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NEAR FIELD REPRESENTATIONS OF THE ACOUSTIC
GREEN’S FUNCTION IN A SHALLOW OCEAN WITH

FLUID-LIKE SEABED

ROBERT GILBERT AND MIAO-JUNG OU

Abstract. In this paper, the near-field approximation of the acoustic
Green’s function in a two-layer waveguide is constructed by using a variation
of the method of Ahluwalia and Keller [1]. The relation between the con-
structed multiple-scattering representation (suitable for near-field) and the
Hankel transform representation (suitable for mid-range) is also discussed in
this paper. The construction scheme presented in this paper can be general-
ized for an N-layer waveguide.
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1. Introduction

In this paper, we show how to construct acoustic Green’s functions for a water
column with fluid-like basement atop a rigid rockbed. The main interest is to
obtain a representation of the acoustic Green’s function which is valid in the
near field. It is hoped with a near field Green’s function, we will be able to solve
the unknown object, inverse problem for an object submerged in an ocean with
a layer of fluid-like sediment atop rigid rock, much in the same way as in [5],
[3] for the completely reflecting seabed. In these papers, the method of integral
equations is used, hence the need for an accurate near-field approximation. An
alternate method which could also make use of an accurate near-field Green’s
function is the method of complete families of solutions. The idea of this method
is discussed in [2] by Bergman and Schiffer, but goes back much farther. This
method has been used effectively by Angell, Kleinman, Lesselier, and Rozier
[6, 7] who used the fact that the Green’s function evaluated on a dense set of
points in the interior of the bounding curve of the unknown object provides a
complete family [2].

Our approach makes use of an idea put forth in a paper by Ahluwalia and
Keller [1]. Their method generalizes the method of images representation of the
Green’s function for a homogeneous shallow ocean with reflecting seabed with
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finite depth h, namely

G(x,x0) =
∞∑

n=−∞
(−1)n

(
eik
√

(x−x0)2+(y−y0)2+(z−z0+2nh)2

√
(x− x0)2 + (y − y0)2 + (z − z0 + 2nh)2

− eik
√

(x−x0)2+(y−y0)2+(z+z0+2nh)2

√
(x− x0)2 + (y − y0)2 + (z + z0 + 2nh)2

)
,

where (x0, y0, z0) is the source location and k is the wave number, which is de-
fined as the ratio of acoustic frequency and the acoustic wave speed in the ocean.
This representation is called the ray representation of the Green’s function. This
method can be further generalized to a stratified ocean and the resulting repre-
sentation is called the multiple scattering expansion of the Green’s function [1].
Although it is well known that the ray/multiple scattering representation is
mathematically equivalent to the modal expansion [1], actual computations
with each of these representations can return different results due to truncation
errors. This is especially true for the two extreme cases, i.e. when the point of
measurement is very close to or far away from the acoustic source point.

We are interested in the model of an ocean with a fluid-like seabed. It is
modeled as a two-layered waveguide. Within each layer, the acoustic property
can be smoothly varied with respect to depth. On the interface between the two
layers, there is a jump in the refractive index n(z) := c(z)/c0 and continuity of
acoustic displacement and acoustic pressure are imposed there as transmission
conditions. The modal expansion of the Green’s function for a waveguide of two
homogeneous layers is already given in ([4]). In this paper, we construct the
multiple scattering expansion of the Green’s function. The relation between the
modal expansion and the multiple scattering expansion of the Green’s function
is also discussed.
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Figure 1. Schematic description of the Pekeris waveguide
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1.1. Construction of the near-field representation of the Green’s func-
tion. We consider a waveguide, which consists of a finite, uniform depth water
column lying over a fluid-like seabed as shown in Figure 1. The waveguide can
be stratified, i.e. the acoustic property is not necessarily homogeneous in each
layer.

We shall use the subscript 1 for the material parameters in the water column
and the subscript 2 for those in the basement; whereas for the ease of notation,
we will use p(1) and p(2) to denote the acoustic pressure in the ocean and the
seabed, respectively. Moreover, we assume that the acoustic source is situated
in the water column at r = 0 and z = z0 in cylindrical coordinates. Hence,
in the water column, the time harmonic acoustic pressure p(1) must satisfy the
nonhomogeneous Helmholtz equation

∆p(1) + k2n1(z) p(1) = −δ(z − z0)
δ(r)

2πr
. (1)

In the fluid-like sediment, the acoustic pressure p(2) satisfies the homogeneous
Helmholtz equation

∆p(2) + k2n2(z) p(2) = 0, (2)

where k is a constant defined as k := ω
c0

with ω being the frequency of acoustic

waves and c0 the reference sound speed. The refractive index function ni(z) in
the layer i, i = 1, 2, is the ratio of the reference sound speed c0 and the sound
speed function ci(z), which is assumed to be continuous within each layer.

At the ocean surface there is a pressure release boundary condition,

p(1) = 0 at z = 0. (3)

Across the two-fluid interface z = d(< 0), two transmission conditions are
required such that the normal component of particle velocity and acoustic pres-
sure be preserved,

lim
z→d+

1

ρ1

∂p(1)

∂z
(x, y, z) = lim

z→d−

1

ρ2

∂p(2)

∂z
(x, y, z), (4)

lim
z→d+

p(1)(x, y, z) = lim
z→d−

p(2)(x, y, z). (5)

At the bottom z = h(< 0), the complete reflecting condition reads as

∂p(2)

∂z
= 0 at z = h. (6)

It is convenient to use the Hankel transform

p̃(ka, z) := 2π

∞∫

0

J0(kar) p(r, z) r dr

to reduce the dimensionality of our problem, where J0 is the Bessel function of
order zero. Imposing the out-going radiation conditions on p and applying the
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Hankel transformation to equations (1)–(6) lead to the following system:

∂2

∂z2
p̃(1)(ka, z) + k2

(
n1(z)2 − a2

)
p̃(1)(ka, z) = −δ (z − z0) , d < z < 0, (7)

∂2

∂z2
p̃(2)(ka, z) + k2

(
n2(z)2 − a2

)
p̃(2)(ka, z) = 0, h < z < d, (8)

p̃(1) (ka, 0) = 0, (9)

lim
z→d+

1

ρ1

∂p̃(1)

∂z
= lim

z→d−

1

ρ2

∂p̃(2)

∂z
, (10)

lim
z→d+

p̃(1) = lim
z→d−

p̃(2), (11)

∂p̃(2)

∂z
(h) = 0. (12)

For the ease of notation, we define f(c+) and f(c−) as

f(c+) := lim
z→c+

f(z)

f(c−) := lim
z→c−

f(z)

for any given function f(z) and fixed number c. This notation will be extensively
used in the rest of the paper.

2. The Method of Ahluwalia and Keller

To demonstrate the singular behavior of the Green’s function, we apply a
variation on the method of images suggested in [1] for a completely reflecting
seabed. To this end, we seek for the Hankel transform of the Green’s function
G(r, z; 0, z0) as a multiple scattering representation in the form

G(r, z; 0, z0) =
∞∑

n=0

ψn(r, z).

Here ψ0(r, z) represents a direct wave from the source at (0, z0); ψ1(r, z) rep-
resents a wave which has been either reflected or refracted once, and ψn(r, z)
is a wave which has gone through n such actions. A particular nicety of this
method is that the refractive index function nj, j = 1, 2, can vary with respect
to z.

For convenience, we work with the Hankel-transformed system (7)∼(12). In
order to construct the scattered waves we need two linearly independent so-
lutions of the homogeneous form of (7). Let us designate these two solutions
in the water column as U (1)(ka, z) and D(1)(ka, z) as up-going and down-going
solutions respectively, relative to z0. We normalize these solutions such that
their Wronskian at z = z0 is −2ik. Similarly, U (2)(ka, z) and D(2)(ka, z) are
two linearly independent solutions of (8).

In terms of the convention

z> := max{z, z0}, z< := min{z, z0},
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the first term in the multiple scattering representation is seen to be

ψ̃0(ka, z) =

{
U (1)(ka, z>) D(1)(ka, z<)

−2ik
, d < z < 0,

0 , h < z < d.

Obviously ψ̃0 satisfies (7).

To simplify the notation, we will hereafter omit the variable ka in U (1)(ka, z),
D(1)(ka, z), U (2)(ka, z) and D(2)(ka, z).

To calculate the next term in this representation we proceed as follows. When
ψ̃0 is incident upon the water column surface at z = 0, it produces a down-going
wave. Since U (1) and D(1) are linearly independent solutions to a second-order
linear ordinary differential equation, this downward wave must be proportional
to D(1)(z). For convenience, we write it in the form

R1 D(1)(z0) D(1)(z)/(−2ik) ,

where R1 is referred to as the reflection coefficient of the water surface. To
compute R1, we use the boundary condition at the surface z = 0,

ψ̃0(ka, 0) +
R1 D(1)(ka, z0) D(1)(0)

−2ik
= 0 ,

which implies

R1 = −U (1)(0)

D(1)(0)
. (13)

Similarly, as ψ̃0 is incident upon the interface z = d, it produces an up-going
wave in the water column and a down-going wave in the fluid-like seabed.
We denote the first one by R2U

(1)(z0)U
(1)(z)/(−2ik) and the second one by

T1U
(1)(z0)D

(2)(z)/(−2ik), where R2 is referred to as the reflection coefficient
and T1 as the transmission coefficient on the interface. To calculate these coef-
ficients, we apply (11) and (10) to obtain

ψ̃0(ka, d+) +
R2U

(1)(z0)U
(1)(d+)

−2ik

=
T1U

(1)(z0)D
(2)(d−)

−2ik(
1

ρ1

∂ψ̃0

∂z

)
(ka, d+) +

R2U
(1)(z0)

−2ik

(
1

ρ1

∂U (1)

∂z

)
(d+)

=
T1U

(1)(z0)

−2ik

(
1

ρ2

∂D(2)

∂z

)
(d−).
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These equations yield

R2 =

∣∣∣∣∣
D(1)(d+) D(2)(d−)(

1
ρ1

∂D(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣
∣∣∣∣∣

U (1)(d+) −D(2)(d−)(
1
ρ1

∂U(1)

∂z

)
(d+) −

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣

,

T1 =

∣∣∣∣∣
U (1)(d+) −D(1)(d+)(

1
ρ1

∂U(1)

∂z

)
(d+) −

(
1
ρ1

∂D(1)

∂z

)
(d+)

∣∣∣∣∣
∣∣∣∣∣

U (1)(d+) −D(2)(d−)(
1
ρ1

∂U(1)

∂z

)
(d+) −

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣

.

We conclude that ψ̃1 is given by

ψ̃1(ka, z) =





R1

−2ik
D(1)(z0)D

(1)(z)− R2

2ik
U (1)(z0)U

(1)(z), d < z < 0,

T1

−2ik
U (1)(z0)D

(2)(z) , h < z < d.
(14)

For ψ̃2, as is shown in Figures 2(a) and 2(b), there are only four possi-

Z 0

(1)

(4)

Sea Surface

Interface

Seabed

(a)

Z 0

(2)

(3)

Sea Surface

Interface

Seabed

(b)

Figure 2. Schematic construction of ψ̃2

bilities. For cases (1) and (4), by a similar argument as before, we write
this up-going wave as R21D

(1)(z0)U
(1)(z)/(−2ik) and the down-going wave as

T24D
(1)(z0)D

(2)(z)/(−2ik). To compute R21 and T24, we use the transmission
conditions to obtain the system

U (1)(d+)R21 −D(2)(d−)T24 = −R1D
(1)(d+),

(
1

ρ1

∂U (1)

∂z

)
(d+)R21 −

(
1

ρ2

∂D(2)

∂z

)
(d−)T24 = −R1

(
1

ρ1

∂D(1)

∂z

)
(d+).

The above system implies

R21 = R1R2, (15)
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T24 = R1T1. (16)

For case (2) in Figure 2(b), denoting this down-going wave by R22U
(1)(z0) ×

D(1)(z)/(−2ik) and considering the pressure-release condition (9) lead to

R2U
(1)(z0)U

(1)(0)

−2ik
+

R22U
(1)(z0)D

(1)(0)

−2ik
= 0,

that is,

R22 = −R2
U (1)(0)

D(1)(0)
= R1R2. (17)

We denote the wave for case (3) in Figure 2(b) by R23U
(1)(z0)U

(2)∂z. Since in

the calculation of ψ̃1, the incident wave for (3) has already been found to be
T1U

(1)(z0)D
(2)(z)/(−2ik), we use the boundary condition (12) at z = h to get

T1U
(1)(z0)

∂D(2)

∂z
(h+) + R23U

(1)(z0)
∂U (2)

∂z
(h+) = 0. (18)

Define B as

B := −
∂D(2)

∂z
(h+)

∂U(2)

∂z
(h+)

, (19)

then R23 from (18) can be written as

R23 = BT1. (20)

Combining the results, ψ̃2 is given by

ψ̃2(ka, z) =





R1R2

−2ik
D(1)(z0)U

(1)(z) +
R1R2

−2ik
U (1)(z0)D

(1)(z), d < z < 0,

R1T1

−2ik
D(1)(z0)D

(2)(z) +
T1B

−2ik
U (1)(z0)U

(2)(z) , h < z < d.

To construct ψ̃3, we consider all the six possible cases as shown in Figure 3(a),
3(b) and 3(c). The up-going wave (6) represented by T36U

(1)(z0)U
(1)(z)/(−2ik)

and the down-going wave (5) represented by R35U
(1)(z0)D

(2)(z)/(−2ik) can be
determined by applying the transmission conditions to get

T36 = T1BT2,

R35 = T1BR5.

Here T2 and R5 are given by

T2 :=

∣∣∣∣∣
U (2)(d−) −D(2)(d−)(

1
ρ2

∂U(2)

∂z

)
(d−) −

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣
∣∣∣∣∣

U (1)(d+) −D(2)(d−)(
1
ρ1

∂U(1)

∂z

)
(d+) −

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣

,
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Figure 3. Schematic construction of ψ̃3

R5 :=

∣∣∣∣∣
U (1)(d+) U (2)(d−)(

1
ρ1

∂U(1)

∂z

)
(d+)

(
1
ρ2

∂U(2)

∂z

)
(d−)

∣∣∣∣∣
∣∣∣∣∣

U (1)(d+) −D(2)(d−)(
1
ρ1

∂U(1)

∂z

)
(d+) −

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣

.

Applying similar arguments to case (1) to (4) in Figures 3(a) and 3(b), we
obtain the following representation of each individual wave:

Wave (1) :
R2

1R2

−2ik
D(1)(z0)D

(1)(z),

Wave (2) :
R1T1B

−2ik
D(1)(z0)U

(2)(z),

Wave (3) :
R1R

2
2

−2ik
U (1)(z0)U

(1)(z),

Wave (4) :
R1R2T1

−2ik
U (1)(z0)D

(2)(z).

Using these six waves, ψ̃3 is represented as

ψ̃3(ka, z)
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=





R2
1R2

−2ik
D(1)(z0)D

(1)(z) +
R1R2

2

−2ik
U (1)(z0)U

(1)(z) + T1BT2

−2ik
U (1)(z0)U

(1)(z),
d < z < 0
R1T1B
−2ik

D(1)(z0)U
(2)(z) + R1R2T1

−2ik
U (1)(z0)D

(2)(z) + T1BR5

−2ik
U (1)(z0)D

(2)(z),
h < z < d.

R 5

R 1
R 2

B
T1

T2

Interface

Sea surface

Seabed

Figure 4. Schematic description of the six coefficients in the
two-layer waveguide

Interface

Sea surface

Seabed

Figure 5. Schematic description of one of the rays in
ψ̃7. It can be represented by using the six parameters as
R1T1BT3R1R2R1D

(1)(z0)D
(2)(z)/(−2ik)

By induction, it can be shown that any possible wave can be uniquely repre-
sented in terms of the six coefficients R1, R2, R5, T1, T2 and B defined as before.
A schematic description of these 6 numbers is given in Figure 4. For example,
the down-going wave in Figure 5 is R1T1BT3R1R2R1D

(1)(z0)D
(2)(z)/(−2ik).

Therefore we may construct ψ̃n, n = 1, 2, 3, . . . by the following scheme based
on a tree structure. The tree structure is built by the four rules:

(1) R1 always branches out to T1 and R2 in the next level of the tree.
(2) T1 can only be followed by B. R2 can only be followed by R1.
(3) B always branches into T2 and R5 in the next level.
(4) T2 can only be followed by R1. R5 can only be followed by B.

We divide the waves in ψn, n > 1 into two groups: one group includes all
the waves which have D(1)(z0) as part of the coefficients and the other group
includes all the waves involving U (1)(z0). For the first group, the root of the tree
is R1 and the tree is shown in Figure 6(a). The other group contains two trees
– one starts with R2 and the other starts with T1. These two trees are shown
in Figure 6(b). Using these tree structures, ψn, n ≥ 1, can be constructed
by tracing every path from the root (level 1) to the nodes at level n. For
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example, the length-four path R1-T1-B-T2 of Tree (a) corresponds to the wave
R1T1BT2

−2ik
D(1)(z0)U

(1)(z). After all paths of length n in all the three trees are
traced, ψn(z) in d < z < 0 is then given by the sum of all waves which contain
U (1)(z) or D(1)(z), and ψn(z) in h < z < d is given by the sum of all waves
which contain U (2)(z) or D(2)(z).

T1 R2

T R

B

2 5 T1 R 2

R 1
R

RT

1

21 T R

B

2 5

R 1

T

T R

B

2 5

1

R

R

1

2

.... .... .... .... .... .... .... ....

(a)

T1 R 2

R 1

R 1 B
....

B
....

R 1
....

B
....

R 1
....

R 1
....

R 2

R

R

1

2

R2

T R

B

T

2 5

1

B
.... ....

T

T

R

T T R

B

R

B

2 5

1

2 5

1

1

(b)

Figure 6. Tree Structure

The ray representation is then obtained by inverse Hankel transforming∑∞
l=0 ψ̃l back.

3. Relation Between the Multiple Scattering Representation
and the Hankel Transformed Representation of the Green’s

Function

The multiple scattering representation constructed in the previous section can
actually be derived in a simpler way by using binomial expansions as presented
in this section.

It is known that the Green’s function for the system of (7)–(12) can be con-

structed by using two functions f̃1 and f̃2 such that both of them satisfy the
differential equations (7), (8) and the transmission conditions (10). Further-

more, f̃1 satisfies the boundary condition (9), whereas f̃2 satisfies the boundary
condition (12). Because {U (1), D(1)} and {U (2), D(2)} are linearly independent

solutions of (7) and (8), respectively, we can write f̃1 and f̃2 as

f̃1 =

{
U (1) + R1D

(1) , d < z < 0,
αU (2) + βD(2), h < z < d,

f̃2 =

{
γU (1) + δD(1), d < z < 0,
D(2) + BU (2) , h < z < d.
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Here R1 and B are defined as in (13) and (19). To determine the constants, we
apply the transmission conditions (10) and (11) to obtain

α=

∣∣∣∣∣
U (1)(d+) D(2)(d−)(

1
ρ1

∂U(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣+R1

∣∣∣∣∣
D(1)(d+) D(2)(d−)(

1
ρ1

∂D(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣
∣∣∣∣∣

U (2)(d−) D(2)(d−)(
1
ρ2

∂U(2)

∂z

)
(d−)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣

β =

∣∣∣∣∣
U (1)(d+) D(2)(d−)(

1
ρ1

∂U(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣+R1

∣∣∣∣∣
D(1)(d+) D(2)(d−)(

1
ρ1

∂D(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣
∣∣∣∣∣

U (2)(d−) D(2)(d−)(
1
ρ2

∂U(2)

∂z

)
(d−)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣

γ =

−
∣∣∣∣∣

D(1)(d+) D(2)(d−)(
1
ρ1

∂D(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣+B

∣∣∣∣∣
D(1)(d+) D(2)(d−)(

1
ρ1

∂D(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣
∣∣∣∣∣

U (1)(d+) D(1)(d+)(
1
ρ1

∂U(1)

∂z

)
(d+)

(
1
ρ1

∂D(1)

∂z

)
(d+)

∣∣∣∣∣

δ=

∣∣∣∣∣
U (1)(d+) D(2)(d−)(

1
ρ1

∂U(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣−B

∣∣∣∣∣
U (1)(d+) D(2)(d−)(

1
ρ1

∂U(1)

∂z

)
(d+)

(
1
ρ2

∂D(2)

∂z

)
(d−)

∣∣∣∣∣
∣∣∣∣∣

U (1)(d+) D(1)(d+)(
1
ρ1

∂U(1)

∂z

)
(d+)

(
1
ρ1

∂D(1)

∂z

)
(d+)

∣∣∣∣∣

In terms of f̃1 and f̃2, the Green’s function G̃(z, z0) is

G̃(z, z0) =
f̃1(z>)f̃1(z<)

W (f̃1, f̃2)(z0)
,

where W (f̃1, f̃2)(z0) is the Wronskian of f̃1 and f̃2 evaluated at z = z0. There-
fore, for z0 in the ocean layer, i.e., for d < z0 < 0, we have

G̃(z, z0)

=





[U (1)(z>) + R1D
(1)(z>)] · [γ

δ
U (1)(z<) + D(1)(z<)]

−2ik(1−R1 · γ
δ
)

, d < z < 0,

1
δ
· [U (1)(z0) + R1D

(1)(z0)][D
(2)(z) + BU (2)(z)]

−2ik(1−R1 · γ
δ
)

, h < z < d.

(21)

The key step in connecting the above expression of the Green’s function with
the multiple scattering representation in d < z < 0 is to identify γ

δ
with the
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following combination of the parameters listed in Figure 4:

γ

δ
= R2 +

BT1T2

1−BR5

. (22)

Applying the binomial expansion to the first function in (21), the coefficient of
the term U (1)(z>)D(1)(z<) becomes

1

−2ik
+

∞∑

k=1

k∑

l=0

Ck
l (R2R1)

l

−2ik

( ∞∑
j=0

T1(BR5)
jBT2R1

)k−l

, (23)

Ck
l :=

k!

(k − l)! l!
. (24)

Similarly, the coefficient of U (1)(z>)U (1)(z<) in (21) is

R2

−2ik
+

∞∑
j=0

T1B(R5B)jT2

−2ik

+
∞∑

k=1

k∑

l=0

Ck
l (R2R1)

l

−2ik

( ∞∑
m=0

T1(BR5)
mBT1T2

)k−l ∞∑
j=0

T1B(R5B)jT2

+
∞∑

k=1

k∑

l=0

Ck
l (R2R1)

l

−2ik

( ∞∑
m=0

T1(BR5)
mBT1T2

)k−l

R2, (25)

and the coefficient of D(1)(z>)D(1)(z<) is

R1

−2ik
+

R1

−2ik

∞∑

k=1

k∑

l=0

Ck
l (R2R1)

l

( ∞∑
j=0

T1(BR5)
jBT2R1

)k−l

. (26)

Finally, the coefficient of D(1)(z>)U (1)(z<) is

∞∑

k=1

k∑

l=0

Ck
l (R2R1)

l

−2ik

( ∞∑
j=0

T1(BR5)
jBT2R1

)k−l

. (27)

For the Green’s function in h < z < d, applying (22) and the identity

1

δ
=

T1

1−BR5

,

followed by binomial expansions, we obtain the series expansion of the coefficient
of the term U (1)(z0)U

(2)(z) of the Green’s function G(z, z0) in h < z < d:

1

−2ik

∞∑

k=0

k∑

l=0

Ck
l (R2R1)

lT1B

[
T2R1T1B

∞∑
n=0

(R5B)n

]k−l ∞∑
m=0

(R5B)m. (28)



NEAR FIELD REPRESENTATIONS OF THE ACOUSTIC GREEN’S FUNCTION 121

In a similar fashion, the coefficient of the term U (1)(z0)D
(2)(z) can be written

as

1

−2ik

∞∑

k=0

k∑

l=0

Ck
l (R2R1)

lT1

[
BT2R1T1

∞∑
n=0

(BR5)
n

]k−l ∞∑
m=0

(BR5)
m, (29)

and for D(1)(z0)U
(2)(z) we have

R1

−2ik

∞∑

k=0

k∑

l=0

Ck
l (R2R1)

lT1

[
BT2R1T1

∞∑
n=0

(BR5)
n

]k−l ∞∑
m=0

(BR5)
m ·B. (30)

Finally, the coefficient of the term D(1)(z0)D
(2)(z) can be expressed as

R1

−2ik

∞∑

k=0

k∑

l=0

Ck
l (R2R1)

lT1

[
BT2R1T1

∞∑
n=0

(BR5)
n

]k−l ∞∑
m=0

(BR5)
m. (31)

Clearly, there is a one-to-one correspondence between each of the terms in these
expansions and the waves constructed by using the tree structures in Figures
6(a) and 6(b).
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