezΦ̂x+tΨ̂y P̂x[pn,m(x, y)] = n ezΦ̂x+tΨ̂ypn−1,m(x, y)

= nQn−1,m(x, y; z, t) .

Analogously, we find

P̂y[Qn,m(x, y; z, t)] = m Qn,m−1(x, y; z, t) .

Furthermore we obviously have

M̂1,x(z, t)[Qn,m(x, y; z, t)] = M̂1,x(z, t)
(
M̂1,x(z, t)

)n (
M̂1,y(z, t)

)m

(1)

=
(
M̂1,x(z, t)

)n+1 (
M̂1,y(z, t)

)m

(1) = Qn+1,m(x, y; z, t)

and

M̂1,y(z, t)[Qn,m(x, y; z, t)] = M̂1,y(z, t)
(
M̂1,x(z, t)

)n (
M̂1,y(z, t)

)m

(1)

=
(
M̂1,x(z, t)

)n (
M̂1,y(z, t)

)m+1

(1) = Qn,m+1(x, y; z, t) . ¤

The construction of the operators M̂1,x(z, t) and M̂1,y(z, t), starting from

the multiplication operators M̂x, M̂y of the basic set {pn,m(x, y)}, can be
performed by using the two-variable Hausdorff identity presented in Section 4.
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4. A Two-Variable Hausdorff Identity

A two-variable Hausdorff identity can be derived as follows

Theorem 4.1. Let Â and B̂, be two commuting operators (i.e.,[Â, B̂] = 0)
independent of the parameters z and t. Then the Hausdorff identity holds:

ezÂ+tB̂Ĉe−zÂ−tB̂ = Ĉ +
(
z[Â, Ĉ] + t[B̂, Ĉ]

)

+
1

2!

(
z2[Â, [Â, Ĉ] ] + 2zt[Â, [B̂, Ĉ] ] + t2[B̂, [B̂, Ĉ] ]

)

+
1

3!

(
z3[Â, [Â, [Â, Ĉ] ] ] + 3z2t[Â, [Â, [B̂, Ĉ] ] ]

+ 3zt2[Â, [B̂, [B̂, Ĉ] ] ] + t3[B̂, [B̂, [B̂, Ĉ] ] ]
)

+ · · · . (4.1)

Proof. We proceed in a similar way with respect to the classical case [14]. The
above identity can be derived by using the Taylor expansion with respect to the
parameters z and t:

ezÂ+tB̂Ĉe−zÂ−tB̂ =
∞∑

k=0

1

k!
dk

(
ezÂ+tB̂Ĉe−zÂ−tB̂

)∣∣∣
z=t=0

.

From the commuting property of Â and B̂, it follows that they commute even

with ezÂ+tB̂ and e−zÂ−tB̂. Furthermore, the identity [Â, [B̂, Ĉ]] + [Ĉ, [Â, B̂]] +

[B̂, [Ĉ, Â]] = 0 implies [Â, [B̂, Ĉ]] = [B̂, [Â, Ĉ]] so that the coefficients of all
mixed derivatives with respect to z and t must coincide. ¤
4.1. A special case of Equation (4.1). Consider first the identity

et(D2
x+D2

y)xpyq = et(D2
x+D2

y)xpyqe−t(D2
x+D2

y)(1).

Iterating the above equation p times with respect to x and q times with respect
to y, and denoting by Hn(x, y) the Hermite–Kampé de Fériet polynomials, we
obtain

et(D2
x+D2

y)xpyq = et(D2
x+D2

y)xe−t(D2
x+D2

y) · · · et(D2
x+D2

y)xe−t(D2
x+D2

y)

× et(D2
x+D2

y)ye−t(D2
x+D2

y) · · · et(D2
x+D2

y)ye−t(D2
x+D2

y)(1)

= (x + 2tDx)
p (y + 2tDy)

q (1)

= (x + 2tDx)
p Hq(y, t) =

p∑

k=0

Hp−k(x, t) (2tDx)
k Hq(y, t)

= Hp(x, t)Hq(y, t),

since in the last summation the only nonvanishing term corresponds to the index
k = 0.

More generally, by introducing the Gould–Hopper polynomials H
(m)
n (x, y),

for any integer numbers m,n we can write

et(Dm
x +Dn

y )xpyq =
(
x + mtDm−1

x

)p (
y + ntDn−1

y

)q
(1) = H(m)

p (x, t)H(n)
q (y, t).
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5. Construction of Multiplication Operators

Recalling the method developed in [3], and using the two-variable Hausdorff
identity of the preceding section, we can construct the multiplication operators
M̂1,x(z, t) M̂1,y(z, t), starting from the same operators M̂x, M̂y of the basic set
{pn,m(x, y)}.

Theorem 5.1. Consider the polynomial set {pn,m(x, y)} with p0,0(x, y) ≡
1 and suppose that it is quasi-monomial with respect to the operators P̂x, P̂y,

M̂x, M̂y. Let Φ̂x and Ψ̂y, be two operators, independent of the parameters z and
t, such that [

Φ̂x, P̂x

]
=

[
Ψ̂y, P̂y

]
= 0 , ezΦ̂x+tΨ̂y(1) = 1 . (5.1)

For the polynomial set defined as

Qn,m(x, y; z, t) := ez Φ̂x+tΨ̂ypn,m(x, y) ,

the derivative operators are given by P̂1,x = P̂x, P̂1,y = P̂y (Theorem 3.1).
Furthermore, the multiplication operators are given by the Hausdorff expan-

sions

M̂1,x = M̂x +
{

z
[
Φ̂x, M̂x

]
+ t

[
Ψ̂y, M̂x

]}
+

1

2!

{
z2

[
Φ̂x,

[
Φ̂x, M̂x

] ]

+ 2zt
[
Φ̂x,

[
Ψ̂y, M̂x

] ]
+ t2

[
Ψ̂y,

[
Ψ̂y, M̂x

] ]}
+ · · · , (5.2)

M̂1,y = M̂y +
{

z
[
Φ̂x, M̂y

]
+ t

[
Ψ̂y, M̂y

]}
+

1

2!

{
z2

[
Φ̂x,

[
Φ̂x, M̂y

] ]

+ 2zt
[
Φ̂x,

[
Ψ̂y, M̂y

] ]
+ t2

[
Ψ̂y,

[
Ψ̂y, M̂y

] ]}
+ · · · . (5.3)

Some examples easy to handle, since the above expansions reduce to finite
sums, will be shown in the next section.

Proof. From equation (2.5) we have pn,m(x, y) = M̂n
x M̂m

y (1) and, consequently,
recalling (3.1), we can write

Qn,m(x, y; z, t) = ez Φ̂x+tΨ̂yM̂n
x M̂m

y (1) . (5.4)

Applying the Hausdorff identity of Theorem 4.1 and using (5.1), we find

ez Φ̂x+tΨ̂yM̂x = ez Φ̂x+tΨ̂yM̂xe
−z Φ̂x−tΨ̂y(1)

= M̂x +
{

z
[
Φ̂x, M̂x

]
+ t

[
Ψ̂y, M̂x

]}
+ · · · =: M̂1,x(z, t) , (5.5)

since

Qn,0(x, y; z, t) = ez Φ̂x+tΨ̂yM̂n
x (1)

= ez Φ̂x+tΨ̂yM̂xe
−z Φ̂x−tΨ̂yez Φ̂x+tΨ̂yM̂xe

−z Φ̂x−tΨ̂y

× · · · × ez Φ̂x+tΨ̂yM̂xe
−z Φ̂x−tΨ̂y(1) =

(
M̂1,x(z, t)

)n

(1) . (5.6)



58 C. BELINGERI, G. DATTOLI, AND P. E. RICCI

Analogously,

ez Φ̂x+tΨ̂yM̂y = ez Φ̂x+tΨ̂yM̂ye
−z Φ̂x−tΨ̂y(1)

= M̂y +
{

z
[
Φ̂x, M̂y

]
+ t

[
Ψ̂y, M̂y

]}
+ · · · =: M̂1,y(z, t) (5.7)

so that

Qn,m(x, y; z, t) =
(
M̂1,x(z, t)

)n (
M̂1,y(z, t)

)m

(1) . (5.8)

Therefore, recalling the monomiality criterion of Theorem 3.1, the multiplica-
tion operators of the polynomial set Qn,m(x, y; z, t) are given by M̂1,x(z, t) and

M̂1,y(z, t). ¤
Remark 5.2. By applying inductively r-times the above technique, quasi-

monomial sets in 2(r + 1) variables can be derived. Of course, even quasi-
monomial sets with an odd number of independent variables are included, since
for example in equation (3.1) we could assume t = 0 or z = 0. Note that,
assuming t = z = 1, a new set of quasi-monomial polynomials is defined
without increasing the number of independent variables.

6. Examples

In this section, writing the basic polynomial set as

pn,m(x, y) = xn ym , or

qn,m(x, y) =
xn

n!

ym

m!
, or

rn,m(x, y) = xn ym

m!

(6.1)

and, correspondingly, the derivative and multiplication operators as

P̂x = Dx , P̂y = Dy,

M̂x = x· , M̂y = y·
(6.2)

or as
P̂x = DxxDx , P̂y = DyyDy,

M̂x =

x∫

0

, M̂y =

y∫

0

(6.3)

or as
P̂x = Dx , P̂y = DyyDy,

M̂x = x· , M̂y =

y∫

0

,
(6.4)

we find two-variable two-index polynomials of Hermite, Laguerre and mixed-
type polynomials by considering suitable operators Φ̂x and Ψ̂y.
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It is worth to note that Laguerre and mixed-type polynomials can be derived
by the Hermite ones by applying the differential isomorphism T described in
[15], with respect to the variables x or y. This isomorphism is denoted con-
sequently by Tx or Ty. Generalization to the case of two-variable, two-index
polynomials of Gould–Hopper-type and their Laguerre counterpart, introduced
in [15], can be constructed in a similar way.

6.1. The Hermite case. Let us fix the integers j1, j2, assume pn,m(x, y) :=
xnym and, moreover,

P̂0,x ≡ P̂x :=
∂

∂x
= Dx , M̂0,x := x·

P̂0,y ≡ P̂y :=
∂

∂y
= Dy , M̂0,y := y·

Φ̂x :=
∂j1

∂xj1
, Ψ̂y :=

∂j2

∂yj2
.

Applying Theorem 5.1, we find

M̂1,x = x + j1z
∂j1

∂xj1
,

M̂1,y = y + j2t
∂j2

∂yj2
.

Therefore, since

exp

(
z

∂j1

∂xj1

)
xn = H(j1)

n (x, z) =

(
x + j1z

∂j1−1

∂xj1−1

)n

(1) ,

exp

(
t

∂j2

∂yj2

)
ym = H(j2)

m (y, t) =

(
y + j2t

∂j2−1

∂yj2−1

)m

(1) ,

we have

Qn,m(x, y; z, t) = exp

{
z

∂j1

∂xj1
+ t

∂j2

∂yj2

}
(1) = H(j1)

n (x, z)H(j2)
m (y, t) .

6.2. The Laguerre case. Considering again the integers j1, j2, assume
pn,m(x, y) := (xn/n!) (ym/m!) and, moreover,

P̂0,x ≡ P̂x := (DL)x = DxxDx , M̂0,x := D̂−1
x ,

P̂0,y ≡ P̂y := (DL)y = DyyDy , M̂0,y := D̂−1
y ,

Φ̂x := (DL)j1
x = Dj1

x xj1Dj1
x , Ψ̂y := (DL)j2

y = Dj2
y yj2Dj2

y .

Applying Theorem 5.1, we find

M̂1,x = D̂−1
x + j1z(DL)j1−1

x ,

M̂1,y = D̂−1
y + j2t(DL)j2−1

y .
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Therefore, since

exp
(
z (DL)j1

x

) xn

n!
= L(j1)

n (x, z) =
(
D̂−1

x + j1z (DL)j1−1
x

)n

(1) ,

exp
(
t (DL)j2

y

) ym

m!
= L(j2)

m (y, t) =
(
D̂−1

y + j2t (DL)j2−1
y

)m

(1) ,

we have

Qn,m(x, y; z, t) = exp
{
z(DL)j1

x + t(DL)j2
y

}
(1) = L(j1)

n (x, z)L(j2)
m (y, t) .

6.3. The mixed case. Let us fix the integers j1, j2, assume pn,m(x, y) :=
xn (ym/m!) and, moreover,

P̂0,x ≡ P̂x := Dx , M̂0,x := x· ,
P̂0,y ≡ P̂y := (DL)y = DyyDy , M̂0,y := D̂−1

y ,

Φ̂x := Dj1
x , Ψ̂y := (DL)j2

y = Dj2
y yj2Dj2

y .

Applying Theorem 5.1, we find

M̂1,x = x + j1zD
j1−1
x ,

M̂1,y = D̂−1
y + j2t(DL)j2−1

y .

Therefore, since

exp
(
z Dj1

x

)
xn = H(j1)

n (x, z) =
(
x + j1z Dj1−1

x

)n
(1) ,

exp
(
t (DL)j2

y

) ym

m!
= L(j2)

m (y, t) =
(
D̂−1

y + j2t (DL)j2−1
y

)m

(1) ,

we have

Qn,m(x, y; z, t) = exp
{
zDj1

x + t(DL)j2
y

}
(1) = H(j1)

n (x, z)L(j2)
m (y, t) .

7. The r-Variable Monomiality Principle

In this section we give the main results of this paper, omitting the proofs,
since the technique is always the same.

We consider the r-variable r-index polynomial sets

{pn1,...,nr(x1, . . . , xr)} ≡ {pn1,...,nr(x1, . . . , xr)}(n1,...,nr)∈N0×···×N0
,

nk denoting the degree of the polynomial with respect to the variable xk (k =
1, 2, . . . , r).

The r-variable monomiality principle is defined as follows.

Definition 7.1. An r-variable r-index polynomial set {pn1,...,nr(x1, . . . , xr)}
is said to be quasi-monomial if 2r operators, independent of n1, n2, . . . , nr,
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denoted by P̂x1 , . . . , P̂xr , M̂x1 , . . . , M̂xr , exist in such a way that





P̂x1 pn1,...,nr(x1, . . . , xr) = n1 pn1−1,n2,...,nr(x1, . . . , xr) ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P̂xr pn1,...,nr(x1, . . . , xr) = nr pn1,...,nr−1,nr−1(x1, . . . , xr) ,

(7.1)





M̂x1 pn1,...,nr(x1, . . . , xr) = pn1+1,n2,...,nr(x1, . . . , xr) ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M̂xr pn1,...,nr(x1, . . . , xr) = pn1,...,nr−1,nr+1(x1, . . . , xr) .

(7.2)

From the above formulas it follows that

[
P̂x1 , M̂x1

]
= 1, . . . ,

[
P̂xr , M̂xr

]
= 1 . (7.3)

Under the above hypotheses, the main properties of the polynomial set under
consideration can be easily derived, since

• If the derivative and multiplication operators have a differential real-
ization, then

M̂x1P̂x1 pn1,...,nr(x1, . . . , xr) = n1 pn1,...,nr(x1, . . . , xr),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M̂xr P̂xr pn1,...,nr(x1, . . . , xr) = nr pn1,...,nr(x1, . . . , xr) ,

(7.4)

i.e., we find r (independent) differential equations satisfied by a polyno-
mial set.

• Assuming p0,...,0(x1, . . . , xr) ≡ 1, an explicit expression of

{pn1,...,nr(x1, . . . , xr)}

is given by

pn1,...,nr(x1, . . . , xr) = M̂n1
x1
· · · M̂nr

xr
(1) . (7.5)

• The exponential generating function of {pn1,...,nr(x1, . . . , xr)}, assuming
again p0,...,0(x1, . . . , xr) ≡ 1, is given by

et1 M̂x1+···+trM̂xr (1) =
∞∑

n1=0

· · ·
∞∑

nr=0

tn1
1

n1!

(t1M̂x1)
n1 · · · (trM̂xr)

nr

n1! · · · nr!

=
∞∑

n1=0

· · ·
∞∑

nr=0

tn1
1

n1!
· · · tnr

r

nr!
pn1,...,nr(x1, . . . , xr) . (7.6)

Theorem 7.1. Let Â1, . . . , Âr, be commuting operators (i.e.,[Âi, Âj] = 0,
∀ i, j) independent of the parameters t1, . . . , tr. Then the Hausdorff identity



62 C. BELINGERI, G. DATTOLI, AND P. E. RICCI

holds:

et1Â1+···+trÂr Ĉ e−t1Â1−···−trÂr

= Ĉ +

(
r∑

i=0

ti[Âi, Ĉ]

)
+

1

2!

(
r∑

i,j=0

titj[Âi, [Âj, Ĉ] ]

)

+
1

3!

(
r∑

i,j,k=0

titjtk[Âi, [Âj, [Âk, Ĉ] ] ]

)
+ · · · . (7.7)

Theorem 7.2. Consider r operators Φ̂x1, . . . , Φ̂xr commuting respectively

with P̂x1, . . . , P̂xr and such that

et1Φ̂x1+···+trΦ̂xr (1) = 1 .

Put

Qn1,...,nr(x1, . . . , xr; t1, . . . , tr) := et1 Φ̂x1+···+trΦ̂xr pn1,...,nr(x1, . . . , xr) , (7.8)

and suppose that there exist r operators M̂1,x1(t1, . . . , tr), . . . , M̂1,xr(t1, . . . , tr)
such that

Qn1,...,nr(x1, . . . , xr; t1, . . . , tr)=
(
M̂1,x1(t1, . . . , tr)

)n1 · · ·
(
M̂1,xr(t1, . . . , tr)

)nr

(1)

and, furthermore, ∀ t1, . . . , tr[
P̂x1 , M̂1,x1(t1, . . . , tr)

]
= · · · =

[
P̂xr , M̂1,xr(t1, . . . , tr)

]
= 1 .

Then the polynomial set Qn1,...,nr(x1, . . . , xr; t1, . . . , tr) is quasi-monomial with

respect to the operators P̂x1 , . . . P̂xr , M̂1,x1(t1, . . . , tr), . . . , M̂1,xr(t1, . . . , tr).

Theorem 7.3. Consider the polynomial set {pn1,...,nr(x1, . . . , xr)} putting
again p0,...,0(x1, . . . , xr) ≡ 1, and suppose that it is quasi-monomial with re-

spect to the operators P̂x1 , . . . , P̂xr , M̂x1 , . . . , M̂xr . Let Φ̂x1 , . . . , Φ̂xr be operators
independent of the parameters t1, . . . , tr and such that[

Φ̂x1 , P̂x1

]
= · · · =

[
Φ̂xr , P̂xr

]
= 0 , et1Φ̂x1+···+trΦ̂xr (1) = 1 . (7.9)

Define again the polynomial set

Qn1,...,nr(x1, . . . , xr; t1, . . . , tr) := et1 Φ̂x1+···+trΦ̂xr pn1,...,nr(x1, . . . , xr) .

Then the multiplication operators are given by the Hausdorff expansions:

M̂1,x1 = M̂x1 +
{

t1

[
Φ̂x1 , M̂x1

]
+ · · ·+ tr

[
Φ̂xr , M̂x1

]}

+
1

2!

(
r∑

i,j=0

titj

[
Φ̂xi

,
[
Φxj

, M̂x1

] ])
+ · · · ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M̂1,xr = M̂xr +
{

t1

[
Φ̂x1 , M̂xr

]
+ · · ·+ tr

[
Φ̂xr , M̂xr

]}
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+
1

2!

(
r∑

i,j=0

titj

[
Φ̂xi

,
[
Φxj

, M̂xr

] ])
+ · · · .
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