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Abstract. We give some existence results for bounded solutions of linear
and nonlinear second order difference equations. In particular, a method of
lower and upper solutions for bounded solutions of some nonlinear second
order difference equations is obtained, and applied to Duffing-type difference
equations.
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1. Introduction

If m ∈ Z and (xj)j∈J is a finite or infinite sequence of real numbers such that
{m− 1, m, m + 1} ⊂ J , we define as usual the first order difference operators

Dxm = xm+1 − xm (1)

and

∆xm = xm − xm−1 (2)

and the mixed second order difference operator

D(∆xm) = ∆(Dxm) = xm+1 − 2xm + xm−1. (3)

To given continuous functions fm : R→ R (m ∈ J0), with

J0 = J \ {inf J, sup J},
one can associate the nonlinear difference equation of the second order

∆(Dxm) + fm(xm) = 0 (m ∈ J0). (4)

The existence and multiplicity of solutions of equation (4) satisfying some boun-
dary conditions like the n-periodic ones (for which J = {0, . . . , n}),

x0 = xn, Dx0 = Dxn−1

or the Dirichlet ones (for which J = {0, . . . , n})
x0 = 0 = xn

have been considered in [1, 2]. In particular, the method of lower and upper
solutions was developed for those problems, and applied to the obtention of
some existence and multiplicity results.
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In this paper, we are interested in bounded solutions x = (xm)m∈Z of second
order nonlinear difference equations of the form

∆(Dxm) + cDxm + fm(xm) = 0 (m ∈ Z).

under some conditions upon c and fm. The results depend upon versions for
difference equations of some results of Ortega [6] on bounded solutions of second
order linear differential equations given in Section 3, and of a limiting lemma of
Krasnosel’skĭı [4] given in Section 4. In particular, a method of lower and upper
solutions for the bounded solutions of some second order nonlinear difference
equations is developed in Section 5. As an application, we give in Section 6
existence results for Duffing-type second order nonlinear difference equations.

The following notations are used in the paper. We write N∗ = N \ {0}, and
denote by l∞Z the Banach space of bounded sequences x = (xm)m∈Z equipped
with the norm

‖x‖∞ = sup
m∈Z

|xm|.

For each k ∈ N∗, we define the vector subspace l∞Z,k of l∞Z by

l∞Z,k = {x = (xm)m∈Z ∈ l∞Z : xj = 0 for |j| ≥ k + 2)}. (5)

Of course, l∞Z,k is isometric to the space R2k+3 with the norm

|x|∞ = max
−1−k≤j≤k+1

|xj|.

If we define the projector Pk in l∞Z by

Pk(x) = ( . . . , 0, 0, . . . , x−k−1, . . . , x0, . . . , xk+1, 0, 0, . . . ) (6)

we have l∞Z,k = Pk(l
∞Z ) and ‖Pk‖ = 1.

2. First Order Linear Difference Equations

Let us first recall some elementary results on the first order linear equations

Dxm + cxm = hm (m ∈ Z) (7)

and

∆xm + cxm = hm (m ∈ Z) (8)

where D and ∆ are respectively defined in (1) and (2), c ∈ R and h = (hm)m∈Z ∈
l∞Z . Elementary considerations easily lead to the following result.

Lemma 1. If c 6∈ {0, 2} equation (7) has, for each h = (hm)m∈Z ∈ l∞Z , a
unique solution x = (xm)m∈Z ∈ l∞Z given by

xm =





m−1∑
k=−∞

(1− c)m−k−1hk if c ∈ (0, 2)

−
+∞∑
k=m

(1− c)m−k−1hk if c ∈ (−∞, 0) ∪ (2, +∞)
(m ∈ Z). (9)



BOUNDED SOLUTIONS OF SOME SECOND ORDER DIFFERENCE EQUATIONS 317

Proof. That x is solution is immediately checked. That x ∈ l∞ follows from the
fact that the corresponding series is dominated by a convergent geometric one.
The uniqueness follows from the structure of the solutions of the homogeneous
equation. ¤

Lemma 2. If c 6∈ {−2, 0} equation (8) has, for each h = (hm)m∈Z ∈ l∞Z , a
unique solution x = (xm)m∈Z ∈ l∞Z given by

xm =





−
+∞∑

k=−m+1

(1 + c)−m+k−1hk if c ∈ (−2, 0)

m∑
k=−∞

(1 + c)−m+k−1hk if c ∈ (−∞,−2) ∪ (0, +∞)
(m∈Z). (10)

Proof. Similar to that of Lemma 1. ¤

Given the sequence h = (hm)m∈Z, let HD = (HD
m)m∈Z be a D-primitive of h,

i.e. a sequence such that

DHD
m = hm (m ∈ Z), (11)

and let H∆ = (H∆
m)m∈Z be a ∆-primitive of h, i.e. a sequence such that

∆H∆
m = hm (m ∈ Z). (12)

For example, one can take

HD
m =





m−1∑
k=0

hk if m ≥ 1

0 if m = 0

−
−1∑

k=m

hk if m ≤ −1

(m ∈ Z), (13)

H∆
m =





m∑
k=1

hk if m ≥ 1

0 if m = 0

−
0∑

k=m+1

hk if m ≤ −1

(m ∈ Z). (14)

Denote by BDP (resp. B∆P ) the space of sequences h = (hm)m∈Z whose
D-primitives HD (resp. ∆-primitives H∆) belong to l∞Z . From the relations

HD
m+1 = H∆

m + h0 (m ∈ Z),

we see that BDP = B∆P , and we denote this unique space by BPZ. Clearly
BPZ ⊂ l∞Z and simple examples show that there exist elements of l∞Z not in
BPZ.

3. Some Second Order Linear Equations

Let us now consider the second order linear difference equations

∆(Dxm) + cDxm = hm (m ∈ Z), (15)
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and

D(∆xm) + c∆xm = hm (m ∈ Z), (16)

where c ∈ R.
The following results are versions for (15) and (16) of a result of Ortega [6]

for differential equations.

Proposition 1. If c 6∈ {−2, 0}, equation (15) has a solution x = (xm)m∈Z ∈
l∞Z if and only if h ∈ BPZ.

Proof. Necessity. If x ∈ l∞Z is a solution of (15), we have, for m ≥ 1

m−1∑

k=0

∆(Dxk) + c

m−1∑

k=0

Dxk =
m−1∑

k=0

hk

and hence explicitely

(1 + c)xm − xm−1 − (1 + c)x0 + x−1 = HD
m (m ≥ 1).

Similar expressions are obtained for m ≤ −1, and the sequence defined by the
left-hand member belongs to l∞Z .

Sufficiency Let us consider the first order equation

∆zm + czm = HD
m (m ∈ Z). (17)

It follows from Lemma 2 that (17) has a unique solution z = (zm)m∈Z ∈ l∞Z .
Now, it follows from (17) that

D(∆zm) + cDzm = DHD
m (m ∈ Z)

or, equivalently

∆(Dzm) + cDzm = hm (m ∈ Z),

which shows that (xm)m∈Z = (Dzm)m∈Z ∈ l∞Z is a solution of (15). ¤
Proposition 2. If c 6∈ {0, 2}, equation (16) has a solution x = (xm)m∈Z ∈ l∞Z

if and only if h ∈ BPZ.

Proof. It is entirely similar to that of Proposition 1. ¤

4. A Limiting Lemma

In this section, we state and prove an analog for difference equations of a
result of M. A. Krasnosel’skíı [4] for differential systems (Lemma 8.1, p. 149).
For each m ∈ Z, let fm : R→ R be continuous and let c ∈ R.

Lemma 3. Assume that, for each n∈N∗, there exists xn =(xn
m)−n−1≤m≤n+1 ∈

l∞Z,n such that

∆(Dxn
m) + cDxn

m + fm(xn
m) = 0 (−n ≤ m ≤ n), (18)

and assume that there exist α = (αm)m∈Z ∈ l∞Z and β = (βm)m∈Z ∈ l∞Z such
that

αm ≤ xn
m ≤ βm (m ∈ Z, n ∈ N∗). (19)
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Then there exists x̂ = (x̂m)m∈Z ∈ l∞Z such that

∆(Dx̂m) + cDx̂m + fm(x̂m) = 0 (m ∈ Z), (20)

and

αm ≤ x̂m ≤ βm (m ∈ Z). (21)

Proof. We use Bolzano–Weierstrass theorem and Cantor diagonal process. By
assumption, the sequence (P1x

n)n≥1 is bounded in l∞Z,1 and hence (xn)n≥1 con-

tains a subsequence (xn,1)n≥1 such that (P1x
n,1)n≥1 converges. Now the se-

quence (P2x
n,1)n≥2 is bounded in l∞Z,2 and hence (xn)n≥2 contains a subsequence

(xn,2)n≥2 such that (P2x
n,2)n≥2 converges. Continuing in the same way, if the

subsequence (xn,k)n≥k such that (Pkx
n,k)n≥k converges is given, the sequence

(Pk+1x
n,k)n≥k+1 is bounded in l∞Z,k+1 and hence (xn)n≥k+1 contains a subsequence

(xn,k+1)n≥k+1 such that (Pk+1x
n,k+1)n≥k+1 converges. Let us now consider the

corresponding diagonal subsequence (xn,n)n∈N∗ . If q ∈ N∗ is given, (xn,n)n≥q is
a subsequence of (xn,q)n≥q and, as (Pqx

n,q)n≥q converges, say to x̂q ∈ l∞Z,q, the
same is true for (Pqx

n,n)n≥q. On the other hand, as

PqPq+1x
n,n = Pqx

n,n (n ≥ q + 1),

we have Pqx̂
q+1 = x̂q, and there exists a sequence x̂ = (x̂m)m∈Z such that

x̂q = Pqx̂ (q ∈ N∗).
Consequently, for each q ∈ N∗,

Pqx
n,n → Pqx̂,

or, equivalently,

xn,n
m → x̂m (−q − 1 ≤ m ≤ q + 1).

From the inequalities

αm ≤ xn,n
m ≤ βm (m ∈ Z),

we deduce (21), and, in particular x̂ ∈ l∞Z . From the relations

∆(Dxn,n
m ) + cDxn,n

m + fm(xn,n
m ) = 0 (−n− 1 ≤ m ≤ n + 1),

we deduce (20) by letting n →∞. ¤

5. The Method of Lower and Upper Solutions

To develop a method of lower and upper solutions for some nonlinear sec-
ond order difference equations, we need some preliminary results on the same
method for Dirichlet problems, which slightly generalize (with slightly different
notations) some results of [2].

Let n ∈ N∗ fixed and (x−n−1, . . . , xn+1) ∈ R2n+3. Let c, ξ−n−1, ξn+1 ∈ R and
fm : R→ R (−n ≤ m ≤ n) be continuous functions. We study the existence of
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solutions for the Dirichlet boundary value problem

∆(Dxm) + cDxm + fm(xm) = 0 (−n ≤ m ≤ n),

x−n−1 = ξ−n−1,

xn+1 = ξn+1.

(22)

If α, β ∈ R2n+3, we write α ≤ β if αm ≤ βm for all −n− 1 ≤ m ≤ n + 1.

Definition 1. α = (α−n−1, . . . , αn+1) (resp. β = (β−n−1, . . . , βn+1)) is called
a lower solution (resp. upper solution) for (22) if

α−n−1 ≤ ξ−n−1 (resp. ξ−n−1 ≤ β−n−1),

αn+1 ≤ ξn+1 (resp. ξn+1 ≤ βn+1)
(23)

and the inequalities

∆(Dαm) + cDαm + fm(αm) ≥ 0

(resp. ∆(Dβm) + cDβm + fm(βm) ≤ 0) (−n ≤ m ≤ n)
(24)

hold.

Theorem 1. If c ≥ 0 and if (22) has a lower solution α = (α−n−1, . . . , αn+1)
and an upper solution β = (β−n−1, · · · , βn+1) such that α ≤ β, then (22) has a
solution x = (x−n−1, · · · , xn+1) such that α ≤ x ≤ β.

Proof. I. A modified problem.
Let γm : R −→ R (−n ≤ m ≤ n) be the continuous functions defined by

γm(x) =





βm if x > βm,
x if αm ≤ x ≤ βm,
αm if x < αm,

and define Fm = fm ◦ γm (−n ≤ m ≤ n). We consider the modified problem

∆(Dxm) + cDxm + Fm(xm)− [xm − γm(xm)] = 0 (−n ≤ m ≤ n),

x−n−1 = ξ−n−1,

xn+1 = ξn+1,

(25)

and show that if x = (x−n−1, · · · , xn+1) is a solution of (25) then α ≤ x ≤ β
and hence x is a solution of (22). Suppose by contradiction that there is some
−n− 1 ≤ i ≤ n + 1 such that αi − xi > 0 so that

αm − xm = max
−n−1≤j≤n+1

(αj − xj) > 0.

Using the inequalities (23), we obtain that −n ≤ m ≤ n− . Hence

∆(D(αm − xm)) = (αm+1 − xm+1)− 2(αm − xm) + (αm−1 − xm−1) ≤ 0,

αm+1 − xm+1 ≤ αm − xm,

so that

γm(xm) = αm, ∆(Dαm) ≤ ∆(Dxm), Dαm ≤ Dxm.
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Consequently,

0 = ∆(Dxm) + cDxm + Fm(xm)− [xm − γm(xm)]

≥ ∆(Dαm) + cDαm + fm(αm) + αm − xm

≥ αm − xm > 0,

a contradiction. Analogously we can show that x ≤ β.

II. Abstract formulation of problem (25).
We define a continuous mapping G : R2n+3 → R2n+3 by

G−n−1(x) = x−n−1 − ξ−n−1,

Gm(x) = ∆(Dxm) + cDxm + Fm(xm)− [xm − γm(xm)]

(−n ≤ m ≤ n),

Gn+1(x) = xn+1 − ξn+1.

(26)

It is clear that the solutions of (25) are the zeros of G in R2n+3. In order to
use the Brouwer degree [3, 5] to study those zeros, we introduce the homotopy
G : [0, 1]× R2n+3 → R2n+3 defined by

G−n−1(λ, x) = x−n−1 − λξ−n−1,

Gm(λ, x) = (1− λ)[∆(Dxm) + cDxm − xm] + λGm(x)

= ∆(Dxm) + cDxm − xm + λ[Fm(xm) + γm(xm)]

(−n ≤ m ≤ n),

Gn+1(λ, x) = xn+1 − λξn+1.

(27)

Notice that G(1, ·) = G and that G(0, ·) is linear.

III. A priori estimates for the possible zeros of G.
Let R be any number such that

R > max
{

max
−n≤m≤n

sup
x∈R

|Fm(x) + γm(x)|, |ξ−n−1|, |ξn+1|
}
, (28)

and let (λ, x−n−1, · · · , xn+1) ∈ [0, 1] × R2n+3 be a possible zero of G. One has
|x−n−1| < R and |xn+1| < R. If 0 ≤ xm = max−n−1≤j≤n+1 xj is reached for some
−n ≤ m ≤ n, then ∆(Dxm) ≤ 0, and Dxm ≤ 0. Hence,

0 ≥ ∆(Dxm) + cDxm = xm − λ[Fm(xm) + γm(xm)],

which implies

xm ≤ sup
x∈R

|Fm(x) + γm(x)| < R.

Analogously it can be shown that −R < min−n≤j≤n xj, and hence

max
−n−1≤j≤n+1

|xj| < R (29)

for each possible zero (λ, x) of G.

IV. The existence of a zero for G.
Using the results of Parts II, III and the invariance under homotopy of the
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Brouwer degree, we see that the Brouwer degree d[G(λ, ·), BR(0), 0] is well de-
fined and independent of λ ∈ [0, 1]. But G(0, ·) is a linear mapping whose set of
solutions is bounded, and hence equal to {0}. Consequently, |d[G(0, ·), BR(0), 0]|
= 1, so that |d[G, BR(0), 0]| = 1 and the existence property of the Brouwer de-
gree implies the existence of at least one zero of G, and hence of a solution of
(22). ¤

Remark 1. One can prove a result similar to Theorem 1 for the Dirichlet
problem

∆(Dxm) + c∆xm + fm(xm) = 0 (−n + 1 ≤ m ≤ n− 1),

x−n−1 = ξ−n−1,

xn+1 = ξn+1,

(30)

when c ≤ 0.

Let now fm : R→ R (m ∈ Z) be continuous functions. We study the existence
of bounded solutions of the nonlinear second order difference equation

∆(Dxm) + cDxm + fm(xm) = 0 (m ∈ Z). (31)

If α, β ∈ l∞Z , we write α ≤ β if αm ≤ βm for all m ∈ Z.

Definition 2. α = (αm)m∈Z ∈ l∞Z (resp. β = (βm)m∈Z ∈ l∞Z ) is called a lower
solution (resp. upper solution) for (31) if the inequalities

∆(Dαm) + cDαm + fm(αm) ≥ 0

(resp. ∆(Dβm) + cDβm + fm(βm) ≤ 0) (m ∈ Z)
(32)

hold.

Theorem 2. If c ≥ 0 and (31) has a lower solution α = (αm)m∈Z and
an upper solution β = (βm)m∈Z such that α ≤ β, then (31) has a solution
x = (xm)m∈Z ∈ l∞Z such that α ≤ x ≤ β.

Proof. For each n ∈ N∗, let us consider the Dirichlet problem

∆(Dxm) + cDxm + fm(xm) = 0 (−n ≤ m ≤ n)

x−n−1 = α−n−1,

xn+1 = αn+1.

(33)

It follows from Theorem 1 that (33) has at least one solution x̃n = (x̃n
m)m∈Z

such that

αm ≤ x̃n
m ≤ βm (−n− 1 ≤ m ≤ n + 1).

Consequently, the sequence xn = (xn
m)m∈Z ∈ l∞Z,n defined by

xn
m =

{
x̃n

m if |m| ≤ n + 1,

0 if |m| > n + 1

satisfies conditions (19) and (20) of Lemma 3 and the conclusion follows. ¤



BOUNDED SOLUTIONS OF SOME SECOND ORDER DIFFERENCE EQUATIONS 323

The case of constant lower and upper solutions gives the following simple
existence condition.

Corollary 1. Assume that c ≥ 0 and that there exist two real numbers α ≤ β
such that

fm(β) ≤ 0 ≤ fm(α) (m ∈ Z). (34)

Then equation (31) has at least one solution x = (xm)m∈Z ∈ l∞Z such that

α ≤ xm ≤ β (m ∈ Z).

Remark 2. One can prove a variant of Theorem 2 for the bounded solutions
of equation

∆(Dxm) + c∆xm + gm(xm) = 0 (m ∈ Z)

when c ≤ 0.

6. An Existence Condition for Duffing-Type Difference
Equations

Let c ∈ R, gm : R → R be continuous functions (m ∈ Z), and h = (hm)m∈Z
be a sequence. We consider the existence of solutions x = (xm)m∈Z ∈ l∞Z of the
second order nonlinear difference equation

∆(Dxm) + cDxm + gm(xm) = hm (m ∈ Z). (35)

The following result is a nonlinear extension of Lemma 1.

Theorem 3. Assume that c > 0 and that there exists r > 0 such that, for
each m ∈ Z, gm(s) ≥ 0 for all s ≤ −r and gm(s) ≤ 0 for all s ≥ r. Then
equation (35) has at least one solution for each h = (hm)m∈Z ∈ BPZ.

Proof. From Proposition 1, there exists a solution u = (xm)m∈Z ∈ l∞Z of equation

∆(Dxm) + cDxm = hm (m ∈ Z). (36)

Letting xm = xm + zm, the problem is reduced to find a solution z = (zm)m∈Z ∈
l∞Z of equation

∆(Dzm) + cDzm + gm(xm + zm) = 0 (m ∈ Z). (37)

Take α = −r − ‖u‖∞ and β = r + ‖u‖∞. Then, for each m ∈ Z,

xm + α = −r + xm − ‖u‖∞ ≤ −r,

xm + β = r + ‖u‖∞ + xm ≥ r,

so that

gm(xm + α) ≥ 0 ≥ gm(xm + β) (m ∈ Z).

The result follows from Corollary 1. ¤
Remark 3. A similar result holds for the equation

∆(Dxm) + c∆xm + gm(xm) = 0 (m ∈ Z)

when c < 0.
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Example 1. If a ≤ 0, b ≥ 0, c > 0, γ > 0, δ ≥ 0, the equation

∆(Dxm) + cDxm +
axm|xm|γ−1

1 + b|xm|δ = hm (m ∈ Z)

has a solution x = (xm)m∈Z for each h = (hm)m∈Z ∈ BPZ.
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