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Abstract. For an infinite-dimensional separable Hilbert space H, the prob-
lem of measurability of additive functionals f : H → R with respect to
various extensions of σ-finite diffused Borel measures on H is discussed. It
is shown that there exists an everywhere discontinuous additive functional f
on H such that, for any σ-finite diffused Borel measure µ on H, this f can
be made measurable with respect to an appropriate extension of µ. Special
consideration is given to the case where µ is invariant or quasiinvariant under
a subgroup of H.
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Let E be a topological space such that all singletons in E are Borel subsets
of E.

Recall that a Borel measure µ on E is diffused (or continuous) if µ({x}) = 0
for each point x ∈ E.

We denote by the symbol M(E) the class of all completions of σ-finite Borel
measures on E. A set X ⊂ E is called universally measurable with respect to
M(E) if, for any measure µ ∈ M(E), we have X ∈ dom(µ) (cf. [1]). It is well
known that if E is a Polish space, then all analytic (also, co-analytic) subsets
of E are universally measurable with respect to M(E) (for the proof, see, e.g.,
[1] or [2]). The family of all universally measurable sets in E forms a σ-algebra
of subsets of E.

A functional f : E → R is called universally measurable if f is measurable
with respect to any µ ∈ M(E).

Let H denote an infinite-dimensional separable Hilbert space and let f :
H → R be a universally measurable additive functional. Then f turns out to
be continuous (see [3]; a more general result is presented in [4]). In fact, f is
continuous whenever it is universally measurable with respect to the class of
the completions of all probability diffused Borel measures on H.

To demonstrate this, take such an f and suppose to the contrary that f is not
continuous. Then, for every natural number n, there exists an element hn ∈ H
satisfying the relations

||hn|| = 1, |f(hn)| > n · 4n.
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Let us put en = hn/4n. Obviously, we have

||en|| = 1/4n, |f(en)| > n (n ∈ ω).

Further, consider the Cantor space C = {0, 1}ω as a compact commutative
group (with respect to the addition operation modulo 2) and equip C with
the Haar probability measure λ which is actually isomorphic to the standard
Lebesgue measure on the segment [0, 1].

Define a mapping ψ : C → H by the formula

ψ(1A) =
∑
n∈A

en (A ⊂ ω),

where 1A denotes the characteristic function of a set A ⊂ ω. It can easily be
verified that:

(i) ψ is continuous;
(ii) ψ is injective;
(iii) |(f ◦ ψ)(1{n})| = |f(en)| > n for each n < ω.
Let µ denote the distribution in H of the random variable ψ. Clearly, µ is

a Borel diffused probability measure on H and, according to our assumption,
f is measurable with respect to the completion of µ. This implies that the
composition f ◦ ψ is measurable with respect to λ. Since this composition is
also additive on the power-set P(ω), we conclude (cf. [3], [4]) that the set

{(f ◦ ψ)(1{n}) : n < ω}
must be bounded in H, which is impossible in view of relation (iii). The con-
tradiction obtained yields the required result.

Obviously, the same argument works for an arbitrary infinite-dimensional
Banach space E instead of H.

We thus see that only continuous linear functionals on H can be universally
measurable with respect to the class of all completions of σ-finite (equivalently,
probability) diffused Borel measures on H.

For a finite-dimensional Euclidean space Rn, we have a much stronger result:
if an additive functional f : Rn → R is measurable with respect to the standard
Lebesgue measure on Rn, then f is continuous (see, e.g., [5]). An analogous
result is valid for any homomorphism f acting from a σ-compact locally compact
topological group Γ into the additive group R and measurable with respect to
the completion of the Haar measure on Γ (here the so-called Steinhaus property
of the Haar measure plays a significant role).

In this paper we introduce a different notion of universal measurability of
functionals. It will be shown in the sequel that there exist universally measur-
able additive functionals on H (in the sense of our notion) which are everywhere
discontinuous. Then we will demonstrate how such universally measurable ad-
ditive functionals can be applied to the measure extension problem.

Let E be an arbitrary nonempty set and let M be a class of measures on E
(we do not assume, in general, that the measures from M are defined on the
same σ-algebra of subsets of E).
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We will say that a functional f : E → R is universally measurable with
respect to M if, for each measure µ ∈ M , there exists a measure µ′ on E
extending µ and such that f becomes measurable with respect to µ′.

Evidently, this definition is more general than the one given in the beginning
of the paper. Also, in this definition we may replace the real line R by an
uncountable Polish space or, more generally, by an uncountable Borel subset of a
Polish space (since, according to the well-known result of descriptive set theory,
any two uncountable Borel subsets of a Polish space are Borel isomorphic).

Recall that a subset X of a topological space E is a Bernstein set in E if, for
each nonempty perfect set P ⊂ E, we have P ∩X 6= ∅ and P ∩ (E \X) 6= ∅.
Various properties of Bernstein sets are discussed in [2], [5], [6] and [7]. In
particular, any uncountable Polish space contains a Bernstein subset and the
cardinality of such a subset is equal to the cardinality of the continuum (denoted
by c).

For our further purposes, we need two lemmas.

Lemma 1. The Hilbert space H can be represented in the form

H = X1 + X2 (X1 ∩X2 = {0}),
where X1 and X2 are Bernstein subsets of H and, simultaneously, they are
vector spaces over the field Q of all rationals.

Proof. The argument is fairly standard (cf. [10], p. 25, Theorem 5). Denote by
α the least ordinal number of cardinality continuum and let {Pξ : ξ < α} be
an enumeration of all nonempty perfect subsets of H. By using the method of
transfinite recursion it is not difficult to construct two α-sequences

{xξ : ξ < α} ⊂ H, {yξ : ξ < α} ⊂ H

satisfying the following conditions:
(a) the family {xξ : ξ < α} ∪ {yξ : ξ < α} is linearly independent over Q;
(b) for any ordinal ξ < α, we have xξ ∈ Pξ and yξ ∈ Pξ.
Now, let us take as X1 the vector space (over Q) generated by {xξ : ξ < α}.

Further, let X2 denote a maximal vector subspace V of H (over Q) such that

V ∩X1 = {0}, {yξ : ξ < α} ⊂ V.

The existence of V is evident and it is also easy to see that X1 and X2 are the
required Bernstein subsets of H. ¤

Remark 1. The proof given above works for an arbitrary Banach space of
cardinality continuum, not necessarily separable (cf. again [10], p. 25, Theo-
rem 5).

Lemma 2. There exists an additive functional f : H → R having the fol-
lowing property: for any σ-finite diffused Borel measure µ on H and for any
σ-finite measure ν on R, the graph of f is a (µ× ν)-thick subset of the product
space H ×R (i.e. this graph intersects every (µ× ν)-measurable set of strictly
positive measure).
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Proof. First, applying Lemma 1, we represent H in the form

H = X1 + X2 (X1 ∩X2 = {0}),
where X1 and X2 are Bernstein subsets of H and, simultaneously, they are
vector spaces over Q. Observe now that, in view of the equalities

card(X1) = c, card(R) = c,

the vector spaces (over Q) X1 and R are isomorphic to each other. Let

φ : X1 → R

denote some isomorphism between these two spaces. We define a functional f
as follows. Take any x ∈ H. This x admits a unique representation in the form
x = x1 + x2, where x1 ∈ X1 and x2 ∈ X2. Let us put

f(x) = f(x1 + x2) = φ(x1).

Obviously, f is an additive functional on H. Further, fix a σ-finite diffused
Borel measure µ on H and a σ-finite measure ν on R. We assert that the graph
of f is (µ× ν)-thick in H ×R. Indeed, if Z is an arbitrary (µ× ν)-measurable
set with (µ × ν)(Z) > 0, then, according to the Fubini theorem, there exists a
point t ∈ R such that µ(Z(t)) > 0, where

Z(t) = {x ∈ H : (x, t) ∈ Z}.
Consider the point x1 = φ−1(t). Since X2 is a Bernstein subset of H and Z(t)
is an uncountable Borel subset of H, we have

X2 ∩ (Z(t)− x1) 6= ∅.

Choose a point x2 from the set X2 ∩ (Z(t)− x1) and define x = x1 + x2. Then
we get

x = x1 + x2 ∈ Z(t), (x, t) ∈ Z, (x, f(x)) = (x, t), (x, f(x)) ∈ Z,

which completes the proof of Lemma 2. ¤
Let f : H → R be as in Lemma 2. Note that such an f is everywhere discon-

tinuous on H because the graph of any measurable (in particular, continuous)
functional is always of measure zero, so it cannot be thick in the product space
H ×R. Fix a Borel diffused probability measure λ on R. For instance, we may
take as λ an arbitrary Borel probability measure equivalent to the standard
Lebesgue measure on R (assuming that the latter measure is restricted to the
Borel σ-algebra of R). Now, let µ be any σ-finite diffused Borel measure on H.
For each (µ× λ)-measurable set Z ⊂ H ×R, we denote

Z ′ = {x ∈ H : (x, f(x)) ∈ Z}.
Further, we put

S ′ = {Z ′ : Z ∈ dom(µ× λ)}.
It can easily be verified that S ′ is a σ-algebra of subsets of H containing the
Borel σ-algebra of H. Finally, we define a functional µ′ on S ′ by putting

µ′(Z ′) = (µ× λ)(Z) (Z ∈ dom(µ× λ)).
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A straightforward verification shows that the definition of µ′ is correct (in view
of the (µ× λ)-thickness of the graph of f). Also, µ′ turns out to be a measure
on S ′ which extends the original measure µ. We thus come to the following
statement.

Theorem 1. The additive functional f : H → R is universally measurable
(in the above-mentioned sense) with respect to the class of all σ-finite diffused
Borel measures on H.

Proof. It suffices to show that, for any Borel diffused σ-finite measure µ on H,
the functional f is measurable with respect to the measure µ′. For this purpose,
take an arbitrary Borel subset B of R. Clearly, we may write

f−1(B) = {x ∈ H : f(x) ∈ B} = {x ∈ H : (x, f(x)) ∈ H ×B} ∈ S ′,
which establishes the measurability of f with respect to µ′ and, therefore, fin-
ishes the proof. ¤

Let us indicate some other properties of f useful from the measure-theoretical
point of view. It is well known that there exists no nonzero σ-finite Borel
measure on H invariant (quasiinvariant) under the group of all translations of
H (see, for instance, [8]). At the same time, there exist various nonzero σ-
finite Borel measures on H which are invariant under everywhere dense vector
subspaces of H (see [9]). Let µ be any such measure on H. We already know
that f is measurable with respect to µ′. So it is natural to ask whether the
measure µ′ remains invariant under the same everywhere dense vector subspace
of H. It turns out that the answer to this question is always positive.

In order to demonstrate this, let us slightly change the construction presented
above (cf. [11]). We replace the real line R by the one-dimensional unit torus
T regarded as a compact commutative group. The torus T is equipped with
the Haar probability measure (which, actually, coincides with the Lebesgue
probability measure on T invariant under all translations of T). We denote the
latter measure by the same symbol λ.

The following statement is true.

Lemma 3. There exists a group homomorphism f : H → T having the
property that, for any Borel σ-finite diffused measure µ on H, the graph of f is
a (µ× λ)-thick subset of the product space H ×T.

Proof. The argument is very similar to that used in the proof of Lemma 2.
Again, let us represent H in the form

H = X1 + X2 (X1 ∩X2 = {0}),
where both X1 and X2 are Bernstein subsets of H and, simultaneously, they are
vector spaces over the field Q of all rationals. Taking into account the fact that
X1 and R are isomorphic as vector spaces over Q, it is not difficult to define a
surjective group homomorphism

φ : X1 → T.
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Now, if x is an arbitrary element of H, then x admits a unique representation
in the form

x = x1 + x2 (x1 ∈ X1, x2 ∈ X2).

So, we may define
f(x) = f(x1 + x2) = φ(x1).

In this way, we obtain a group homomorphism f : H → T. Let µ be an
arbitrary σ-finite diffused Borel measure on H. Take any set Z ∈ dom(µ × λ)
with (µ × λ)(Z) > 0. According to the Fubini theorem, µ(Z(t)) > 0 for some
t ∈ T. Since φ is a surjection, we can find x1 ∈ X1 such that φ(x1) = t. Keeping
in mind that X2 is a Bernstein subset of H, we get

X2 ∩ (Z(t)− x1) 6= ∅.

Choose an element x2 from the set X2 ∩ (Z(t)− x1) and put x = x1 + x2. As in
the proof of Lemma 2, we easily conclude that (x, f(x)) ∈ Z, which shows the
(µ× λ)-thickness of the graph of f in the product space H ×T. ¤

By using the homomorphism f : H → T described in the preceding lemma,
we can extend any σ-finite diffused Borel measure µ given on H to the measure
µ′. The scheme of obtaining the extension µ′ of µ is the same as before.

Theorem 2. Let µ be a σ-finite Borel measure on H invariant (quasiin-
variant) under some subgroup G of H. Then the measure µ′ is also invariant
(quasiinvariant) under G.

Proof. It suffices to consider the case of an invariant measure µ (for quasiinvari-
ant measures the argument is absolutely analogous). Take any set Z ′ from the
domain of µ′. According to the definition, we may write

Z ′ = {x ∈ H : (x, f(x)) ∈ Z},
where Z belongs to the domain of µ× λ. For each g ∈ G, we have

Z ′ + g = {x ∈ H : (x− g, f(x− g)) ∈ Z} = {x ∈ H : (x, f(x)) ∈ Z + (g, f(g))}.
Since the product measure µ× λ is (G×T)-invariant, we may write

(µ× λ)(Z) = (µ× λ)(Z + (g, f(g)))

and, consequently, µ′(Z ′) = µ′(Z ′ + g). This completes the proof of the
theorem. ¤

Obviously, for any nonzero σ-finite Borel measure µ on H, the measure µ′

obtained by using the group homomorphism f : H → T is a proper extension
of µ. But the σ-algebra dom(µ′) is not significantly larger than the σ-algebra
dom(µ). Indeed, it can easily be seen that dom(µ′) is a countably generated
σ-algebra and therefore the measure µ′ is separable. If we wish to extend µ
to a nonseparable measure, then we must replace the torus T by the infinite-
dimensional torus Tc which is the topological product of continuumly many
copies of T. Let ν denote the Haar probability measure on Tc. This measure
is nonseparable and has the following property: there exists a family of sets

{Zi : i ∈ I} ⊂ dom(ν)
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such that:
(1) card(I) = c;
(2) (∀i ∈ I)(ν(Zi) > 0);
(3) for every ν-measurable set Z with ν(Z) > 0, there is a set Zi from this

family contained in Z.
The proof of the existence of {Zi : i ∈ I} with the above-mentioned property

can be found, e.g., in [12].

Lemma 4. There exists a group homomorphism f : H → Tc such that, for
any σ-finite diffused Borel measure µ on H, the graph of f is a (µ × ν)-thick
subset of R×Tc.

Proof. Fix a family of sets {Zi : i ∈ I} ⊂ dom(ν) satisfying the relations (1) -
(3) given above. Without loss of generality, we may suppose that the set I of
indices is well-ordered and its order type coincides with the least ordinal number
α whose cardinality is equal to c. In other words, we may put

{Zi : i ∈ I} = {Zξ : ξ < α}.
As before, we represent our Hilbert space H in the form

H = X1 + X2 (X1 ∩X2 = {0}),
where X1 and X2 are some Bernstein subsets of H and, simultaneously, they
are vector spaces over Q. Now, it is not difficult to construct two injective
α-sequences

{yξ : ξ < α} ⊂ X1, {zξ : ξ < α} ⊂ Tc

satisfying the following conditions:
(a) the family {yξ : ξ < α} is linearly independent over Q;
(b) for each ξ < α, we have zξ ∈ Zξ.
Further, we put

φ(yξ) = zξ (ξ < α).

Taking into account the condition (a) and the fact that Tc is a divisible group,
we can extend the mapping φ to a group homomorphism

φ : X1 → Tc.

In view of (b), the set φ(X1) is ν-thick in Tc.
Now, take any x ∈ H. We have a unique representation x = x1 + x2, where

x1 ∈ X1 and x2 ∈ X2. Define

f(x) = f(x1 + x2) = φ(x1).

In this manner, we get a group homomorphism

f : H → Tc.

Let us show that f is the required one. Consider any σ-finite diffused Borel
measure µ on H. Let Z be an arbitrary (µ×ν)-measurable set with (µ×ν)(Z) >
0. Applying again the Fubini theorem and the ν-thickness of φ(X1) in Tc, we
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see that µ(Z(t)) > 0 for some t ∈ φ(X1). Choose an element x1 ∈ X1 such that
φ(x1) = t. Since X2 is a Bernstein set in H, we have

X2 ∩ (Z(t)− x1) 6= ∅.

Consequently, for some x2 ∈ X2 ∩ (Z(t)− x1), we may put x = x1 + x2. Then
an easy verification shows that (x, f(x)) ∈ Z (cf. the final part of the proof of
Lemma 2).

Thus, the graph of f is (µ × ν)-thick in the product space H × Tc and f
is universally measurable (in our sense) with respect to the class of all σ-finite
diffused Borel measures on H. ¤

Applying the previous lemma, we readily come to the following result.

Theorem 3. Let a group homomorphism f : H → Tc be as in Lemma 4. For
every σ-finite diffused Borel measure µ, denote by µ′ the extension of µ obtained
by using this group homomorphism. Then one can assert that:

1) µ′ is a nonseparable measure;
2) if µ is invariant (quasiinvariant) under some group G ⊂ H, then µ′ is also

invariant (quasiinvariant) under G.

Remark 2. Analogous results can be obtained for the case of the n-dimensional
Euclidean space Rn (n ≥ 1) instead of H. The argument and technique remain
the same. In particular, we may assert that there exists an additive functional
f : Rn → R which is discontinuous at all points of Rn and is universally mea-
surable (in our sense) with respect to the class of all σ-finite diffused Borel
measures on Rn.

Remark 3. It should be noted that if a vector space E (over the field Q) is of
cardinality continuum, then, assuming Martin’s Axiom, there exists an injective
additive functional f : E → R which is absolutely nonmeasurable with respect
to the class of all nonzero σ-finite diffused measures on E. Indeed, the existence
of such an f is implied by the fact that there exists a generalized Luzin subset
of R being simultaneously a vector space over Q (for more details, see, e.g.,
[13]).

Remark 4. As already has been mentioned, the standard notion of universal
measurability of functionals on a Hilbert space yields nothing new for the class
of additive functionals because every universally measurable additive functional
turns out to be continuous. Moreover, it was shown in [14] that even the mid-
point convexity of a given functional with its universal measurability (in the
standard sense) implies its continuity. This result can be regarded as an analog
of Sierpinski’s old theorem stating that any Lebesgue measurable mid-point
convex function defined on a finite-dimensional Euclidean space is necessarily
continuous (see, for instance, [5]).

In this context, the paper [15] should also be pointed out, where the universal
measurability (in the standard sense) with respect to the class of all Gaussian
measures on a Hilbert space is considered.
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