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Abstract. We consider a multidimensional analogue of the Darboux prob-
lem for wave equations with power nonlinearity. Depending on the spatial
dimension of an equation, a power nonlinearity exponent and the sign in
front of a nonlinear term, it is proved that the Darboux problem is globally
solvable in some cases, but has no global solution in other cases though the
local solvability of this problem remains in force.
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1. Statement of the Problem

Let us consider a nonlinear wave equation of the form

Lu :=
∂2u

∂t2
−∆u + mu = f(u) + F, (1)

where f and F are given real functions, f being nonlinear, f(0) = 0, and u is

an unknown real function, m = const ≥ 0, ∆ =
n∑

i=1

∂2

∂x2
i
, n ≥ 2.

Denote by D : t > |x|, xn > 0, the half of the light cone of the future which
is bounded by the part S0 = D ∩ {xn = 0} of the hyperplane xn = 0 and
by the half S : t = |x|, xn ≥ 0, of the characteristic conoid C : t = |x| of
equation (1). Assume DT = {(x, t) ∈ D : t < T}, S0

T = {(x, t) ∈ S0 : t ≤ T},
ST = {(x, t) ∈ S : t ≤ T}, T > 0. When T = ∞, it is obvious that D∞ = D,
S0
∞ = S0 and S∞ = S.
We will consider the problem on defining, in the domain DT , a solution u(x, t)

of equation (1) by the boundary conditions

u
∣∣
S0

T
= 0, u

∣∣
ST

= g, (2)

where g is a given real function on ST .
Problem (1),(2) is a multidimensional variant of the first Darboux problem

for the nonlinear equation (1) when one part of the problem data support is a
characteristic manifold, while the remaining part is a manifold of time type [1,
Ch. III, § 1.10].
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Problems pertaining to the existence or nonexistence of a global solution of
the Cauchy problem for nonlinear equations of form (1) with the boundary
conditions u|t=0 = u0,

∂u
∂t

∣∣
t=0

= u1 are considered in [2]–[17]. As for multidi-
mensional variants of the first Darboux problem for linear hyperbolic equations
of second order, they are well posed and their global solvability is proved in the
corresponding function spaces [18]–[20].

In this paper, we discuss the concrete cases for the nonlinear function f =
f(u), where problem (1),(2) is globally solvable in some cases, but has no global
solution in other cases though the local solvability of this problem remain in
force.

2. Global Solvability of Problem (1),(2) in the Case of Linearity
of the Form f(u) = −λ|u|pu

For f(u) = −λ|u|pu, where λ 6= 0 and p > 0 are given real numbers, equation
(1) takes the form

Lu :=
∂2u

∂t2
−∆u + mu = −λ|u|pu + F. (3)

Note that equation (3) arises in relativistic quantum mechanics [21]–[24].
In this section, our consideration is limited to the case where the boundary

conditions (2) are assumed homogeneous, i.e.

u
∣∣
S0

T
= 0, u

∣∣
ST

= 0. (4)

We assume that
◦

W 1
2(DT , S0

T ∪ ST ) =
{

u ∈ W 1
2 (DT ) : u

∣∣
S0

T∪ST
= 0

}
, where

W 1
2 (DT ) is the known Sobolev space with the norm

‖u|2W 1
2 (DT ) =

∫

D

[
u2 +

(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2 ]
dx dt,

and the boundary condition u|S0
T∪ST

= 0 should be understood in terms of trace

theory [25, Ch. I, §§ 5, 6].

Remark 1. The embedding operator I :
◦

W 1
2(DT , S0

T ∪ ST ) → Lq(DT ) is a

linear continuous compact operator for 1 < q < 2(n+1)
n−1

, where n > 1 [25,
Ch.I, § 7]. Simultaneously, the Nemitski operator K : Lq(DT ) → L2(DT ) acting
by the formula Ku := −λ|u|pu is continuous and bounded if q ≥ 2(p + 1) [26,
Ch. V, § 17.5], [27, Ch. III, §§ 12.10; 12.11]. Therefore if p < 2

n−1
, i.e. 2(p+1) <

2(n+1)
n−1

, then there exists a number q such that 1 < 2(p + 1) ≤ q < 2(n+1)
n−1

and
hence the operator

K0 = KI :
◦

W 1
2(DT , S0

T ∪ ST ) → L2(DT ) (5)

is continuous and compact. Moreover, from u ∈
◦

W 1
2(DT , S0

T ∪ ST ) it follows
that u ∈ Lp+1(DT ). As has been mentioned above, it is assumed that here and
everywhere p > 0.
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If u ∈ C2(DT ) is a classical solution of problem (3),(4), then, after multiplying
both parts of equation (3) by an arbitrary function ϕ ∈ C2(DT ) that satisfies
the condition ϕ|t=T = 0 and applying integration by parts, we obtain

∫

S0
T∪ST

∂u

∂N
ϕds−

∫

DT

utϕt dx dt +

∫

DT

∇xu∇xϕdx dt +

∫

DT

muϕdx dt

= −λ

∫

DT

|u|puϕdx dt +

∫

DT

Fϕdx dt, (6)

where ∂
∂N

= ν0
∂
∂t
−

n∑
i=1

νi
∂

∂xi
is a derivative with respect to the conormal, ν =

(ν1, . . . , νn, ν0) is the unit outward normal to ∂DT , ∇x =
(

∂
∂x1

, . . . , ∂
∂xn

)
. Since

the hypersurface ST is the characteristic manifold on which the operator ∂
∂N

is

an internal differential operator, by (4) we have ∂
∂N

∣∣
ST

= 0. Therefore, assuming

additionally that the function ϕ|S0
T

= 0, from equality (6) we obtain

−
∫

DT

utϕt dx dt +

∫

DT

∇xu∇xϕ dx dt +

∫

DT

muϕdx dt

= −λ

∫

DT

|u|puϕdx dt +

∫

DT

Fϕdx dt. (7)

Since, by virtue of Remark 1, from u ∈
◦

W 1
2(DT , S0

T ∪ST ) it follows that |u|pu ∈
L2(DT ), equality (7) can underlie the definition of a weak generalized solution

of problem (3),(4) of the class
◦

W 1
2(DT , S0

T ∪ ST ).

Definition 1. Let F ∈ L2(DT ) and 0 < p < 2
n−1

. A function u ∈
◦

W 1
2(DT , S0

T ∪ST ) is called a weak generalized solution of the nonlinear problem
(3),(4) in the domain DT if the integral equality (7) is fulfilled for any function
ϕ ∈ W 1

2 (DT ) such that ϕ|t=T = 0, ϕ|S0
T

= 0.

Assume that
◦
C2(DT , S0

T ∪ ST ) =
{

u ∈ C2(DT ) : u
∣∣
S0

T∪ST
= 0

}
.

Definition 2. Let F ∈ L2(DT ) and 0 < p < 2
n−1

. A function u ∈
◦

W 1
2(DT , S0

T ∪ST ) is called a strong generalized solution of the nonlinear problem

(3),(4) in the domain DT if there exists a sequence of functions uk ∈
◦
C2(DT , S0

T∪
ST ) such that uk → u in the space

◦
W 1

2(DT , S0
T ∪ST ) and [Luk+λ|uk|puk] → F in

the space L2(DT ). Moreover, from Remark 1 it follows the sequence {λ|uk|puk}
converges to the function λ|u|pu in the space L2(DT ) as uk → u in the space
◦

W 1
2(DT , S0

T ∪ ST ).
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Remark 2. One can easily verify that if u ∈
◦

W 1
2(DT , S0

T ∪ST ) is a strong gen-
eralized solution of problem (3),(4), then it is automatically a weak generalized
solution of this problem.

Definition 3. Let 0 < p < 2
n−1

, F ∈ L2,loc(D) and F ∈ L2(DT ) for any
T > 0. We say that problem (3),(4) is globally solvable if for any T > 0 this
problem has a strong generalized solution in the domain DT from the space
◦

W 1
2(DT , S0

T ∪ ST ).

Lemma 1. Let λ ≥ 0, 0 < p < 2
n−1

and F ∈ L2(DT ). Then for any strong

generalized solution u ∈
◦

W 1
2(DT , S0

T ∪ST ) of problem (3),(4) in the domain DT

the following a priori estimate is valid:

‖u‖ ◦
W 1

2(DT ,S0
T∪ST )

≤
√

e

2
T‖F‖L2(DT ) . (8)

Proof. Let u ∈
◦

W 1
2(DT , S0

T ∪ ST ) be a strong generalized solution of problem
(3),(4). By virtue of Definition 2 there exists a sequence of functions uk ∈
◦
C2(DT , S0

T ∪ ST ) such that

lim
k→∞

‖uk − u‖ ◦
W 1

2(DT ,S0
T∪ST )

= 0, lim
k→∞

‖Luk + λ|uk|pu + k− F‖L2(DT ) = 0 . (9)

Let us consider the function uk ∈
◦
C2(DT , S0

T∪ST ) as a solution of the problem

Luk + λ|uk|puk = Fk, (10)

uk

∣∣
S0

T
= 0, u

∣∣
ST

= 0. (11)

Here

Fk = Luk + λ|uk|puk (12)

Multiplying both parts of equation (10) by ∂uk

∂t
and integrating over the do-

main Dτ , 0 < τ ≤ T , we obtain

1

2

∫

Dτ

∂

∂t

(
∂uk

∂t

)2

dx dt−
∫

Dτ

∆uk
∂uk

∂t
dx dt +

m

2

∫

Dτ

∂

∂t
u2

k dx dt

+
λ

p + 2

∫

Dτ

∂

∂t
|uk|p+2 dx dt =

∫

Dτ

Fk
∂uk

∂t
dx dt. (13)

Assume that Ωτ := DT ∩ {t = τ}, 0 < τ < T . It is obvious that ∂Dτ =
S0

τ ∪ Sτ ∪Ωτ . Using (11), the equality ∂u
∂t

∣∣
S0

T
= 0 and also the equalities ν|Ωτ =

(0, . . . , 0, 1), νS0
T

= (0, . . . , 0,−1, 0) and performing the integration by parts, we
obtain
∫

Dτ

∂

∂t

(
∂uk

∂t

)2

dx dt =

∫

∂Dτ

(
∂uk

∂t

)2

ν0 ds =

∫

Ωτ

(
∂uk

∂t

)2

dx +

∫

Sτ

(
∂uk

∂t

)2

ν0 ds,
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∫

Dτ

∂

∂t
u2

k dx dt =

∫

∂Dτ

u2
kν0 ds =

∫

Ωτ

u2
k dx,

∫

Dτ

∂

∂t
|uk|p+2 dx dt =

∫

∂Dτ

|uk|p+2ν0 ds =

∫

Ωτ

|uk|p+2 dx,

∫

Dτ

∂2uk

∂x2
i

∂uk

∂t
dx dt =

∫

∂Dτ

∂uk

∂xi

∂uk

∂t
νi ds− 1

2

∫

Dτ

∂

∂t

(
∂uk

∂xi

)2

dx dt

=

∫

∂Dτ

∂uk

∂xi

∂uk

∂t
νi ds− 1

2

∫

Dτ

(
∂uk

∂xi

)2

ν0 ds

=

∫

Sτ

∂uk

∂xi

∂uk

∂t
νi ds− 1

2

∫

Sτ

(
∂uk

∂xi

)2

ν0 ds− 1

2

∫

Ωτ

(
∂uk

∂xi

)2

dx.

Hence by virtue of (13) it follows that
∫

Dτ

Fk
∂uk

∂t
dx dt

=

∫

Sτ

1

2ν0

[ n∑
i=1

(
∂uk

∂xi

ν0 − ∂uk

∂t
νi

)2

+

(
∂uk

∂t

)2(
ν2

0 −
n∑

j=1

ν2
j

)]
ds

+
1

2

∫

Ωτ

[
mu2

k +

(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2]
dx +

λ

p + 2

∫

Ωτ

|uk|p+2 dx. (14)

Since Sτ is a characteristic manifold, we have
(

ν2
0 −

n∑
j=1

ν2
j

)∣∣∣∣
Sτ

= 0. (15)

Taking into account that the operator
(
ν0

∂
∂xi
−νi

∂
∂t

)
, 1 ≤ i ≤ n, is an internal

differential operator on Sτ , by virtue of (11) we have
(

∂uk

∂xi

ν0 − ∂uk

∂t
νi

)∣∣∣∣
Sτ

= 0, i = 1, . . . , n. (16)

With regard for (15), (16), from (14) we have

∫

Ωτ

[
mu2

k+

(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2]
dx+

2λ

p + 2

∫

Ωτ

|uk|p+2 dx=2

∫

Dτ

Fk
∂uk

∂t
dx dt,

which, by virtue of λ ≥ 0, implies in turn that
∫

Ωτ

[
mu2

k +

(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2]
dx ≤ 2

∫

Dτ

Fk
∂uk

∂t
dx dt. (17)
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Using the notation

w(δ) =

∫

Ωδ

[
mu2

k +

(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2]
dx

and taking into account that the inequality 2Fk
∂uk

∂t
≤ ε

(
∂uk

∂t

)2
+ 1

ε
F 2

k holds for
any ε = const > 0, from (17) we obtain

w(δ) ≤ ε

δ∫

0

w(σ) dσ +
1

ε
‖Fk‖2

L2(Dδ), 0 < δ ≤ T. (18)

If we take into account that the value ‖Fk‖2
L2(Dδ) as a function of δ is nonde-

creasing, then, by virtue Gronwall’s lemma [28, Ch. I, § 2], from (18) it follows
that

‖w(δ)‖ ≤ 1

ε
‖Fk‖2

L2(Dδ) exp δε.

Hence, since inf
ε>0

exp δε
ε

= eδ for ε = 1
δ
, we obtain

w(δ) ≤ eδ‖Fk‖2
L2(Dδ), 0 < δ ≤ T, (19)

which implies in turn that

‖uk‖2
◦

W 1
2(DT ,S0

T∪ST )
=

∫

DT

[
mu2

k +

(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2]
dx dt

=

T∫

0

w(δ) dδ ≤ e

2
T 2‖Fk‖2

L2(DT ). (20)

Here we have used the fact that in the space
◦

W 1
2(DT , S0

T ∪ ST ) one of the
equivalent norms is given by the expression

{ ∫

DT

[
mu2

k +

(
∂uk

∂t

)2

+
n∑

i=1

(
∂uk

∂xi

)2]
dx dt

} 1
2

independently of the assumption whether m = 0 or m > 0. Indeed, by a

standard reasoning, the equalities u|ST
= 0 and u(x, t) =

t∫
ψ(x)

∂u(x,τ)
∂t

dτ , (x, t) ∈

DT , where t − ψ(x) = 0 is an equation of the conical manifold ST , imply the
inequality [25, Ch. I, § 6]

∫

DT

u2(x, t) dx dt ≤ T 2

∫

DT

(
∂u

∂t

)2

dx dt.

Now, passing to the limit in inequality (20) as k →∞, we obtain (8), which
proves the lemma. ¤



ON THE GLOBAL AND LOCAL SOLUTION 71

Theorem 1. Let λ > 0, 0 < p < 2
n−1

, F ∈ L2,loc(D) and F ∈ L2(DT ) for any
T > 0. Then problem (3), (4) is globally solvable, i.e. for any T > 0 this problem

has a strong generalized solution u ∈
◦

W 1
2(DT , S0

T ∪ ST ) in the domain DT .

Proof. Before proceeding to the discussion whether the nonlinear problem (3),
(4) is solvable, we will consider the solvability for the linear case where it is
assumed that in equation (3) the parameter λ = 0, i.e. for the problem

{
Lu(x, t) = F (x, t), (x, t) ∈ DT ,

u
∣∣
S0

T
= 0, u

∣∣
ST

= 0.
(21)

In that case, analogously to the above, we introduce, for F ∈ L2(DT ), the

notion of a strong generalized solution u ∈
◦

W 1
2(DT , S0

T ∪ ST ) of problem (21)

for which there exists a sequence of functions uk ∈
◦
C2(DT , S0

T ∪ ST ) such that
lim
k→∞

‖uk − u‖ ◦
W 1

2(DT ,S0
T∪ST )

= 0, lim
k→∞

‖Luk − F‖L2(DT ) = 0. It should be noted

here that by virtue of Lemma 1 for λ = 0 the a priori estimate (8) holds for a
strong generalized solution of problem (21), too.

Since the space C∞
0 (DT ) of finite, infinitely differentiable in DT , functions

is dense in L2(DT ), for given F ∈ L2(DT ) there exists a sequence of functions
Fk ∈ C∞

0 (DT ) such that lim
k→∞

‖Fk − F‖L2(DT ) = 0. If we continue the function

Fk in an odd manner with respect to the variable xn into the domain D−
T :=

{(x, t) ∈ Rn+1 : xn < 0, |x| < t < T} and after that continue the resulting
function by zero beyond the domain DT ∪ D−

T and denote it by the previous
symbol, then for fixed k we obtain Fk ∈ C∞(Rn+1

+ ) for which the support is
supp Fk ⊂ D∞ ∪D−

∞, where Rn+1
+ = Rn+1 ∩ {t ≥ 0}. Denote by uk a solution

of the Cauchy problem

Luk = Fk, uk

∣∣
t=0

= 0,
∂uk

∂t

∣∣∣∣
t=0

= 0, (22)

which, as is known, exists, is unique and belongs to the space C∞(Rn+1
+ ) [29,

Ch. V, § 6]. Moreover, since supp Fk ⊂ D∞ ∪ D−
∞ ⊂ {(x, t) ∈ Rn+1 : t > |x|}

and uk|t=0 = 0, ∂uk

∂t

∣∣
t=0

= 0, by taking into account the geometry of the solution
dependence domain of the linear wave equation Lu = F we have supp uk ⊂
{(x, t) ∈ Rn+1 : t > |x|} and in particular uk|ST

= 0. On the other hand,
the function ũk(x1, . . . , xn, t) = −uk(x1, . . . ,−xn, t) is also a solution of the
Cauchy problem (22), since the function Fk is odd with respect to the variable
xn. Hence by virtue of the uniqueness of a solution of the Cauchy problem
we have ũk = uk, i.e. uk(x1, . . . ,−xn, t) = −uk(x1, . . . , xn, t) and thereby the
function uk is also even with respect to the variable xn. This in turn implies
that uk|xn=0 = 0, which together with the condition uk|ST

= 0 implies that by
preserving the previous notation for the restriction of the function uk to the

domain DT we obtain uk ∈
◦
C2(DT , S0

T ∪ST ). Furthermore, by virtue of (8) and
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(22) the inequality

‖uk − ul‖ ◦
W 1

2(DT ,S0
T∪ST )

≤
√

e

2
T‖Fk − F‖L2(DT ) (23)

is valid because the a priori estimate (8) holds for a strong generalized solution
of the linear problem (21), too.

Since the sequence {Fk} is fundamental in L2(DT ), by virtue of (23) the se-

quence {uk}, too, is fundamental in the total space
◦

W 1
2(DT , S0

T∪ST ). Thus there

exists a function u ∈
◦

W 1
2(DT , S0

T ∪ST ) such that lim
k→∞

‖uk−u‖ ◦
W 1

2(DT ,S0
T∪ST )

= 0

and since Luk = Fk → F in the space L2(DT ), this function is, by definition,
a strong generalized solution of problem (21). The uniqueness of this solu-

tion from the space
◦

W 1
2(DT , S0

T ∪ ST ) follows from the a priori estimate (8).
Therefore for this solution u of problem (21) we can write u = L−1F , where

L−1 : L2(DT ) →
◦

W 1
2(DT , S0

T ∪ ST ) is a linear continuous operator whose norm
admits, by virtue of (8), an estimate

‖L−1‖
L2(DT )→

◦
W 1

2(DT ,S0
T∪ST )

≤
√

e

2
T. (24)

Note that, by virtue of (24) and Remark 1, Definition 2 and Remark 2,

for F ∈ L2(DT ), 0 < p < 2
n−1

, a function u ∈
◦

W 1
2(DT , S0

T ∪ ST ) is a strong
generalized solution of problem (3),(4) if and only if u is a solution of the
functional equation

u = L−1 (−λ|u|pu + F ) (25)

in the space
◦

W 1
2(DT , S0

T ∪ ST ).
Rewrite equation (25) as follows:

u = Au := L−1(K0u + F ), (26)

where the operator K0 :
◦

W 1
2(DT , S0

T ∪ST ) → L2(DT ) from (5) is continuous and

compact according to Remark 1. Therefore the operator A :
◦

W 1
2(DT , S0

T∪ST ) →
◦

W 1
2(DT , S0

T ∪ ST ) is also continuous and compact by virtue of (24). At the
same time, according to Lemma 1, for any parameter µ ∈ [0, 1] and for any
solution of an equation with parameter u = µAu we have the a priori estimate
‖u‖ ◦

W 1
2(DT ,ST )

≤ c‖F‖L2(DT ), where the positive constant c does not depend

on u, µ and F . Thus, by the Lere–Shauder theorem [30, Ch. VIII, § 35.5],
equation (26) and therefore problem (3),(4), too, have at least one solution

u ∈
◦

W 1
2(DT , S0

T ∪ ST ). Theorem 1 is proved. ¤
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3. Nonexistence of Global Solvability of Problem (1),(2) in the
Case of Nonlinearity of the Form f(u) = λ|u|p+1

Below we will consider the case where the coefficients in problem (1),(2) are
m = 0 and f(u) = λ|u|p+1 with λ and p being given positive numbers, i.e. the
problem

¤u :=
∂2u

∂t2
−∆u = λ|u|p+1 + F, (27)

u
∣∣
S0

T
= 0, u

∣∣
ST

= g (28)

in the domain DT , T > 0, where g is a given real function on ST that by virtue
of (28) satisfies the compatibility condition g|∂ST

= 0.

Remark 3. Assuming that F ∈ L2(DT ), g ∈ W 1
2 (ST ) and 0 < p < 2

n−1
,

analogously to Definitions 1 and 2 with regard to a weak and a strong generalized
solution of problem (3),(4) in the domain ST and taking into account Remark 1,
we introduce the notions of a weak and a strong generalized solution of problem
(27),(28):

(i) a function u ∈ W 1
2 (DT ) is called a weak generalized solution of the nonlin-

ear problem (27),(28) in the domain DT if for any function ϕ ∈ W 1
2 (DT ) such

that ϕ|t=T = 0, ϕ|S0
T

= 0 the following integral equality is valid:

−
∫

DT

utϕt dx dt +

∫

DT

∇xu∇xϕdx dt

= λ

∫

DT

|u|p+1ϕdx dt +

∫

DT

Fϕ dx dt−
∫

ST

∂g

∂N
ϕds, (29)

where ∂
∂N

= ν0
∂
∂t
−

n∑
i=1

νi
∂

∂xi
is an internal derivative with respect to the conor-

mal which is an internal differential operator on ST , since the conical manifold
ST is characteristic, ν = (ν1, . . . , νn, ν0) is the outward unit normal to ∂DT ,
∇x =

(
∂

∂x1
, . . . , ∂

∂xn

)
;

(ii) a function u ∈ W 1
2 (DT ) is called a strong generalized solution of the

nonlinear problem (27),(28) in the domain DT if there exists a sequence of

functions uk ∈
◦
C2(DT , S0

T ) = {u ∈ C2(DT ) : u|S0
T

= 0} such that uk → u in the

space W 1
2 (DT ), [¤uk − λ|uk|p+1] → F in the space L2(DT ) and uk|ST

→ g in
the space W 1

2 (ST ).

Remark 4. In a standard manner [25, Ch. II, § 5] one can prove that a weak
generalized solution u ∈ W 1

2 (DT ) of problem (27),(28) satisfies the homogeneous
boundary conditions (28) in the sense of trace theory.

It is obvious that a strong generalized solution u ∈ W 1
2 (DT ) of problem

(27),(28) is also a weak generalized solution of this problem.



74 G. BOGVERADZE AND S. KHARIBEGASHVILI

Let us introduce into consideration a function ϕ0 = ϕ0(x, t) such that

ϕ0 ∈ C2(DT ), ϕ0
∣∣
DT=1

> 0, ϕ0
∣∣
xn=0

= 0, ϕ0
∣∣
t≥1

= 0 (30)

and

κ0 =

∫

DT=1

|¤ϕ0|α′
|ϕ0|α′−1

dx dt < +∞, α′ = 1 +
1

p
. (31)

It can be easily verified that for sufficiently large k and m we can take the
function

ϕ0(x, t) =

{
xk

n(1− t)m, (x, t) ∈ DT=1,

0, t ≥ 1,

as a function ϕ0 satisfying conditions (30) and (31).
If it is assumed ϕT (x, t) = ϕ0

(
x
T

, t
T

)
, T > 0, then by virtue of (30) we readily

see that

ϕT ∈ C2(DT ), ϕT

∣∣
DT

> 0, ϕT

∣∣
xn=0

= 0, ϕT

∣∣
t=T

= 0. (32)

Assuming that the functions F , g and ϕ0 are fixed, we introduce into consid-
eration the function of one variable T

γ(T ) =

∫

DT

FϕT dx dt +

∫

ST

g
∂ϕT

∂N
ds−

∫

ST

ϕT
∂g

∂N
ds, T > 0. (33)

We have the following theorem on the nonexistence of global solvability of
problem (27),(28).

Theorem 2. Let F ∈ L2,loc(D), g ∈ W 1
2,loc(S) and F ∈ L2(DT ), g ∈ W 1

2 (ST )

for any T > 0. If 0 < p < 2
n−1

and

lim
T→∞

γ(T ) > 0, (34)

then there exists a positive number T0 = T0(F, g) such that, for T > T0, problem
(27), (28) cannot have a weak generalized solution u ∈ W 1

2 (DT ) in the domain
DT .

Proof. Let u ∈ W 1
2 (DT ) be a weak generalized solution of problem (27), (28)

in the domain DT , i.e. the integral equality (29) be fulfilled. By virtue of (32)
we can take, in equality (29), the function ϕ in the role of the test function ϕT .
Integrating by parts the left-hand side of equality (29), we obtain

∫

DT

u¤ϕT dx dt = λ

∫

DT

|u|p+1ϕT dx dt

+

∫

DT

F ϕT dx dt +

∫

ST

g
∂ϕT

∂N
dx−

∫

ST

ϕT
∂g

∂N
ds. (35)
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With (33) taken into account, equality (35) can be rewritten as

λ

∫

DT

|u|p+1ϕT dx dt =

∫

DT

u¤ϕT dx dt− γ(T ). (36)

If in the Young inequality with parameter ε > 0 for α = p + 1

ab ≤ ε

α
aα +

1

α′εα′−1
bα′ , a, b ≥ 0, α′ =

α

α− 1
= 1 +

1

p

we take a = |u|ϕ
1
α
T , b = |�ϕT |

ϕ
1
α
T

, then keeping in mind that α′
α

= α′ − 1 = 1
p
, we

obtain

|u¤ϕT | = |u|ϕ
1
α
T ·

|¤ϕT |
ϕ

1
α
T

≤ ε

α
|u|αϕT +

1

α′εα′−1

|¤ϕT |α′
ϕα′−1

T

. (37)

By virtue of (37), from (36) we have
(
λ− ε

α

) ∫

DT

|u|αϕT dx dt ≤ 1

α′εα′−1

∫

DT

|¤ϕT |α′
ϕα′−1

T

dx dt− γ(T ),

whence for ε < λα we obtain∫

DT

|u|αϕT dx dt ≤ α

(λα− ε)α′εα′−1

∫

DT

|¤ϕT |α′
ϕα′−1

T

dx dt− α

λα− ε
γ(T ). (38)

Taking into account that α′ = α
α−1

, α = α′
α′−1

and min
0<ε<λα

α
(λα−ε)α′εα′−1 = 1

λα′

for ε = λ, from (38) it follows that
∫

DT

|u|αϕT dx dt ≤ 1

λα′

∫

DT

|¤ϕT |α′
ϕα′−1

T

dx dt− α′

λ
γ(T ). (39)

Since ϕT (x, t) = ϕ0
(

x
T
, t

T

)
, by virtue of (30), (31) it easy to verify after the

substitution of the variables t = Tt′, x = Tx′ that
∫

DT

|¤ϕT |α′
ϕα′−1

T

dx dt = T n+1−2α′
∫

DT=1

|¤ϕ0|α′
(ϕ0)α′−1

dx′ dt′ = T n+1−2α′κ0 < +∞. (40)

By (32) and (40), from inequality (39) we obtain

0 ≤
∫

DT

|u|αϕT dx dt ≤ 1

λα′ T n+1−2α′ κ0 − α′

λ
γ(T ). (41)

If p < 2
n−1

, i.e. If n + 1 − 2α′ < 0, where α′ = 1 + 1
p
, then by virtue of

(31) we have lim
T→∞

1
λα′ T n+1−2α′κ0 = 0. Hence by virtue of (34) there exists a

positive number T0 = T0(F, g) such that, for T > T0, the right-hand part of
(41) is negative, while the left-hand part of this inequality is nonnegative. Thus
if there exists a weak generalized solution u ∈ W 1

2 (DT ) of problem (27),(28) in
the domain DT , then necessarily T ≤ T0, which proves Theorem 2. ¤
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Remark 5. We give some sufficient conditions imposed on the functions F
and g, which guarantee the fulfilment of condition (34):

(i) F = const > 0, g = const;
(ii) F ∈ L2,loc(D), g ∈ W 1

2,loc(S) and F ∈ L2(DT ), g ∈ W 1
2 (ST ) for any

T > 0, and also diam supp g < +∞ and F ≥ 0, F (x, t) ≥ ct−k for t ≥ 1,
where c = const > 0, 0 < k = const < n + 1.

4. Local Solvability of Problem (1), (2) in the Case of
Nonlinearity of the Form f(u) = λ|u|p+1

Remark 6. In proving Theorem 1, it was shown that the linear problem (21),
which, for m = 0, coincides with the corresponding linear problem (27), (28),
has, for λ = 0 and g = 0, a unique solution u = L−1F , where L−1 : L2(DT ) →
◦

W 1
2(DT , S0

T ∪ ST ) is a linear continuous operator whose norm admits estimate
(24). It should also be noted that, analogously to Remark 1, for 0 < p < 2

n−1

the operator

K1 :
◦

W 1
2(DT , S0

T ∪ ST ) → L2(DT ) (K1u = λ|u|p+1) (42)

is continuous and compact. Thus for g = 0 the nonlinear problem (27), (28) is
equivalent to the functional equation

u = Au + u0 (43)

in the space
◦

W 1
2(DT , S0

T ∪ ST ), where with (42) taken into account

A = L−1K1, u0 = L−1F ∈
◦

W 1
2(DT , S0

T ∪ ST ). (44)

Remark 7. Let B(0, d) := {u ∈
◦

W 1
2(DT , S0

T ∪ ST ) : ‖u‖ ◦
W 1

2(DT ,S0
T∪ST )

≤ d}

be a closed (convex) ball in the Hilbert space
◦

W 1
2(DT , S0

T ∪ ST ) with radius
d > 0 and center at a zero element. Since by virtue of Remark 6 the operator

A :
◦

W 1
2(DT , S0

T∪ST ) →
◦

W 1
2(DT , S0

T∪ST ) is continuous and compact for 0 < p <
2

n−1
, by the Shauder principle in order to prove the solvability of equation (43)

it is sufficient to show that the operator A1 acting by the formula A1u = Au+u0

transverse the ball B(0, d) into itself for some d > 0 [30, Ch. VIII, § 35.3]. To this
end, below we will derive the needed estimate for the value ‖Au‖ ◦

W 1
2(DT ,S0

T∪ST )
.

We further use the reasoning from [31]. If u ∈
◦

W 1
2(DT , S0

T ∪ ST ), then we
denote by ũ the function which continues in an even manner the function u

across the plane t = T . It is obvious that ũ ∈
◦

W 1
2(D

∗
T ), where D∗

T : |x| < t <
2T − |x|, xn > 0.

Using the inequality [32, Ch. X, § 1]∫

Ω

|v| dΩ = (mes Ω)1− 1
q ‖v‖q,Ω, q ≥ 1,
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and taking into account the equalities

‖ũ‖q
Lq(D∗T ) = 2‖u‖q

Lq(DT ), ‖ũ‖2
◦

W 1
2

= 2‖u‖2
◦

W 1
2(DT ,S0

T∪ST )

from the well known multiplicative inequality [25, Ch. I, § 7]

‖v‖q,Ω ≤ β‖∇v‖eα
m,Ω‖v‖1−eα

r,Ω ∀ v ∈
◦

W 1
2(Ω), Ω ⊂ Rn+1,

α̃ =

(
1

r
− 1

q

)(
1

r
− 1

m̃

)−1

, m̃ =
(n + 1)m

n + 1−m

for Ω = D∗
T ⊂ Rn+1, v = ũ, r = 1, m = 2 and 1 < q ≤ 2(n+1)

n−1
, where

β = const > 0 does not depend on v and T , we obtain the inequality

‖u‖Lq(DT ) ≤ c0(mes DT )
1
q
+ 1

n+1
− 1

2‖u‖ ◦
W 1

2(DT ,S0
T∪ST )

∀u ∈
◦

W 1
2(DT , S0

T∪ST ), (45)

where c0 = const > 0 does not depend on u.
Since mes DT = ωn

2(n+1)
T n+1, where ωn is the volume of the unit ball in Rn,

for q = 2(p + 1) inequality (45) implies

‖u‖L2(p+1)(DT ) ≤ c0
˜̀
p,nT

(n+1)
(

1
2(p+1)

+ 1
n+1

− 1
2

)
‖u‖ ◦

W 1
2(DT ,S0

T∪ST )

∀u ∈
◦

W 1
2(DT , S0

T ∪ ST ), (46)

where ˜̀
p,n =

(
ωn

2(n+1)

)( 1
2(p+1)

+ 1
n+1

− 1
2
)
.

For the value ‖K1u‖L2(DT ), where u ∈
◦

W 1
2(DT , S0

T ∪ST ) and the operator K1

is given by equality (42), by virtue of (46) we obtain the estimate

‖K1u‖L2(DT ) ≤ λ

[ ∫

DT

|u|2(p+1) dx dt

] 1
2

= λ‖u‖2
L2(p+1)(DT )

≤ λ`p,nT
(p+1)(n+1)

(
1

2(p+1)
+ 1

n+1
− 1

2

)
‖u‖p+1

◦
W 1

2(DT ,S0
T∪ST )

, (47)

where `p,n = [c0
˜̀
p,n]p+1.

Now, for Au = L−1K1u, from (24) and (47) follows the estimate

‖Au‖ ◦
W 1

2(DT ,S0
T∪ST )

≤ ‖L−1‖
L2(DT )→

◦
W 1

2(DT ,S0
T∪ST )

‖K1u‖L2(DT )

≤
√

e

2
λ`p,nT

1+(p+1)(n+1)
(

1
2(p+1)

+ 1
n+1

− 1
2

)
‖u‖p+1

◦
W 1

2(DT ,S0
T∪ST )

∀u ∈
◦

W 1
2(DT , S0

T ∪ ST ). (48)

Note that 1
2(p+1)

+ 1
n+1

− 1
2

> 0 for p < 2
n−1

.

Consider the equation

azp+1 + b = z (49)
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with respect to the unknown z, where

a =

√
e

2
λ`p,nT

1+(p+1)(n+1)
(

1
2(p+1)

+ 1
n+1

− 1
2

)
, b =

√
e

2
T‖F‖L2(DT ) . (50)

For T > 0 it is obvious that a > 0 and b ≥ 0. A simple analysis analogous to
that carried out for p = 2 in [30, Ch. VIII, § 35.4] shows that (i) in the case
b = 0 equation (49) has, along with the zero root z1 = 0, the unique positive

root z2 = a−
1
p ; (ii) if b > 0, then for 0 < b < b0, where

b0 =
[
(p + 1)−

1
p − (p + 1)−

p+1
p

]
a−

1
p , (51)

equation (49) has two positive roots z1 and z2, 0 < z1 < z2. For b = b0 these

roots coincide and we have one positive root z1 = z2 = z0 = [(p + 1)a]−
1
p ;

(iii) for b > b0 equation (49) has no nonnegative roots.

Note that for 0 < b < b0 we have the inequalities z1 < z0 = [(p+1)a]−
1
p < z2.

By virtue of (50) and (51) the condition b ≤ b0 is equivalent to the condition

√
e

2
T‖F‖L2(DT )

≤
[√

e

2
λ`p,nT

1+(p+1)(n+1)
(

1
2(p+1)

+ 1
n+1

− 1
2

)]− 1
p [

(p + 1)−
1
p − (p + 1)−

p+1
p

]

or to

‖F‖L2(DT ) ≤ γn,λ,pT
−αn , αn > 0, (52)

where

γn,λ,p =
[
(p + 1)−

1
p − (p + 1)−

p+1
p

] (
λ`p,n

)− 1
p exp

[
−1

2

(
1 +

1

p

)]
,

αn = 1 +
1

p

[
1 + (p + 1)(n + 1)

(
1

2(p + 1)
+

1

n + 1
− 1

2

)]
.

By the absolute continuity of the Lebesgue integral we have lim
T→0

‖F‖L2(DT ) =

0. Since at the same time time lim
T→0

T−αn = +∞, there exists a number T1 =

T1(F ), 0 < T1 < +∞, such that inequality (52) is fulfilled for

0 < T ≤ T1(F ). (53)

Now we will show that if condition (53) is fulfilled, then the operator A1 :
◦

W 1
2(DT , S0

T ∪ ST ) →
◦

W 1
2(DT , S0

T ∪ ST ) acting by the formula A1u = Au + u0

transfers the ball B(0, z2) from Remark 7 into itself, where z2 is the largest
positive root of equation (49). Indeed, if u ∈ B(0, z2), then by virtue of (48)–
(50) we have

‖A1u‖ ◦
W 1

2(DT ,S0
T∪ST )

≤ a‖u‖p+1
◦

W 1
2(DT ,S0

T∪ST )
+ b ≤ azp+1

2 + b = z2.

Therefore the following theorem is valid according to Remarks 6 and 7.
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Theorem 3. Let F ∈ L2,loc(D), g = 0, 0 < p < 2
n−1

and condition (53)
be fulfilled for the value T . Then problem (27), (28) has at least one strong

generalized solution u ∈
◦

W 1
2(DT , S0

T ∪ ST ) in the domain DT .
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