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ON APPROXIMATION OF THE PERTURBED INCLUSION

ALEXANDER I. BULGAKOV, ANNA A. GRIGORENKO, AND
ANATOLIY I. KOROBKO

Abstract. The paper is concerned with the so-called perturbed inclusion in
the space of continuous functions. The right-hand side of the inclusion is
represented by an algebraic sum of the values of two multi-valued maps, one
of which consists of compacts and the other is not necessarily closed-valued
and is a composition of a linear integral operator and multimap convex-
valued with respect to switching. For such an inclusion it is proved that
approximation in the space of summable functions of the values of a multimap
convex-valued with respect to switching is not always a stable process. The
necessary and sufficient condition for the closure of the set of approximate
solutions to converge to the closure of the set of solutions for perturbed
inclusion is derived.
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The perturbed inclusion with external perturbations has already been studied
in [1–5] in the situation where a multimap ∆ : [a, b] × Cn[a, b] → comp[Rn]
generating a multimap convex-valued with respect to switching (the definition
is given below) satisfies the Carathéodory conditions. Perturbations as such
appear in different kinds of applications, for they characterize the errors of
calculations of the values of the corresponding multimaps. And, as it has been
shown in [1–5], these perturbations should not to be ignored because they can
lead to considerable changes of the set of solutions for the perturbed inclusion.
In this work we deal with the perturbed inclusion in the case where the multimap
∆ : [a, b] × Cn[a, b] → comp[Rn] is integrably continuous (see the definition
below).

Let X be a linear normed space with the norm ‖ · ‖X . Denote by BX [x, ε]
an open ball in the space X with center x ∈ X and radius ε > 0, if ε = 0,
then BX [x, 0] ≡ x. Let U ⊂ X. Then U stands for the closure of U, coU
stands for the convex hull of U, coU = coU , extU denotes the set of all extreme
points of U, extU = extU ; ‖U‖X = sup

x∈U
‖u‖X . Next, let Ω(U) be the set of all

nonempty closed convex subsets of U, U ε ≡ ∪
u∈U

B[u, ε], if ε > 0, and U0 ≡ U ;

ρX [x, U ] is a distance from the point x ∈ X to the set U in the space X;
hX [· ; ·] is the Hausdorff distance in the space X between the corresponding
sets; comp[X] (cl[X]) is a set of all nonempty compacts (all nonempty closed
bounded subsets) of X.
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Let Rn be the n-dimensional space of column-vectors with the norm | · |.
Denote by Cn[a, b], (Ln[a, b]) the space of continuous (Lebesgue summable)
functions x : [a, b] → Rn with the norm ‖x‖Cn[a,b] = max{|x(t)| : t ∈ [a, b]}
(‖x‖Ln[a,b] =

b∫
a

|x(s)|ds).

Let Φ ⊂ Ln[a, b]. We say that the set Φ is convex with respect to switching
(decomposable) if for any x, y ∈ Φ and every measurable set U ⊂ [a, b] the
inclusion χ(U)x + χ([a, b]\U)y ∈ Φ takes place, here χ(·) is the characteristic
function of the corresponding set. Denote by Π[Ln[a, b]] the set of all closed
bounded and convex with respect to switching subsets of Ln[a, b].

Throughout the paper the measurability of a single-valued map is considered
in the sense of Lebesgue, and the measurability of a multi-valued map in the
sense of [6].

Let F : [a, b] → comp[Rn] be a measurable map. Denote S(F ) = {y ∈
Ln[a, b] : y(t) ∈ F (t) for a.e. t ∈ [a, b]}.

When X = Rn we, for convenience, omit the index Rn in the notation of the
Hausdorff distance.

Consider, in the space Cn[a, b], an inclusion

x ∈ Ψ(x) + V Φ(x), (1)

where maps Ψ : Cn[a, b] → comp[Cn[a, b]], Φ : Cn[a, b] → Π[Ln[a, b]] are contin-
uous in the Hausdorff sense, the linear integral operator V : Ln[a, b] → Cn[a, b]
defined as

(V z)(t) =

b∫

a

V (t, s)z(s)ds, t ∈ [a, b], (2)

maps every weakly compact set in Ln[a, b] into a relatively compact set of the
space Cn[a, b]. We call inclusion (1) a perturbed inclusion (see [1–5]).

Under a solution of inclusion(1) we understand an element x ∈ Cn[a, b] sat-
isfying (1). So, the continuous function x : [a, b] → Rn is a solution of inclusion
(1) if and only if there exist elements υ ∈ Ψ(x) and z ∈ Φ(x) such that equality
x = υ + V z takes place.

Following [1] we say that a function x ∈ Cn[a, b] is a quasisolution of inclusion
(1) if there exist an element υ ∈ Ψ(x) and a sequence

zi ∈ Φ(x), i = 1, 2, . . . , (3)

such that xi = υ + V zi → x in the space Cn[a, b] as i → ∞. By H we denote
the set of all quasisolutions for (1).

Consider, in the space Cn[a, b], the inclusion

x ∈ Ψ(x) + V coΦ(x). (4)

Following [4], we call inclusion (4), a “convexified” perturbed inclusion. Let Hco

be the set of all solutions for (4).
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Theorem 1. Let the linear continuous integral operator V : Ln[a, b] →
Cn[a, b] defined by (2) map every weakly compact set in Ln[a, b] into a relatively
compact set of Cn[a, b]. Then the equality Hco = H holds.

Proof. We show first that Hco ⊂ H. Let x ∈ Hco. Then we can find functions
υ ∈ Ψ(x) and z ∈ coΦ(x) such that the equality x = υ+V z holds. According
to [7], for the function z there exists a sequence zi ∈ Φ(x), i = 1, 2, . . . , such
that zi → z weakly in Ln[a, b] as i →∞. This means that for any t ∈ [a, b] and
as i →∞ we have

yi(t) = υ(t) + (V zi)(t) → x(t) = υ(t) + (V z)(t).

Since the sequence V zi, i = 1, 2, . . . , is compact in Cn[a, b], we can say that
yi → x in Cn[a, b] as i →∞. Hence, Hco ⊂ H.

Now, prove that H ⊂ Hco. Let x ∈ H. Then there exist υ ∈ Ψ(x) and a
sequence zi ∈ Ln[a, b] satisfying inclusion (3), such that yi = υ + V zi → x in
Cn[a, b] as i → ∞. The sequence zi is weakly compact in Ln[a, b], so, without
loss of generality, we can say that zi → z weakly in Ln[a, b] for some z ∈ Ln[a, b]
as i → ∞. Since zi ∈ coΦ(x) (see (3)), we have the inclusion z ∈ coΦ(x) (see
[6]) and the equality x = υ + V z, which means that x ∈ Hco and, consequently,
H ⊂ Hco. ¤

Remark 1. Note, that Theorem 1 holds without any continuity of Φ:Cn[a, b]→
Π[Ln[a, b]] and Ψ : Cn[a, b] → comp[Cn[a, b]].

Let U be a closed subset of Cn[a, b]. Denote byH(U) a set of all quasisolutions
for inclusion (1) which belong to U. We say that U ⊂ Cn[a, b] satisfies property
A, if for any x ∈ H(U) there exist an element v ∈ Ψ(x) and a sequence zi ∈
Ln[a, b], i = 1, 2, . . . , satisfying (3), such that for each i = 1, 2, . . . the inclusion
xi = v + V zi ∈ U takes place and xi → x in Cn[a, b] as i →∞.

Note that if the operator defined by the right-hand side of inclusion (1), maps
closed convex set U ⊂ Cn[a, b] into itself, then according to Theorem 1 the set U
satisfies property A. Moreover, in some cases (for example, in studying periodic
or multi-point boundary value problems (see [5, 8, 9])) it is easier to show
that the set satisfies property A than to prove that the set is mapped by the
corresponding operator into itself).

Let an multi-valued map ∆ : [a, b]×Cn[a, b] → comp[Rn] possess the following
property: for any fixed x ∈ Cn[a, b] the map ∆(·, x) is measurable and satisfies
the inequality

Φ(x) = {y ∈ Ln[a, b] : y(t) ∈ ∆(t, x) for a.e. t ∈ [a, b]}. (5)

Such a map does exist (see, e.g., [1, 10]). Since the map Φ(x) is bounded by
a summable function (see [1, 10]), then for any x ∈ Cn[a, b] the map ∆(·, x)
is also bounded by a summable function. By the analogy with the Nemitsky
operator, we call the map ∆ : [a, b] × Cn[a, b] → comp[Rn] defined by equality
(5) the map generating the operator Φ : Cn[a, b] → Π[Ln[a, b]].

We say that the multi-valued map ∆ : [a, b]×Cn[a, b] → comp[Rn] is integrably
continuous (continuous in the mean) at the point x ∈ Cn[a, b] if for any sequence
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xi ∈ Cn[a, b], i = 1, 2, . . . , converging to x in the space Cn[a, b] as i → ∞ the
relation

lim
i→∞

b∫

a

h[∆(t, xi); ∆(t, x)]dt = 0

holds. The map ∆ : [a, b]× Cn[a, b] → comp[Rn] is called integrably continuous
(continuous in the mean) on Cn[a, b] if it is integrably continuous (continuous
in the mean) at every point x ∈ Cn[a, b].

Note that the map ∆ : [a, b] × Cn[a, b] → comp[Rn] is integrably continuous
if and only if the map Φ : Cn[a, b] → Π[Ln[a, b]] is continuous (see [1]).

By P (Cn[a, b]× [0,∞)) (P̃ (Cn[a, b]× [0,∞))) we denote the set of all continu-
ous functions q : Cn[a, b]× [0,∞) → [0,∞), such that for every x ∈ Cn[a, b] the
relation q(x, 0) = 0 holds (q(x, 0) = 0 holds and for any (x, δ) ∈ Cn[a, b]×(0,∞)
the inequality q(x, δ) > 0 takes place).

Consider now the operator Φ : Cn[a, b] → Π[Ln[a, b]] and its generating map
∆ : [a, b] × Cn[a, b] → comp[Rn]. The values of the map Φ(·) and, hence, the
values of the operator ∆(·, ·), can be calculated with some accuracy. Let the
accuracy of the calculation of the values of the operator Φ(·) be defined by
a function η(·, ·) ∈ P (Cn[a, b] × [0,∞)), and consider a map Φη : Cn[a, b] ×
[0,∞) → cl[Ln[a, b]] defined as follows

Φη(x, δ) = (Φ(x))η(x,δ), (6)

where the function η(·, ·) ∈ P (Cn[a, b]× [0,∞)) at every point x ∈ Cn[a, b] for
each fixed δ ∈ [0,∞) defines the calculation error of the value of Φ(·). Next, we
call the function η(·, ·) the radius of external perturbations of the map Φ(·) or
simply the radius of external perturbations. From (6) it follows that

hLn[a,b][Φ(x); Φη(x)] = η(x, δ). (7)

From equality (7) one can get

lim
δ→0+0

hLn[a,b][Φ(x); Φη(x)] = 0. (8)

So, depending on the radius of external perturbations η(·, ·) ∈ P (Cn[a, b] ×
[0,∞)), all maps Φη : Cn[a, b] → cl[Ln[a, b]] of form (6) are close to the map
Φ : Cn[a, b] → Π[Ln[a, b]] in the sense of (8). We call this approximation of
the operator Φ(·) the approximation by embedding in the mean or, simply, the
approximation in the mean, while the map Φη : Cn[a, b] × [0,∞) → cl[Ln[a, b]]
the approximating operator.

Let U be a nonempty closed convex set of the space Cn[a, b] and let ω(·, ·) ∈
P̃ (Cn[a, b]× [0,∞)). Consider a multi-valued map MU(ω) : U × [0,∞) → Ω(U)
defined as

MU(ω)(x, δ) = BCn[a,b][x, ω(x, δ)] ∩ U. (9)

Lemma 1. Let U be a nonempty closed convex set of the space Cn[a, b] and

let ω(·, ·) ∈ P̃ (Cn[a, b] × [0,∞)). Then the map MU(ω) : U × [0,∞) → Ω(U)
defined by (9) is continuous in the Hausdorff sense.
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Indeed, according to the definition of the map MU(ω)(·, ·) and to [1], for any
x, y ∈ U and δ1, δ2 ≥ 0 we have

hCn[a,b][MU(ω)(x, δ1); MU(ω)(y, δ2)] ≤ ‖x− y‖Cn[a,b] + |ω(x, δ1)− ω(y, δ2)|.
So, the map MU(ω)(·, ·) is continuous in the Hausdorff sense.

Define now a map ϕU(ω) : U × [0,∞) → [0,∞) as follows

ϕU(ω)(x, δ) = sup
y∈MU (ω)(x,δ)

hLn[a,b][Φ(x); Φ(y)], (10)

here the map MU(ω) : U × [0,∞) → Ω(U) is defined by equality (9).
The value of the function ϕU(ω)(·, ·) at (x, δ) ∈ U × [0,∞) is called the

modulus of continuity of the map Φ : Cn[a, b] → Π[Ln[a, b]] at the point (x, δ)

on the set BCn[a,b][x, ω(x, δ)] ∩ U, the function ω(·, ·) is called the function of
radius of the modulus of continuity or, simply, the radius of continuity, and the
function ϕU(ω)(·, ·) is called a function of the modulus of continuity of the map
Φ : Cn[a, b] → Π[Ln[a, b]] on the set U with respect to the radius of continuity
ω(·, ·) or, simply, modulus of continuity.

Remark 2. If the multi-valued map ∆ : [a, b]×Cn[a, b] → comp[Rn] generating
the operator Φ : Cn[a, b] → Π[Ln[a, b]] is known, then by analogy one can define
the mean (integral) modulus of continuity ϕ̃U(ω) : U × [0,∞) → [0,∞) of the
map with by equality

ϕ̃U(ω)(x, δ) = sup
y∈MU (ω)(x,δ)

b∫

a

h[∆(t, x); ∆(t, y)]dt. (11)

Along with this, the modulus of continuity of the operator Φ : Cn[a, b] →
Π[Ln[a, b]], as well as the mean modulus of continuity of the map ∆ : [a, b] ×
Cn[a, b] → comp[Rn] satisfy the relations (see [1])

ϕU(ω)(x, δ) ≤ ϕ̃U(ω)(x, δ) ≤ 2ϕU(ω)(x, δ)

for any (x, δ) ∈ U × [0,∞).

Lemma 2. Let U be a nonempty compact convex set of the space Cn[a, b]
and let ω(·, ·) ∈ P (Cn[a, b] × [0,∞)). Then the maps ϕU(ω) : U × [0,∞) →
[0,∞), ϕ̃U(ω)(x, δ) : U × [0,∞) → [0,∞) defined by (10), (11), respectively, are
continuous and for any x ∈ U the following relations take place:

lim
z→x

δ→0+0

ϕU(ω)(z, δ) = 0, lim
z→x

δ→0+0

ϕ̃U(ω)(z, δ) = 0. (12)

Proof. We show first that the function ϕU(ω)(·, ·) is upper semicontinuous. Let
the sequences xi(∈ U) → x in Cn[a, b] and δi(∈ [0,∞)) → δ(∈ [0,∞)). Take
ε > 0 and let the functions yi ∈ MU(ω) (xi, δi) satisfy the inequality

ϕU(ω)(x, δ) ≤ hLn[a,b][Φ(x), Φ(yi)] + ε (13)

for each i = 1, 2, . . . . Without loss of generality suppose that yi → y in Cn[a, b]
as i → ∞. From Lemma 1 we get the inclusion y ∈ MU(ω)(x, δ) from which,
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according to (13), it follows that for any i = 1, 2, . . .

ϕU(ω)(xi, δi) ≤ hLn[a,b][Φ(yi); Φ(y)] + hLn[a,b][Φ(y); Φ(x)] + ε.

So, for every i = 1, 2, . . . the relation

ϕU(ω)(xi, δi) ≤ hLn[a,b][Φ(yi); Φ(y)] + ϕU(ω)(x, δ) + ε

takes place. Passing in the last inequality to the limit as i →∞ we get

lim
i→∞

ϕU(ω)(xi, δi) ≤ ϕU(ω)(x, δ).

We prove now that ϕU(ω)(·, ·) is lower semicontinuous. Indeed, let the se-
quences {xi} and {δi} be taken as previously. Let ε > 0 and let the function
y ∈ MU(ω)(x, δ) satisfy the inequality

ϕU(ω)(x, δ) ≤ hLn[a,b][Φ(x); Φ(y)] + ε. (14)

According to Lemma 1, there exists a sequence yi ∈ MU(ω)(xi, δi), i = 1, 2, . . . ,
such that yi → y in Cn[a, b] as i →∞. Then from (14) we have the estimation

ϕU(ω)(x, δ) ≤ hLn[a,b][Φ(x); Φ(xi)]+hLn[a,b][Φ(xi); Φ(yi)]+hLn[a,b][Φ(yi); Φ(y)]+ε.

Hence, for every i = 1, 2, . . . the relation

ϕU(ω)(x, δ) ≤ hLn[a,b][Φ(x); Φ(xi)] + ϕU(ω)(xi, δi) + hLn[a,b][Φ(yi); Φ(y)] + ε

takes place. Passing to a limit we get

ϕU(ω)(x, δ) ≤ lim
i→∞

ϕU(ω)(xi, δi).

So, the function ϕU(ω)(·, ·) is continuous by both arguments.
By analogy one can show that the function ϕ̃U(ω)(·, ·) is continuous.
Next, since for any x ∈ U the equalities ϕU(ω)(x, 0) = ϕ̃U(ω)(x, 0) = 0 take

place, relations (12) follow immediately from the continuity of the functions
ϕU(ω)(·, ·), ϕ̃U(ω)(·, ·). The statement is proved. ¤

Let U be a nonempty closed set of the space Cn[a, b]. We say that a function
η(·, ·) ∈ P (Cn[a, b] × [0,∞)) estimates from above – uniformly on the set U ⊂
Cn[a, b] – the modulus of continuity of the operator Φ : Cn[a, b] → Π[Ln[a, b]],
(the mean modulus of continuity of the map ∆ : [a, b] × Cn[a, b] → comp[Rn])

with respect to the radius of continuity ω(·, ·) ∈ P̃ (Cn[a, b]× [0,∞)) if for every
ε > 0 there exists δ(ε) > 0 such that for every x ∈ U and δ ∈ [0, δ(ε)) the
estimation

ϕU(ω)(x, δ) ≤ η(x, ε), (ϕ̃U(ω)(x, δ) ≤ η(x, ε))

takes place, where the maps ϕU(ω) : U× [0,∞) → [0,∞), ϕ̃U(ω) : U× [0,∞) →
[0,∞) are defined by (10), (11), respectively.

Let U ⊂ Cn[a, b] and ω(·, ·) ∈ P (Cn[a, b] × [0,∞)). Define the functions

λU(ω) : [0,∞) → [0,∞), λ̃U(ω) : [0,∞) → [0,∞) as follows

λU(ω)(δ) = sup
x∈U

ϕU(ω)(x, δ), λ̃U(ω)(δ) = sup
x∈U

ϕ̃U(ω)(x, δ). (15)
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Lemma 3. Let U be a nonempty compact convex set in the space Cn[a, b]
and let ω(·, ·) ∈ P (Cn[a, b] × [0,∞)). Then the maps λU(ω) : [0,∞) → [0,∞),

λ̃U(ω) : [0,∞) → [0,∞) defined by (15) are continuous and satisfy the equalities

λU(ω)(0) = λ̃U(ω)(0) = 0.

Proof. Show that the function λU(ω)(·) is upper semicontinuous. Indeed, let
δi(∈ [0,∞)) → δ as i → ∞ and x ∈ U satisfy the equality λU(ω)(δ) =
ϕU(ω)(x, δ). Since for every i = 1, 2, . . . the relation

λU(ω)(δi) ≥ ϕU(ω)(x, δi)

takes place, from the continuity of the map ϕU(ω)(·, ·) it follows that

lim
i→∞

λU(ω)(δi) ≥ ϕU(ω)(x, δ).

So, the map λU(ω)(·) is upper semicontinuous.
Next, prove that λU(ω)(·) is lower semicontinuous. Let the sequence δi(∈

[0,∞)), i = 1, 2, . . . converge to δ ≥ 0 and let the equality λU(ω)(δi) =
ϕU(ω)(xi, δi) hold for some element xi ∈ U, i = 1, 2, . . . . Without loss of
generality suppose that xi → x(∈ U) in Cn[a, b] as i →∞. Then we get

lim
i→∞

λU(ω)(δi) = lim
i→∞

ϕU(ω)(xi, δi) = ϕU(ω)(x, δ) ≤ λU(ω)(δ).

So, the function λU(ω)(·) is lower semicontinuous, and, hence, continuous. By

analogy one can show that the map λ̃U(ω) : [0,∞) → [0,∞) is continuous.

The relations λU(ω)(0) = λ̃U(ω)(0) = 0 immediately follow from the defini-

tions of the maps λU(ω)(·), λ̃U(ω)(·). ¤

Corollary 1. Let U be a nonempty compact convex set in the space Cn[a, b]

and let ω(·, ·) ∈ P̃ (Cn[a, b] × [0,∞)). Then the function λU(ω)(·) (λ̃U(ω)(·)) ∈
P (Cn[a, b]× [0,∞)) defined by (15) estimates from above – uniformly on the set
U ⊂ Cn[a, b] – the modulus of continuity of the map Φ : Cn[a, b] → Π[Ln[a, b]]
(the mean modulus of continuity of the map ∆ : [a, b] × Cn[a, b] → comp[Rn])
with respect to the radius of continuity ω(·, ·).

Remark 3. Note that by changing the radius of continuity ω(·, ·) one can
make the modulus of continuity of the operator Φ : Cn[a, b] → Π[Ln[a, b]] and
the mean modulus of continuity of the map ∆ : [a, b]×Cn[a, b] → comp[Rn] suf-
ficiently small at every point (x, δ) ∈ U × (0,∞). This means that the functions

λU(ω)(·), λ̃U(ω)(·), defined by (15) may be infinitesimal at every point δ > 0.

Let (η(·, ·), ξ(·, ·)) ∈ P (Cn[a, b]× [0,∞))× P̃ (Cn[a, b]× [0,∞)). In the space
Cn[a, b], for every δ > 0 consider the inclusion

x ∈ (Ψ(x))ξ(x,δ) + V Φη(x, δ), (16)

where the map Φη : Cn[a, b]× [0,∞) → cl[Ln[a, b]] is defined by (6).
We call the functions η(·, ·), ξ(·, ·) in (16) the external perturbations charac-

terizing the calculation errors of the values of the maps Φ : Cn[a, b] → Π[Ln[a, b]]
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and Ψ : Cn[a, b] → comp[Cn[a, b]]. And we call inclusion (16) the inclusion with
external perturbations.

We call every solution of (16) for a fixed δ > 0 a δ-solution (approximate
solution) of inclusion (1). Denote by Hξ(δ),η(δ)(U) a set of all δ-solutions (ap-
proximate solutions) of inclusion (1), which belong to the set U ⊂ Cn[a, b], and
by H(U) and Hco(U) the sets of solutions for (1) and (4), respectively, belonging
to the set U ⊂ Cn[a, b].

Theorem 2. Let U be a nonempty closed set of the space Cn[a, b] such that

U satisfies property A and let ξ(·, ·), ω(·, ·) ∈ P̃ (Cn[a, b]× [0,∞)). Then for any
function η(·, ·) ∈ P (Cn[a, b] × [0,∞)) which estimates from above – uniformly
on the set U ⊂ Cn[a, b] – the modulus of continuity of the map Φ : Cn[a, b] →
Π[Ln[a, b]] with respect to the radius of continuity ω(·, ·) ∈ P̃ (Cn[a, b]× [0,∞))
the following equality takes place

Hco(U) =
⋂

δ>0

Hξ(δ),η(δ)(U), (17)

here Hξ(δ),η(δ)(U) is the closure of the set Hξ(δ),η(δ)(U) in the space Cn[a, b].

Proof. We notice first that since the set U is closed, the set Hco(U), according
to [1], is also closed in Cn[a, b].

Prove the relation

Hco(U) ⊂
⋂

δ>0

Hξ(δ),η(δ)(U). (18)

Let x ∈ Hco(U). Show that x is a limit point of the set Hξ(δ),η(δ)(U) for every
δ > 0. In accordance with Theorem 1, x is a quasisolution of inclusion (1).
This means that there exist an element υ ∈ Ψ(x) and a sequence zi ∈ Φ(x),
i = 1, 2, . . . such that the sequence xi = υ + V zi → x in Cn[a, b] as i → ∞,
moreover, due to the property A, we can suppose that xi ∈ U for each i =
1, 2, . . . . Next, let η(·, ·) ∈ P (Cn[a, b]× [0,∞)) estimate from above – uniformly
on the set U – the modulus of continuity of the map Φ(·) with respect to the

radius of continuity ω(·, ·) ∈ P̃ (Cn[a, b]× [0,∞)). Then one can find an i1 such
that for all i ≥ i1 the inequality ‖x−xi‖ < ω(xi, δ) is true. This means that for

all i ≥ i1 the relation x ∈ BCn[a,b][xi, ω(xi, δ)] takes place. So, x ∈ MU(ω)(xi, δ)
for any i ≥ i1.

Further, from the definition of the uniform estimation from above of the
modulus of continuity of the set Φ(·) it follows that there exists a number
i2 ≥ i1 such that for any i ≥ i2 the inequality

ϕU(ω)(xi, ‖x− xi‖Cn[a,b]) ≤ η(xi, δ) (19)

holds. From (19) for every i ≥ i2 we get

ρLn[a,b][zi; Φ(xi)] ≤ hLn[a,b][Φ(x); Φ(xi)]

≤ ϕU(ω)(xi, ‖x− xi‖Cn[a,b]) ≤ η(xi, δ). (20)
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Next, since ξ(xi, δ) → ξ(x, δ) > 0 as i →∞, then one can find i3 ≥ i2 such that
for any i ≥ i3 the following condition is satisfied

hCn[a,b][Ψ(x); Ψ(xi)] ≤ ξ(xi, δ). (21)

From (20) and (21) it follows that for every i ≥ i3 we have the inclusion xi ∈
Hξ(δ),η(δ)(U), which means that x is a limit point of the set Hξ(δ),η(δ)(U). So,

x ∈ ⋂
δ>0

Hξ(δ),η(δ)(U) and, hence, relation (18) is proved.

Now we show that ⋂

δ>0

Hξ(δ),η(δ)(U) ⊂ Hco(U). (22)

Let x ∈ ⋂
δ>0

Hξ(δ),η(δ)(U). Then, for every i = 1, 2, . . . there exists xi ∈
Hξ( 1

i
),η( 1

i
)(U), for which we have the estimation ‖x − xi‖Cn[a,b] < 1

i
. Let for

each i = 1, 2, . . . the functions υi ∈ Ψ(xi)
ξ(xi,

1
i
), zi ∈ Φη(xi,

1
i
) be such that

xi = υi + V zi. (23)

Next, let the functions υ̃i ∈ Ψ(x), z̃i ∈ Φ(x), i = 1, 2, . . . , satisfy the equalities

‖υi − υ̃i‖Cn[a,b] = ρCn[a,b][υi; Ψ(x)], (24)

‖zi − z̃i‖Ln[a,b] = ρLn[a,b][zi; Φ(x)]. (25)

Since (24) implies that

‖υi − υ̃i‖Cn[a,b] ≤ hCn[a,b][Ψ(xi)
ξ(xi,

1
i
); Ψ(x)]

≤ ξ

(
xi,

1

i

)
+ hCn[a,b][Ψ(xi); Ψ(x)] (26)

for every i = 1, 2, . . . , from (26) it follows that

lim
i→∞

‖υi − υ̃i‖Cn[a,b] = 0. (27)

The set Ψ(x) is compact, then, without loss of generality, one can say that
υ̃i → υ ∈ Ψ(x) in the space Cn[a, b] as i →∞. So, from (27) we get υi → υ in
Cn[a, b] as i →∞.

Prove now that
lim
i→∞

‖zi − z̃i‖Ln[a,b] = 0. (28)

Indeed, since from equality (25) for every i = 1, 2, . . . we have

‖zi − z̃i‖Ln[a,b] ≤ hLn[a,b]

[
Φη

(
xi,

1

i

)
; Φ(x)

]
≤ η

(
x,

1

i

)
+ hLn[a,b][Φ(xi); Φ(x)],

from the last estimations we get relation (28).
Next, since the sequence z̃i, i = 1, 2, . . . , is a weakly relatively compact set of

the space Ln[a, b], we assume, without loss of generality, that z̃i → z weakly as
i →∞. According to [6], z ∈ coΦ(x). From equality (28) it follows that zi → z
weakly in Ln[a, b] as i →∞. Hence, without loss of generality, one can say that
V zi → V z in Cn[a, b] as i → ∞. So, passing to the limit in (23) as i → ∞,
we get the relation x = υ + V z, where υ ∈ Ψ(x), z ∈ coΦ(x), i.e., x ∈ Hco(U),
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and, consequently, embedding (22) is true. Equality (17) follows from (18) and
(22). ¤

From Remark 2 follows

Corollary 2. Let U be a nonempty closed set in the space Cn[a, b] satisfying

the property A and let ξ(·, ·), ω(·, ·) ∈ P̃ (Cn[a, b]×[0,∞)). Then for any function
η(·, ·) ∈ P (Cn[a, b]× [0,∞)) estimating from above – uniformly on the set U ⊂
Cn[a, b] – the mean modulus of continuity of the map ∆ : [a, b] × Cn[a, b] →
comp[Rn] with respect to the radius of continuity ω(·, ·) ∈ P (Cn[a, b] × [0,∞))
the equality (17) takes place.

Remark 4. Note that differential inclusions are a particular case of perturbed
inclusions. Since for differential inclusions the equality H(U) = Hco(U) (H(U)
is a closure of the set H(U) in the space Cn[a, b]) may not be true (see, e.g.,
[11, 12]), from Theorem 2 it follows that the relation

⋂

δ>0

Hξ(δ),η(δ)(U) =
⋂

δ>0

Hξ(δ),η(δ)(U)

may not hold for some η(·, ·), ξ(·, ·) ∈ P (Cn[a, b]× [0,∞)).

Let U ⊂ Cn[a, b]. By analogy with [1, 13] we say that for inclusion (1) the
density principle (density condition) holds on the set U if the following equality
holds

H(U) = Hco(U), (29)

here H(U) is the closure of the set H(U) in the space Cn[a, b].
Note that if the density principle holds on some closed set U ⊂ Cn[a, b], then

U satisfies the property A.

Remark 5. As has been said previously, the density principle not always takes
place. There is an example due to A. Plis (see [11, 12]) which demonstrates this.
The first sufficient conditions for equality (29) to be true was derived by A. F.
Filippov for a Cauchy problem of the differential inclusion (see [12, 14–18]). For
periodic solutions and boundary value problems these conditions are studied in
[19, 20].

Theorem 3. Let ξ(·, ·) ∈ P̃ (Cn[a, b]× [0,∞)). If U is a nonempty closed set
of the space Cn[a, b], then for the equality

H(U) =
⋂

δ>0

Hξ(δ),η(δ)(U) (30)

to be true for any radius of external perturbations η(·, ·) ∈ P (Cn[a, b]× [0,∞))
it is sufficient, and for nonempty compact convex U it is also necessary that the
density principle hold on the set U ⊂ Cn[a, b].

Proof. We prove first the sufficiency. Let equality (29) be true on the set

U ⊂ Cn[a, b]. Show that (30) holds for (ξ(·, ·), η(·, ·)) ∈ P̃ (Cn[a, b] × [0,∞)) ×
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P (Cn[a, b]× [0,∞)). Indeed, from the definition of inclusion (16) it follows that
for any δ > 0 we have the relation

H(U) ⊂ Hξ(δ),η(δ)(U).

Then for every δ > 0 the inclusion H(U) ⊂ Hξ(δ),η(δ)(U) takes place, and, hence,

we get H(U) ⊂ ⋂
δ>0

Hξ(δ),η(δ)(U).

Show the reverse, i.e., the embedding
⋂
δ>0

Hξ(δ),η(δ)(U) ⊂ H(U) which, accord-

ing to equality (29), is equivalent to
⋂
δ>0

Hξ(δ),η(δ)(U) ⊂ Hco(U). The last relation

can be proved as that was done in the proof of Theorem 2.
If U is a nonempty compact convex set, then the necessity of equality (30) to

be true follows from Theorem 2 and Corollary 1. ¤
Remark 6. Note that having equality (30) for any external perturbations

η(·, ·), ξ(·, ·) ∈ P (Cn[a, b] × [0,∞)) is the property of stability of the solutions
set H(U) of (1) with respect to these perturbations (see [21]).

Remark 7. Note that from the proof of Theorem 2 it follows that if the density
principle holds on set U ⊂ Cn[a, b], then the equality

⋂

δ>0

Hξ(δ),η(δ)(U) =
⋂

δ>0

Hξ(δ),η(δ)(U δ)

is true for any external perturbations η(·, ·), ξ(·, ·) ∈ P (Cn[a, b] × [0,∞)), i.e.,

the set H(U) can be derived through the sets of approximate solutions taking
into account the changes of the set to which the solutions belong, as well as
without counting those. In other words, “rebuilding” the set H(U) by means of
sets of approximate solutions in this case does not depend on the “δ-extension”
of the set U.

As it has been mentioned before, the external perturbations in (16) char-
acterize the calculation error of the values of the multimaps Ψ : Cn[a, b] →
comp[Cn[a, b]] and Φ : Cn[a, b] → Π[Ln[a, b]]. At the same time, every solu-
tion x : [a, b] → Rn of inclusion (1) can be calculated in those multumaps
with some accuracy degree which can be defined by a function from the set

P̃ (Cn[a, b]× [0,∞)). This inaccuracy in finding solutions can be taken into ac-
count by means of internal perturbations. Further it will be shown that internal
perturbations can affect considerably the solutions set for (1).

Let U be a closed convex set of the space Cn[a, b] and let ξ(·, ·), η(·, ·),κ(·, ·) ∈
P (Cn[a, b]× [0,∞)), σ(·, ·), θ(·, ·), ν(·, ·) ∈ P̃ (Cn[a, b]× [0,∞)). For defining an
approximate solution for (1), taking care of internal and external perturbations,
we consider the multimaps Ψξ,σ : U × [0,∞) → cl[Cn[a, b]], Φη,θ : U × [0,∞) →
cl[Ln[a, b]] defined as

Ψξ,σ(x, δ) = (Ψ(MU(σ)(x, δ)))ξ(x,δ), (31)

Φη,θ(x, δ) = (Φ(MU(θ)(x, δ)))η(x,δ), (32)
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where the maps MU(σ) : U × [0,∞) → Ω(U), MU(θ) : U × [0,∞) → Ω(U) are
given by (9) with ω(·, ·) equal to σ(·, ·) and θ(·, ·), respectively.

Next, define the multimaps ext∆ : [a, b] × Cn[a, b] → comp[Rn], extΦ :
Cn[a, b] → Π[Ln[a, b]], extΦ{,ν : U × [0,∞) → cl[Ln[a, b]] as follows

(ext∆)(t, x) = ext∆(t, x), (33)

(extΦ)(x) = S((ext∆)(·, x)), (34)

(extΦ{,ν)(x, δ) = ((extΦ)(MU(ν)(x, δ))){(x,δ), (35)

here ∆ : [a, b] × Cn[a, b] → comp[Rn] is the map generating the operator Φ :
Cn[a, b] → Π[Ln[a, b]] (see (5)).

On a closed convex set U ⊂ Cn[a, b] for every δ > 0 consider the inclusions

x ∈ Ψξ,σ(x, δ) + V Φη,θ(x, δ), (36)

x ∈ Ψξ,σ(x, δ) + V (extΦ{,ν)(x, δ), (37)

where the maps Ψξ,σ : U × [0,∞) → cl[Cn[a, b]], Φη,θ : U × [0,∞) → cl[Ln[a, b]],
extΦ{,ν : U × [0,∞) → cl[Ln[a, b]] are defined by (31)-(35). We call inclusions
(36),(37) the inclusions with internal and external perturbations.

For each δ > 0 let Hη(δ),θ(δ),σ(δ),ξ(δ)(U), extH{(δ),ν(δ),σ(δ),ξ(δ)(U) denote the sets
of solutions for (36), (37), respectively belonging to U ⊂ Cn[a, b].

Theorem 4. Let U be a closed convex set of the space Cn[a, b]. Then for any

ξ(·, ·), η(·, ·), κ(·, ·) ∈ P (Cn[a, b]×[0,∞)) and σ(·, ·), θ(·, ·), ν(·, ·) ∈ P̃ (Cn[a, b]×
[0,∞)) the equalities

Hco(U) =
⋂

δ>0

extH{(δ),ν(δ),σ(δ),ξ(δ)(U δ) =
⋂

δ>0

Hη(δ),θ(δ),σ(δ),ξ(δ)(U δ) (38)

take place, here extH{(δ),ν(δ),σ(δ),ξ(δ)(U δ), Hη(δ),θ(δ),σ(δ),ξ(δ)(U δ) are the closures in
the space Cn[a, b] of solutions sets extH{(δ),ν(δ),σ(δ),ξ(δ)(U

δ), Hη(δ),θ(δ),σ(δ),ξ(δ)(U
δ),

respectively.

Proof. We show first that

Hco(U) ⊂
⋂

δ>0

extH{(δ),ν(δ),σ(δ),ξ(δ)(U δ). (39)

Let x ∈ Hco(U) and show that for each δ > 0, x is a limit point of the
set extH{(δ),ν(δ),σ(δ),ξ(δ)(U

δ). Indeed, since for any y ∈ Cn[a, b] the equality
co((extΦ)(y)) = co(Φ(y)) holds (see [10]), then, according to Theorem 1, x
is a quasisolution for inclusion (1), in which Φ(·) = extΦ(·) (the map extΦ :
Cn[a, b] → Π[Ln[a, b]] is defined by (33),(34)). This means that there exist an
element v ∈ Ψ(x) and a sequence zi ∈ extΦ(x), i = 1, 2, . . . , such that for every
i = 1, 2, . . . we have the relation xi = v + V zi ∈ U δ and xi → x in Cn[a, b] as
i →∞.

Next, prove that there exists a number I such that for every i ≥ I

xi ∈ extH{(δ),ν(δ),σ(δ),ξ(δ)(U
δ). (40)
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Since ν(·, ·), σ(·, ·) ∈ P̃ (Cn[a, b]× [0,∞)), one can find a number i0 such that for
all i ≥ i0 the inclusions x ∈ BCn[a,b][xi; ν(xi, δ)], x ∈ BCn[a,b][xi; σ(xi, δ)] are true.
This means that for each i ≥ i0 x ∈ MUδ(ν)(xi, δ) and x ∈ MUδ(σ)(xi, δ), where
the multimaps MUδ(ν)(·, ·), MUδ(σ)(·, ·) are defined by (9) in which U = U δ,
ω = ν and ω = σ, respectively. Then for every i ≥ i0 the following inclusions
are true

Ψ(x) ⊂ Ψξ,σ(xi, δ), (extΦ)(x) ⊂ extΦη,ν(xi, δ). (41)

From (41) and the definition of inclusion (37) it follows that for any i ≥ I = i0 we
get (40), and this means that x is a limit point of the set extH{(δ),ν(δ),σ(δ),ξ(δ)(U

δ),

i.e., x ∈ extH{(δ),ν(δ),σ(δ),ξ(δ)(U δ) and, consequently, relation (39) takes place.
The embedding

⋂

δ>0

extH{(δ),ν(δ),σ(δ),ξ(δ)(U δ) ⊂ Hco(U)

can be proved by an analogy with inclusion (22) in the proof of Theorem 2.
The second equality in (37) is proved in an analogous manner. ¤

Remark 8. So, in the presence of internal perturbations in the right-hand
side of the inclusion no “average” accuracy in calculating the values of the map
Φ : Cn[a, b] → Π[Ln[a, b]] can guarantee “restoring” the set H(U) by the closures
in the space Cn[a, b] of the sets of approximate solutions. This is possible only
in the case where the density principle holds.

Remark 9. Note that the general definition of the concept of approximate
solution (δ-solution) for differential inclusion with convex and upper semicon-
tinuous right-hand side was introduced by A. F. Filippov (see [12]). This defi-
nition plays a crucial role in studying differential inclusions, for it satisfies the
fundamental property: the limit of converging approximate solutions is also a
solution. Here, for studying the asymptotic properties of the sets of approxi-
mate solutions for inclusion (1) with right-hand side not necessarily closed- and
convex-valued, we use (see inclusions (16), (36), (37)) slightly different defini-
tions of approximate solutions. The difference between our definitions and the
one given by Filippov is that the values of multimaps “describing approximate
functional inclusions” (see (16),(36),(37)) are “not to be convexified”.
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