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0. Introduction. We prove the existence of slowly varying (in the sense of
Karamata) solutions, implying their nonoscillation, of the following functional
differential equations with both retarded and advanced arguments:

x′′(t)− p(t)x(g(t))− q(t)x(h(t)) = 0, (A)

x′′(t) + p(t)x(g(t)) + q(t)x(h(t)) = 0. (B)

In addition, the precise asymptotic behavior of such solutions of equation (A)
is obtained.

It is assumed here that on [a,∞), for some a > 0, functions p, q, g and h are
continuous and p, q are integrable.

For readers’ convenience we recall that a measurable function f : [0,∞) →
(0,∞) is said to be regularly varying and having an index ρ ∈ R if it satisfies

lim
t→∞

f(λt)

f(t)
= λρ for any λ > 0.

The totality of regularly varying functions of index ρ is denoted by RV(ρ). The
symbol SV is used to denote RV(0) and a member of SV = RV(0) is referred
to as a slowly varying function. If f(t) ∈ RV(ρ), then f(t) = tρL(t) for some
L(t) ∈ SV, and so of fundamental importance in regular variation is the class of
slowly varying functions. In this paper, among many basic properties of slowly
varying functions, we emphasize the representation theorem which asserts that
L(t) ∈ SV if and only if it is expressed in the form

f(t) = c(t) exp

{ t∫

t0

ε(s)

s
ds

}
, t ≥ t0, (0.1)
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for some t0 > 0 and some measurable functions c(t) and ε(t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

ε(t) = 0.

The most comprehensive text on the theory and numerous applications of
these function can be found [1].

The first result asserting the existence of SV solutions of a functional differ-
ential equation is proved in [5] via the Schauder–Tychonoff fixed point theorem
and the same approach is used here.

Nonoscillation and oscillation of solutions of such equations of higher even
order are studied in [4].

1. Results. These are concerned with the existence of SV solutions for both
equations (A) and (B) and the asymptotic behaviour of such solutions of equa-
tion (A).

1.1. Existence. There holds

Theorem 1.1. Suppose that for t ≥ a

(i) p(t) > 0 and q(t) > 0;

(ii) g(t) is increasing, g(t) < t and lim
t→∞

g(t) = ∞;

(iii) h(t) is increasing and h(t) > t;

(iv) lim sup
t→∞

t
g(t)

< ∞, lim sup
t→∞

h(t)
t

< ∞.

(1.1)

Then both equations (A) and (B) possess a slowly varying solution if and only
if

lim
t→∞

t

∞∫

t

p(s)ds = lim
t→∞

t

∞∫

t

q(s)ds = 0. (1.2)

1.2. Asymptotic behaviour. There hold

Theorem 1.2. Put

r(t) = p(t) + q(t);

then, equation (A) possesses slowly varying solutions x(t) such that for t →∞
x(t) → c > 0

if and only if
∞∫

a

tr(t)dt < ∞. (1.3)

Theorem 1.3. If
∞∫

a

s2r(s)ds

∞∫

g(s)

r(u)du < ∞, (1.4)
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then for each slowly varying solution x(t) of equation (A) there holds for t →∞,

x(t) ∼ A exp

{
−

t∫

a

sr(s)ds

}
, A > 0. (1.5)

2. Preliminaries. The following result [2], [3] is needed for the proofs.

Lemma 2.1. Let f(t) be continuous integrable and one-signed on some half-
axis [a,∞), a > 0. Then the linear ordinary (without a functional argument)
equation

x′′(t) + f(t)x(t) = 0 (C)

has a slowly varying solution if and only if

lim
t→∞

t

∞∫

t

f(s)ds = 0. (2.1)

We present here an outline of the proof of Lemma 2.1.
Let x(t) be an SV solution. Since the derivative x′(t) is monotone, f(t) being

one-signed, by [6, Proposition 9,c)] one has tx′(t)/x(t) → 0 as t → ∞ and the
“only if” part is straightforward (cf. [6, Theorem 1.10]).

The proof of the “if” part follows that in [3]: Put

F (t) = t

∞∫

t

f(s)ds. (2.2)

Choose t0 > a and m > 0 so that for t ≥ t0

|F (t)| ≤ m <
1

4
, (2.3)

which is possible because of (2.1).
Observe at this point that throughout the text, if not stated otherwise, all

relations (e.g., inequalities) hold for t ≥ t0, which is therefore occasionally
omitted.

Consider the set

V = {v ∈ C0[t0,∞) : 0 ≤ v(t) ≤ m, t ≥ t0} (2.4)

and the integral operator

Fv(t) = t

∞∫

t

(
v(s) + F (s)

s

)2

ds, (2.5)

where C0[t0,∞) denotes the set of all continuous functions on [t0,∞) that tend
to 0 as t → ∞; C0[t0,∞) is a Banach space with the norm ‖v‖0 = sup

t≥t0

|v(t)|.
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F is shown to be a contraction mapping on V , which is a closed subset of
C0[t0,∞), and so there exists v0 ∈ V such that v0 = Fv0. i.e.,

v0(t) = t

∞∫

t

(
v0(s) + F (s)

s

)2

ds. (2.6)

Using this v0(t), we define the function x0(t) by

x0(t) = exp

{ t∫

t0

v0(s) + F (s)

s
ds

}
, (2.7)

which satisfies equation (C) and is SV due to (0.1) with c(t) = 1 and since v0(s)
and F (s) tend to zero in view of (2.4) and (1.2).

Remark 2.1. If in equation (C) instead of f(t) one has −f(t) with f(t) > 0,
then in (2.6) and (2.7) one has the minus sign in front of F (s). Then, any SV
solution of (C) is decreasing ([6, §1.2]) and (2.7) implies

v0(t) ≤ F (t). (2.8)

If, on the other hand, f(t) is positive, then SV solutions are increasing, which
follows directly from (2.6) and (2.7).

Also, by (2.4) there holds

0 ≤ v0(t) ≤ m. (2.9)

Remark 2.2. If x(t) is an SV function, then the representation theorem (0.1)
implies that

lim
t→∞

x(g(t))

x(t)
= lim

t→∞
x(h(t))

x(t)
= 1.

For example,

x(h(t))

x(t)
=

c(h(t))

c(t)
exp

{ h(t)∫

t

ε(s)

s
ds

}
.

Due to the properties of ε(t) and h(t) one has for t →∞
h(t)∫

t

|ε(s)|
s

ds ≤ sup
s≥t

ε(s) log
h(t)

t
→ 0

and the statement follows for h(t) and likewise for g(t).
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3. Proofs.

3.1. Proof of Theorem 1.1.
a) Equation (A).

The proof of the “only if” part is a direct consequence of Lemma 2.1 and the
representation theorem for SV functions as envisaged in Remark 2.2.

Rewrite equation (A) as

x′′(t) = fx(t)x(t), (3.1)

where

fx(t) = p(t)
x(g(t))

x(t)
+ q(t)

x(h(t))

x(t)
. (3.2)

In view of (1.1)(i) and Remark 2.2 the function fx is integrable over some
positive half-axis and the “only if” part follows by the application of Lemma
2.1 to (3.1) giving

lim
t→∞

t

∞∫

t

fx(s)ds = 0,

which implies (1.2).
The “if” part:
Assume that (1.2) holds. To apply Lemma 2.1, we introduce the notation:

f(t)(= r(t)) = p(t) + q(t),

F (t) = −t

∞∫

t

f(s)ds.
(3.3)

Choose m > 0 and t0 > a so large that g(t0) > a and such that for t ≥ t0,

|F (t)| ≤ m <
1

8
, (3.4)

and

2m log
t

g(t)
≤ log 2 (3.5)

which is possible because of (1.1)(iv) and (1.2).
Let us now define Ξ to be the set of all positive continuous nonincreasing

functions ξ(t) on |g(t0),∞) with the properties

ξ(t) = 1 for g(t0) ≤ t ≤ t0,
ξ(g(t))

ξ(t)
≤ 2 for t ≥ t0. (3.6)

It is easy to see that Ξ is a nonempty closed, convex subset of C[g(t0),∞)
equipped with the usual metric topology of uniform convergence on compact
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subintervals of [g(t0),∞) (cf. [5]). For any ξ ∈ Ξ define

fξ(t) = p(t)
ξ(g(t))

ξ(t)
+ q(t)

ξ(h(t))

ξ(t)
,

Fξ(t) = −t

∞∫

t

fξ(s)ds.

(3.7)

We consider a family of linear (ordinary) differential equations

x′′(t) = fξ(t)x(t), ξ ∈ Ξ. (3.8)

By (3.6), (3.7), the decreasing nature of ξ(t) and due to (3.4) one has

Fξ(t) ≤ 2|F (t)| ≤ 2m <
1

4
. (3.9)

We conclude by using Lemma 2.1 that for each ξ ∈ Ξ equation (3.8) has an SV
solution Xξ(t) having the representation

Xξ(t) = exp

{ t∫

t0

vξ(s)− Fξ(s)

s

}
, (3.10)

where vξ(t) is a solution of the integral equation

vξ(t) = t

∞∫

t

(
vξ(s)− Fξ(s)

s

)2

ds. (3.11)

In virtue of (2.4) and (3.9) one has

0 ≤ vξ(t) ≤ 2m. (3.12)

Further, let Φ denote the mapping which to each ξ ∈ Ξ assigns the function
Φξ defined by

Φξ(t) = 1 for g(t0) ≤ t ≤ t0, Φξ(t) = Xξ(t) for t ≥ t0. (3.13)

We will show that Φ is a continuous self-map on Ξ which sends Ξ to a relatively
compact subset of Ξ in the topology of C[g(t0),∞).

(i) Φ(Ξ) ⊂ Ξ: If ξ ∈ Ξ, then Φξ(t) = Xξ(t) is clearly decreasing for t ≥ t0.
Furthermore, since by (1.1)(ii), g(t) is increasing and g(t) < t, there might

exist an interval t0 ≤ t < t1 where g(t) < t0 and g(t1) = t0, and by (3.13),
Φξ(g(t)) = 1. Hence because of (3.10), (3.9), (3.4) and (3.5) one has for t0 ≤
t ≤ t1,

Φξ(g(t))

Φξ(t)
= exp



−

t∫

t0

vξ(s)− Fξ(s)

s
ds





≤ exp

{
2m log

t1
g(t1)

}
≤ exp{log 2} = 2.
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Similarly, for t ≥ t1 one has

Φξ(g(t))

Φξ(t)
= exp

{
−

t∫

g(t)

vξ(s)− Fξ(s)

s
ds

}
≤ exp

{
2m log

t

g(t)

}
≤ 2.

Thus (3.6) holds, which ensures that Φξ ∈ Ξ.
(ii) Φ(Ξ) is relatively compact in C[g(t0),∞): The inclusion Φ(Ξ) ⊂ Ξ implies

that Φ(Ξ) is locally uniformly bounded on [g(t0),∞). The inequality

0 ≥ d

dt
Φξ(t) =

d

dt
Xξ(t) = Xξ(t)

vξ(t)− Fξ(t)

t
≥ −2F (t)

t
,

holding for t ≥ t0 and all ξ ∈ Ξ, shows that Φ(Ξ) is locally equicontinuous
on [g(t0),∞). The desired relative compactness of Φ(Ξ) then follows from the
Arzela–Ascoli lemma.

(iii) Φ is a continuous mapping: Let {ξn} be a sequence in Ξ converging to
η ∈ Ξ, which means that {ξn(t)} converges to η(t) uniformly on any compact
subinterval of [g(t0),∞). The continuity of Φ is assured if it is shown that
the sequence {Φξn(t)} converges to Φη(t) uniformly on compact subintervals
of [g(t0),∞). If suffices to restrict our attention to the interval [t0,∞). Using
(3.10) and the mean value theorem, we obtain

|Φξn(t)− Φη(t)| = |Xξn(t)−Xη(t)|

=

∣∣∣∣∣ exp

{ t∫

t0

vξn(s)− Fξn(s)

s
ds

}
− exp

{ t∫

t0

vη(s)− Fη(s)

s
ds

}∣∣∣∣∣

≤
t∫

t0

|vξn(s)− vη(s)|+ |Fξn(s)− Fη(s)|
s

ds.

Our task is accomplished if it is verified that the two sequences

1

t
|vξn(t)− vη(t)|, 1

t
|Fξn(t)− Fη(t)| (3.14)

converge to 0 uniformly on compact subintervals of [t0,∞). As a matter of fact,
it can be shown more strongly that the convergence to 0 of the sequences in
(3.14) is uniform on [t0,∞). The uniform convergence of the second sequence
in (3.14) is an immediate consequence of the Lebesgue dominated convergence
theorem applied to the inequality

1

t
|Fξn(t)− Fη(t)|

≤
∞∫

t

{
p(s)

∣∣∣∣
ξn(g(s))

ξn(s)
− η(g(s))

η(s)

∣∣∣∣ + q(s)

∣∣∣∣
ξn(h(s))

ξn(s)
− η(h(s))

η(s)

∣∣∣∣
}

ds. (3.15)
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Turning to the first sequence in (3.4), we obtain from (3.11)

1

t
|vξn(t)− vη(t)| ≤

∞∫

t

∣∣∣∣∣
(

vξn(s)− Fξn(s)

s

)2

−
(

vη(s)− Fη(s)

s

)2
∣∣∣∣∣ ds

≤
∞∫

t

wn(s)
|vξn(s)− vη(s)|+ |Fξn(s)− Fη(s)|

s2
ds , (3.16)

where

wn(t) = vξn(t) + vη(t) + Fξn(t) + Fη(t).

Since by (3.4)

wn(t) ≤ 8m < 1,

we have the following inequality from (3.16)

1

t
|vξn(t)− vη(t)| ≤ θ

∞∫

t

|vξn(s)− vη(s)|
s2

ds + θ

∞∫

t

Rn(s)

s2
ds, (3.17)

where θ = 8m < 1 and

Rn(t) = |Fξn(t)− Fη(t)|.
Putting

zn(t) =

∞∫

t

|vξn(s)− vη(s)|
s2

ds (3.18)

we rewrite (3.17) as

(tθzn(t))′ ≥ − θ

t1−θ

∞∫

t

Rn(s)

s2
ds. (3.19)

Since tθzn(t) → 0 as t →∞ and since the right-hand side of (3.19) is integrable
over [t0,∞), integrating from t to ∞ yields

zn(t) ≤ 1

tθ

∞∫

t

Rn(s)

s2−θ
ds. (3.20)

By combining (3.17) with (3.20) we find that

1

t
|vξn(t)− vη(t)| ≤ θ

tθ

∞∫

t

Rn(s)

s2−θ
dθ + θ

∞∫

t

Rn(s)

s2
ds ≤ 2θ

tθ

∞∫

t

|Fξn(s)− Fη(s)|
s2

ds

for t ≥ t0, from which the uniform convergence |vξn(t) − vη(t)|/t → 0 immedi-
ately follows. This establishes the continuity of the mapping Φ.

Thus all the hypotheses of the Schauder–Tychonoff fixed point theorem have
been fulfilled, and so Φ has a fixed point ξ0 ∈ Ξ : ξ0 = Φξ0. This means in
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particular that ξ0(t) = Xξ0(t) for t ≥ t0, which implies that ξ0(t) is a slowly
varying function and satisfies the differential equation

ξ′′0 (t) = (pξ0(t) + qξ0(t))ξ0(t),

or equivalently

ξ′′0 (t) = p(t)ξ0(g(t)) + q(t)ξ0(h(t)).

The existence of an SV-solution for equation (A) has thus been established.

b) Equation (B).

The proof of “only if” part is analogous to the previous case because of
(1.1),(i) and Remark 2.2.

The “if” part also follows strictly the idea of the proof of the previous case.
Hence we restrict ourselves to emphasizing the necessary complementary rea-
soning.

Suppose that (1.2) is satisfied. This time choose t0 > a so that g(t0) > a and
such that, for t ≥ t0, (3.4) and

4m log
h(t)

t
≤ log 2 (3.21)

hold.
We denote by H the set of all continuous nondecreasing functions η(t) on

[g(t0),∞) such that

η(t) = 1 for g(t0) ≤ t ≤ t0,
η(h(t))

η(t)
≤ 2 for t ≥ t0.

This time we form a family of linear ordinary differential equations of the
form

x′′(t) + fη(t)x(t) = 0, η ∈ H, (3.22)

where

fη(t) = p(t)
η(g(t))

η(t)
+ q(t)

η(h(t))

η(t)
.

As before, we use the notation

Fη(t) = t

∞∫

t

fη(s)ds.

It is obvious that Fη(t) ≤ 2F (t) for all η ∈ H. Therefore we have

Fη(t) ≤ 2F (t) <
1

4
, (3.23)

so that for each η ∈ H equation (3.22) possesses an SV-solution having the form

Xη(t) = exp

{ t∫

t0

vη(s) + Fη(s)

s
ds

}
,
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where vη(t) is a solution of the integral equation

vη(t) = t

∞∫

t

(
vη(s) + Fη(s)

s

)2

ds,

satisfying

0 ≤ vη(t) ≤ 2m. (3.24)

Let us now define Ψ to be the mapping which to each η ∈ H assigns the
function Ψη(t) given by

Ψη(t) = 1 for g(t0) ≤ t ≤ t0, Ψη(t) = Xη(t) for t ≥ t0.

(i) Ψ(H) ⊂ H: If η ∈ H, then Ψη(t) = Xη(t) is continuous and increasing.
Furthermore, we have

Ψη(h(t))

Ψη(t)
= exp

{ h(t)∫

t

vη(s) + Fη(s)

s
ds

}
≤ exp

{
4m log

h(t)

t

}
≤ 2,

where we have made use of inequalities (3.23), (3.24) and (3.21). This shows
that Ψη ∈ H, implying that Ψ is a self-map on H.

(ii) Ψ(H) is relatively compact in C[g(t0),∞): This is again a consequence
of the local boundedness of Ψ(H) on [g(t0),∞) following from Ψ(H) ⊂ H com-
bined with the local equicontinuity of Ψ(H) which is assured by the following
inequality holding for all η ∈ H and t ≥ t0,

0 ≤ d

dt
Ψη(t) =

d

dt
Xη(t) = exp

{ t∫

t0

vη(s) + Fη(s)

s
ds

}
· vη(t) + Fη(t)

t

≤ Mtα, where M > 0, α > 0.

(iii) Ψ is a continuous mapping. The proof proceeds exactly as in the
corresponding part of Theorem A. Let {ηn(t)} be a sequence of functions in H
converging to ζ(t) uniformly on compact subintervals of [g(t0),∞). We need to
prove that {Ψηn(t)} converges to Ψζ(t) uniformly on compact subintervals of
[g(t0),∞). Since we have

|Ψηn(t)−Ψζ(t)| = |Xηn(t)−Xζ(t)|

=

∣∣∣∣∣ exp

{ t∫

t0

vηn(s) + Fηn(s)

s
ds

}
− exp

{ t∫

t0

vζ(s) + Fζ(s)

s
ds

}∣∣∣∣∣

≤ 4m

t∫

t0

|vηn(s)− vζ(s)|+ |Fηn(s)− Fη(s)|
s

ds,

it is sufficient to demonstrate that the two sequences

1

t
|vηn(t)− vζ(t)|, 1

t
|Fηn(t)− Fζ(t)|
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converge to 0 uniformly on any compact subinterval of [t0,∞). But this can be
done in exactly the same way as the sequences in (3.14) were dealt with at the
end of the proof for equation (B). The convergence of the second sequence is
almost trivial. As regards the first sequence, we have

1

t
|vηn(t)− vζ(t)| ≤ θ

∞∫

t

|vηn(s)− vζ(s)|
s2

ds + θ

∞∫

t

Rn(s)

s2
ds,

where θ = 4m < 1 and

Rn(t) = |Fηn(t)− Fζ(t)|,
and then derive the inequality

1

t
|vηn(t)− vζ(t)| ≤ θ

tθ

∞∫

t

Rn(s)

s2−θ
ds + θ

∞∫

t

Rn(s)

s2
ds,

from which the uniform convergence of |vηn(t)−vζ(t)|/t → 0 on compact subin-
tervals of [t0,∞) readily follows. This sketches the proof of the continuity of Ψ.

Therefore, the Schauder–Tychonoff fixed point theorem ensures the existence
of η0 ∈ H such that η0 = Ψη0. Since η0(t) = Xη0(t), t ≥ t0, η0(t) satisfies the
differential equation

η′′0(t) + (pη0(t) + qη0(t))η0(t) = 0,

which is nothing else but

η′′0(t) + p(t)η0(g(t)) + q(t)η0(h(t)) = 0.

We conclude therefore that η0(t) provides an SV-solution of equation (B) on
[t0,∞), and the proof is completed.

3.2. Proof of Theorem 1.2. Let x(t) be an SV solution of (A) such that
x(t) → c > 0, as t → ∞. Since x(t) is decreasing and convex, it is such that
x′(t) → 0, as t →∞. Integrating both sides of (A) over (t,∞), one obtains

x′(t) =

∞∫

t

(p(s)x(g(s)) + q(s)x(h(s)))ds

and, after another integration over (t,∞) and integrating by parts,

x(t) = c−
∞∫

t

(s− t)

{
p(s)

x(g(s))

x(s)
+ q(s)

x(h(s))

x(s)

}
x(s)ds. (3.25)

Now, due to (1.2) and Remark 2.2, condition (1.3) follows.
Conversely, let (1.3) hold. This implies (1.2) so that x(t) is SV. Then, with

the obvious notation (3.25) is written as

x(t) = c−
∞∫

t

(s− t)fx(s)x(s)ds
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or by the mean value theorem, since x(s) is decreasing, we have

1 =
c

x(t)
−

ξ∫

t

(s− t)fx(s)ds.

If t →∞, then the integral tends to zero due to (1.2), (1.3) and Remark 2.2,
whence c > 0. (For c = 0 this reasoning would imply 1 = 0.)

Remark 3.1. Theorem 1.2 also holds for equation (B). The proof of the “only
if” part is analogous to the previous case. But the proof of the “if” part requires
again the use of a fixed point argument as in Theorem 1.1 and is omitted here
and the result is framed as a remark only.

3.3. Proof of Theorem 1.3. By [6, Theorem 2.2] with n = 1 for each SV
solution x(t) of equation (A) written as

x′′(t) = fx(t)x(t) (3.26)

with

fx(t) = p(t)
x(g(t))

x(t)
+ q(t)

x(h(t))

x(t)
(3.27)

and

Fx(t) = t

∞∫

t

fx(s)ds (3.28)

one has for t →∞,

x(t) ∼ A exp



−

t∫

a

Fx(s)

s
ds



 , A > 0, (3.29)

provided that
∞∫

a

∞∫

t

(
Fx(s)

s

)2

ds dt < ∞. (3.30)

By substituting Fx from (3.28) into (3.29), integrating by parts and using
(2.1) with fx replacing f , one obtains for t →∞,

x(t) ∼ A exp



−

t∫

a

sfx(s)ds



 . (3.31)

By the same argument, this time integrating by parts twice, condition (3.30)
becomes ∞∫

a

s2fx(t)

∞∫

t

fx(s)dsdt < ∞. (3.32)

Notice that due to Remark 2.2 one has

fx(t) = O(r(t)). (3.33)
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Since also g(t) < t, condition (1.3) implies (3.32) so that the asymptotic
formula (3.21) holds.

On the other hand, from (2.7), Remark 2.2 and (1.4) and due to the positivity
of v(t) one has

x(g(t))

x(t)
= 1 + O

{ t∫

g(t)

∞∫

s

fx(u)duds

}
. (3.34)

Similarly, from (2.7), Remark 2.2 and due to v(t) ≤ F (t) one obtains

x(h(t))

x(t)
= 1 + O

{ h(t)∫

t

∞∫

s

fx(u)duds

}
. (3.35)

Since the inner integral in (3.34) and (3.35) is decreasing, in view of (1.1)(iv)
and (3.33) inequalities (3.34) and (3.35) are respectively reduced to

x(g(t))

x(t)
= 1 + O

(
t

∞∫

g(t)

r(s)ds

)
,

x(h(t))

x(t)
= 1 + O

(
t

∞∫

t

r(s)ds

)
.

Whence, due to g(t) < t and (3.27)

fx(s) = r(s) + O

(
sr(s)

∞∫

g(s)

r(u)du

)
.

Consequently, in view of condition (1.4), the asymptotic formula (3.31) gives
(1.5) – the desired one.

4. Examples and remarks.

Remark 4.1. It should be noted that an SV solution of (A) (respectively (B))
satisfies as t →∞ either x(t) → c > 0 or

x(t) → 0 (respectively x(t) →∞). (4.1)

It follows therefore that in case (1.3) is violated the SV-solution x(t) guaran-
teed by Theorem 1.1 necessarily satisfies (4.1).

Example 4.1. Consider the differential equation

x′′(t) = p(t)x

(
t

e

)
+ q(t)x(et), (4.2)

where p(t) and q(t) are defined by

p(t) =
λ

2t2 log t

(
1− 1

log t

)λ (
1 +

λ + 1

log t

)
,

q(t) =
λ

2t2 log t

(
1 +

1

log t

)λ (
1 +

λ + 1

log t

)
,

λ being a positive constant.
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Since p(t) and q(t) satisfy condition (1.2), equation (4.2) has an SV-solution
x(t) by Theorem 1.1. Condition (1.3) is not fulfilled, and so by Remark 4.1 the
solution x(t) must tend to 0 as t → ∞. In fact, x(t) = (log t)−λ is one of such
solutions.

Example 4.2. Consider the equation

x′′(t) + p(t)x

(
t

e

)
+ q(t)x(et) = 0, (4.3)

where p(t) and q(t) are given by

p(t) =
µ

2t2 log t

(
1− 1

log t

)−µ (
1− µ− 1

log t

)
,

q(t) =
µ

2t2 log t

(
1 +

1

log t

)−µ (
1− µ− 1

log t

)
,

µ being a positive constant. Clearly, condition (1.2) is satisfied, and so there
exists an SV-solution x(t) of equation (4.3) by Theorem 1.1. This solution x(t)
grows to infinity as t →∞, since p(t) and q(t) do not satisfy (1.3). One of such
solutions is x(t) = (log t)µ.
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5. T. Kusano and V. Marić, On a class of functional differential equations having slowly
varying solutions. Publ. Inst. Math. (Beograd) (N.S.) 80(94)(2006), 207–217.
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