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Abstract. This paper investigates the singular Dirichlet problem

−u′′ = f(t, u, u′) , u(0) = 0 , u(T ) = 0 ,

where f satisfies the Carathéodory conditions on the set (0, T ) × R2
0 and

R0 = R \ {0}.
The function f(t, x, y) can have time singularities at t = 0 and t = T and

space singularities at x = 0 and y = 0. The existence principle for the above
problem is given and its application is presented here. The paper provides
conditions which guarantee the existence of a solution which is positive on
(0, T ) and which has the absolutely continuous first derivative on [0, T ].
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1. Introduction

Let [0, T ] ⊂ R and R0 = R \ {0}. We will investigate the solvability of the
problem

−u′′ = f(t, u, u′) , (1.1)

u(0) = 0 , u(T ) = 0 , (1.2)

where f satisfies the Carathéodory conditions on (0, T )× R2
0 and f(t, x, y) can

have time singularities at t = 0, t = T and space singularities at x = 0 and
y = 0.

Definition 1.1. We say that f has a time singularity at t = 0 (t = T ) if
there exist x, y ∈ R0 such that

ε∫

0

|f(t, x, y)| dt = ∞



T∫

T−ε

|f(t, x, y)| dt = ∞



for any sufficiently small ε > 0.

Definition 1.2. We say that f has a space singularity at x = 0 (y = 0) if
there exists a set J ⊂ [0, T ] with a positive Lebesgue measure such that the
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condition

lim sup
x→0

|f(t, x, y)| = ∞
(

lim sup
y→0

|f(t, x, y)| = ∞
)

holds for a.e. t ∈ J and some y ∈ R0 (x ∈ R0).

In what follows we will use the notation:
[a, b] ⊂ R; Σ ⊂ (a, b) is a finite set; M⊂ R2;
C[a, b] is the Banach space of functions continuous on [a, b] with the norm

‖x‖C = max{|x(t)|; t ∈ [a, b]};
C1[a, b] is the Banach space of functions having continuous first derivatives

on [a, b] with the norm ‖x‖C1 = ‖x‖C + ‖x′‖C ;
AC1[a, b] is the set of functions having absolutely continuous derivatives on

[a, b];
AC1

loc((a, b)\Σ) is the set of functions x ∈ AC1[c, d] for each [c, d] ⊂ [a, b]\Σ;
L[a, b] is the Banach space of functions Lebesgue integrable on [a, b] with the

norm ‖x‖L =
∫ b

a
|x(t)| dt;

Car([a, b] × M) is the set of functions f : [a, b] × M → R satisfying the
Carathéodory conditions on [a, b]×M, i.e.,

f(·, x, y) : [a, b] → R is measurable for all (x, y) ∈M;

f(t, ·, ·) : M→ R is continuous for a.e. t ∈ [a, b];

for each compact set K ⊂M there is a function mK ∈ L[a, b] such that

|f(t, x, y)| ≤ mK(t) for a.e. t ∈ [a, b] and all (x, y) ∈ K .

Car((a, b) ×M) is the set of functions f ∈ Car([c, d] ×M) for each [c, d] ⊂
(a, b);

measA is the Lebegue measure of A ⊂ R.
We say that a sequence {vn} ⊂ C[0, T ] is equicontinuous on [0, T ] if for each

ε > 0 there exists δ > 0 such that for each t1, t2 ∈ [0, T ]

|t1 − t2| < δ ⇒ |vn(t1)− vn(t2)| < ε

for each n ∈ N.

Definition 1.3. By a solution of problem (1.1), (1.2) we understand a func-
tion u ∈ AC1[0, T ] satisfying equation (1.1) a.e. on [0, T ] and satisfying condi-
tions (1.2).

In literature we can find an alternative approach to the solvability of singular
problems where solutions are defined as continuous functions whose first deriva-
tives can have discontinuities at some points in [0, T ]. Here we will call such
functions w-solutions and according to [4] or [11] we will define them as follows:

Definition 1.4. We say that u ∈ C[0, T ] is a w-solution of (1.1), (1.2) if
there exists a finite set Σ ⊂ (0, T ) such that u ∈ AC1

loc((0, T ) \ Σ) satisfies
equation (1.1) a.e. on [0, T ] and satisfies conditions (1.2).
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A systematic study of the solvability of Dirichlet problems having both time
and space singularities was initiated by Taliaferro [21]. Now, we can find a large
group of works which focused their attention on the existence of w-solutions,
e.g. [1]–[4], [10]–[15], and a less number of works which provide also conditions
for the existence of solutions, e.g. [5], [7], [8], [16], [17], [22]. All the above
works deal with differential equations where the nonlinearity f(t, x, y) has a
space singularity at x = 0 and/or time singularities at t = 0, t = T . The
first existence result for the Dirichlet problem where f(t, x, y) has singularities
at both variables x and y was obtained by Staněk [20]. He assumed that f is
strictly positive and its behaviour in a right neighbourhood of the singular point
x = 0 is controlled by a function ω0(x) which is integrable. Then we say that f
has a weak space singularity at x = 0. Here, we extend the existence result of
[20] to f with a strong space singularity at x = 0, i.e., we consider f which is
controlled by a nonintegrable function ω0(x). Our main result is Theorem 2.2.

In our proofs we will need the following Fredholm type existence theorem:

Theorem 1.5 (Fredholm type existence theorem, [23]). Let h ∈ Car([a, b]×
R2) and m ∈ L[a, b] be such that

|h(t, x, y)| ≤ m(t) for a.e. t ∈ [a, b] and all x, y ∈ R .

Then the problem

−u′′ = h(t, u, u′) , u(a) = u(b) = 0

has a solution u ∈ AC1[a, b].

We approximate the singular equation (1.1) by a sequence of regular equations

−u′′ = fn(t, u, u′) , (1.3)

where fn ∈ Car([0, T ]× R2), n ∈ N.

Having a sequence {un} of solutions of problems (1.3), (1.2) we need to prove
the existence of its converging subsequence. A type of this convergence defines
the properties of its limit u and, at the same time, it determines if u is a
solution (or a w-solution) of the original problem (1.1), (1.2). The investigation
of convergence is based on next two theorems.

Theorem 1.6 (Arzelà–Ascoli theorem in C[a, b] and C1[a, b], [9]). A ⊂ C[a, b]
is relatively compact if and only if A is bounded in C[a, b] and functions in A
are equicontinuous on [a, b].

B ⊂ C1[a, b] is relatively compact if and only if B is bounded in C1[a, b] and
the first derivatives of functions in B are equicontinuous on [a, b].

Theorem 1.7 (Fatou lemma, [19]). Let ϕn ∈ L[a, b] for n ∈ N and
lim

n→∞
ϕn(t) = ϕ(t) a.e. on [a, b]. Assume that there exists c ∈ (0,∞) such

that
b∫

a

|ϕn(t)| dt ≤ c for each n ∈ N .
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Then |ϕ| ∈ L[a, b] and
∫ b

a
|ϕ(t)| dt ≤ c. (Clearly, ϕ ∈ L[a, b], as well.)

The paper is organized as follows. In Section 2 we provide the existence
principle (Theorem 2.2) giving the properties of approximating regular functions
fn in order to find a sequence of approximate solutions converging to a solution
(or to a w-solution) of problem (1.1), (1.2). In Section 3 we apply the existence
principle of Section 2 to get conditions which are imposed on f directly and
yield the solvability of problem (1.1), (1.2).

2. Existence Principle for Singular Dirichlet Problems

Theorem 2.1. Assume that f ∈ Car ((0, T )× R2
0), fn ∈ Car([0, T ]× R2),

fn(t, x, y) = f(t, x, y) for a.e. t ∈ ∆n and

each |x| ≥ 1

n
, |y| ≥ 1

n
, n ∈ N ,

where ∆n =

[
1

n
, T − 1

n

]
∩ [0, T ] ;

(2.1)

there exists a bounded set Ω ⊂ C1[0, T ] such that for each

n ∈ N, problem (1.3), (1.2) has a solution un ∈ Ω .
(2.2)

Then there exist u ∈ C[0, T ] and a subsequence {uk} ⊂ {un} such that

lim
k→∞

‖uk − u‖C = 0 . (2.3)

Assume in addition that there exists a finite set Σ = {s1, . . . , sν} ⊂ (0, T )
such that

on each interval [a, b] ⊂ (0, T ) \ Σ the sequence {u′k} is equicontinuous. (2.4)

Then u ∈ C1 ((0, T ) \ Σ) and

lim
k→∞

u′k(t) = u′(t) locally uniformly on (0, T ) \ Σ . (2.5)

Proof. By (2.2) there exist r > 0 and a sequence {un} of solutions of (1.3), (1.2)
such that

‖un‖C1 ≤ r for each n ∈ N . (2.6)

Therefore the sequence {un} is bounded in C[0, T ] and equicontinuous on [0, T ].
By Theorem 1.6 (Arzelà–Ascoli) we can choose a subsequence {ul} such that

lim
l→∞

‖ul − u‖C = 0 , u ∈ C[0, T ] . (2.7)

Now assume also (2.4) and choose an interval [a, b] ⊂ (0, T ) \ Σ arbitrarily.
Then {u′l} is equicontinuous on [a, b]. By (2.6) the sequence {ul} is bounded in
C1[a, b]. Theorem 1.6 implies that we can choose a subsequence {uk} ⊂ {ul}
such that

lim
k→∞

u′k(t) = u′(t) uniformly on [a, b] .

By virtue of (2.7) the sequence {uk} satisfies (2.3). Using the diagonalization
method we can choose {uk} such that (2.5) holds too. ¤
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Theorem 2.2 (Existence principle for problem (1.1), (1.2)). Let all assump-
tions of Theorem 2.1 be fulfilled. Let the finite set Σ have the form:

Σ = {s ∈ (0, T ) : u(s) = 0 or u′(s) = 0 or u′(s) does not exist.} (2.8)

Then u ∈ AC1
loc((0, T ) \ Σ) is a w-solution of (1.1), (1.2).

Denote s0 = 0 and sν+1 = T . If u and {uk} satisfy (2.3), (2.5) and, besides,
there exist η ∈ (

0, T
2

)
, λ0, µ0, λ1, µ1, . . . , λν+1, µν+1 ∈ {−1, 1} and ψ ∈ L[0, T ]

such that

λifk (t, uk(t), u
′
k(t)) ≥ ψ(t) for a.e. t ∈ (si − η, si) ∩ (0, T )

µifk(t, uk(t), u
′
k(t)) ≥ ψ(t) for a.e. t ∈ (si, si + η) ∩ (0, T ) ,

for all i ∈ {0, . . . ν + 1} , k ∈ N ,

(2.9)

then u ∈ AC1[0, T ] is a solution of (1.1), (1.2).

Proof. 1. Let (2.1), (2.2), (2.4) and (2.8) be true. Then for k ∈ N
−u′′k(t) = fk(t, uk(t), u

′
k(t)) for a.e. t ∈ [0, T ] , (2.10)

uk(0) = 0 , uk(T ) = 0 ,

and by Theorem 2.1, there exists u ∈ C[0, T ] such that (2.3) and (2.5) hold. By
(2.3), u satisfies (1.2).

Define the sets

V1 = {t ∈ (0, T ) : f(t, ·, ·) : R2
0 → R is not continuous} ,

V2 = {t ∈ (0, T ) : the equality in (2.1) is not satisfied}
and let

U = (0, T ) \ (Σ ∪ V1 ∪ V2) .

We see that
meas(Σ ∪ V1 ∪ V2) = 0 . (2.11)

Choose an arbitrary t ∈ U . Then there exists k0 ∈ N, such that for each k ∈ N,
k ≥ k0:

t ∈ ∆k , |uk(t)| > 1

k
, |u′k(t)| >

1

k
and

fk(t, uk(t), u
′
k(t)) = f(t, uk(t), u

′
k(t)) .

Since t is an arbitrary element of U , by (2.3), (2.5) and (2.11) we get

lim
k→∞

fk(t, uk(t), u
′
k(t)) = f(t, u(t), u′(t)) a.e. on [0, T ] . (2.12)

Now choose an arbitrary interval [a, b] ⊂ (0, T ) \ Σ and integrate equation
(2.10). We get

−u′k(t) + u′k(a) =

t∫

a

fk(s, uk(s), u
′
k(s)) ds for each t ∈ [a, b] . (2.13)

Moreover, there exists k∗ ∈ N such that for each k ∈ N, k ≥ k∗

|fk(t, uk(t), u
′
k(t))| ≤ m(t) for a.e. t ∈ [a, b] ,
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where

m(t) = sup

{
|f(t, x, y)| : 1

k∗
≤ |x| ≤ r ,

1

k∗
≤ |y| ≤ r

}
∈ L[a, b] .

Since m ∈ L[a, b] we can apply Lebesgue convergence theorem on [a, b] and
get f(·, u(·), u′(·)) ∈ L[a, b]. Moreover,

lim
k→∞

b∫

a

fk(s, uk(s), u
′
k(s)) ds =

b∫

a

f(s, u(s), u′(s)) ds ,

which by (2.13) yields.

−u′(t) + u′(a) =

t∫

a

f(s, u(s), u′(s)) ds for each t ∈ [a, b] . (2.14)

Since [a, b] is an arbitrary interval in (0, T ) \ Σ, we get that u ∈ AC1
loc((0, T ) \ Σ)

is a w-solution of (1.1), (1.2).
2. Now assume that there exist η ∈ (

0, T
2

)
, λ0, µ0, λ1, µ1, . . . , λν+1, µν+1 ∈

{−1, 1} and ψ ∈ L[0, T ] such that (2.9) holds. Since u is a w-solution of (1.1),
(1.2), it remains to prove that u ∈ AC1[0, T ].

Choose i ∈ {0, . . . , ν +1} and denote (ci, di) = (si− η, si)∩ (0, T ). For k ∈ N
and for a.e. t ∈ (ci, di) we denote

hk(t) = λifk(t, uk(t), u
′
k(t)) + |ψ(t)| , h(t) = λif(t, u(t), u′(t)) + |ψ(t)| .

Then hk ∈ L[ci, di] and according to (2.12) we have

lim
k→∞

hk(t) = h(t) for a.e. t ∈ [ci, di] .

Integrating (2.10) on [ci, di] we get

di∫

ci

fk(s, uk(s), u
′
k(s)) ds = −u′k(di) + u′k(ci) .

Therefore, by (2.6) and (2.9)

di∫

ci

|hk(s)| ds =

di∫

ci

hk(s) ds = λi

di∫

ci

fk(s, uk(s), u
′
k(s)) ds

+

di∫

ci

|ψ(s)| ds ≤ |u′k(di)|+ |u′k(ci)|+
di∫

ci

|ψ(s)| ds ≤ c ,

where c = 2r + ‖ψ‖L.
Theorem 1.7 (Fatou) implies that h ∈ L[ci, di] and f(·, u(·), u′(·)) ∈ L[ci, di].
If (ci, di) = (si, si + η) ∩ (0, T ) we argue similarly.
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Hence f(·, u(·), u′(·)) ∈ L[0, T ] and the equality in (2.14) is fulfilled for each
t ∈ [0, T ] and u ∈ AC1[0, T ]. We have proved that u is a solution of (1.1),
(1.2). ¤

3. Application of Existence Principle

The main result of this section is Theorem 3.1, where we present the condi-
tions sufficient for the existence of a solution of problem (1.1), (1.2) which is
positive on (0, T ).

Now, let us state our assumptions on problem (1.1), (1.2). We are interested
in the existence of a positive solution and hence we investigate problem (1.1),
(1.2) on the set [0, T ]× [0,∞)× R. Denote D = (0,∞)× R0. We assume that
f ∈ Car([0, T ]×D) has space singularities at x = 0 and y = 0, particularly



lim sup
x→0+

f(t, x, y) = ∞ for a.e. t ∈ [0, T ] and for some y ∈ R0 ,

lim sup
y→0

f(t, x, y) = ∞ for a.e. t ∈ [0, T ] and for some x ∈ (0,∞) .
(3.1)

Theorem 3.1. Let (3.1) hold and let c, γ, δ ∈ (0,∞), α, β ∈ [0, 1]. Assume
that there exist positive and nonincreasing functions ω0, ω1 ∈ C(0,∞) and non-
negative functions h0, h1, h2 ∈ L[0, T ] satisfying

T∫

0

(
tγ + tδ

)
ω0(t) dt < ∞ ,

T∫

0

ω1(t) dt < ∞ . (3.2)

T‖h1‖L + ‖h2‖L < 1 for α, β = 1 ;

T‖h1‖L < 1 for α = 1, β < 1 ;

‖h2‖L < 1 for α < 1, β = 1 ;

(3.3)

c ≤ f(t, x, y) ≤ tγ(T − t)δω0(x) + ω1(|y|) + h0(t) + h1(t)x
α + h2(t)|y|β

for a.e. t ∈ [0, T ] , and all x ∈ (0,∞) , y ∈ R0 .
(3.4)

Then problem (1.1), (1.2) has a solution positive on (0, T ).

The proof of Theorem 3.1 is based on the Existence principle (Theorem 2.2),
where the existence of a bounded set Ω is necessary. Therefore we first prove a
priori estimates for a class of functions which will be needed for the construction
of such a set Ω.

Lemma 3.2. Let c > 0. Then there exists η > 0 such that for each u ∈
AC1[0, T ] satisfying (1.2) and

c ≤ −u′′(t) for a.e. t ∈ [0, T ] , (3.5)

the estimate ‖u‖C ≥ η is valid.

Proof. Let G(t, s) be the Green function of problem (1.2), −u′′(t) = 0.
Then

G(t, s) =

{
t(T−s)

T
, t ≤ s,

s(T−t)
T

, s ≤ t.
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We define

Φ(t, s) =
G(t, s)

t(T − t)
for (t, s) ∈ (0, T )× (0, T ) .

For any s ∈ (0, T ) we have

lim
t→0+

Φ(t, s) = lim
t→0+

t(T − s)

t(T − t)

1

T
=

T − s

T 2
,

lim
t→T−

Φ(t, s) = lim
t→T−

s(T − t)

t(T − t)

1

T
=

s

T 2
,

thus we can extend Φ(t, s) continuously to [0, T ] and for every s ∈ (0, T ) we
have Φ(t, s) > 0 for t ∈ [0, T ].

We can define

F (t) =

T∫

0

Φ(t, s) ds for t ∈ [0, T ] .

For every t ∈ [0, T ] there exists d0 > 0 such that d0 ≤ cF (t). From the equation
−u′′ = −u′′ we have

u(t) = −
T∫

0

G(t, s)u′′(s) ds ≥
T∫

0

G(t, s)c ds

= t(T − t)c

T∫

0

Φ(t, s) ds = t(T − t)cF (t) ≥ t(T − t)d0 ,

‖u‖C ≥ u

(
T

2

)
≥ T 2d0

4
= η . ¤

Lemma 3.3. Let c, γ, δ > 0, α, β ∈ [0, 1], the functions ω0, ω1, h0, h1, h2

satisfy assumptions (3.2) and (3.3). Then there exists r > 1 such that for each
u ∈ AC1[0, T ] satisfying (1.2), (3.5) and

−u′′(t) ≤ (ω0(1) + ω0(u(t))) tγ(T − t)δ + ω1(1) + ω1(|u′(t)|) + h0(t)

+ h1(t) ((u(t))α + 1) + h2(t)
(|u′(t)|β + 1

)
(3.6)

the estimate ‖u‖C1 ≤ r is valid.

Proof. Condition (3.5) implies that u is nonnegative, concave and that there
exists t0 ∈ [0, T ], such that u′(t0) = 0.

By Lemma 3.2 there exists η > 0 such that

η
t

T
≤ η

t

t0
≤ u(t) for t ∈ [0, t0] , (3.7)

η
T − t

T
≤ η

T − t

T − t0
≤ u(t) for t ∈ [t0, T ] . (3.8)
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Since ω0 is a nonincreasing function, we have

T∫

0

tγ(T − t)δω0(u(t)) dt ≤
t0∫

0

tγ(T − t)δω0(u(t)) dt +

T∫

t0

tγ(T − t)δω0(u(t)) dt

≤
t0∫

0

tγ(T − t)δω0

(
ηt

T

)
dt +

T∫

t0

tγ(T − t)δω0

(
η(T − t)

T

)
dt

≤ T δ

t0∫

0

tγω0

(
ηt

T

)
dt + T γ

T∫

t0

(T − t)δω0

(
η(T − t)

T

)
dt .

Without loss of generality we can assume that η < T and, by (3.2), using the

substitution z = ηt
T

into the first integral and T − z = η(T−t)
T

into the second
integral we get

T∫

0

tγ(T − t)δω0(u(t)) dt

≤ T δ T

η

ηt0
T∫

0

(
Tz

η

)γ

ω0(z) dz + T γ T

η

T∫

T− η(T−t0)
T

(
T

η
(T − z)

)δ

ω0(T − z) dz

≤ T δ+1

η

(
T

η

)γ

ηt0
T∫

0

zγω0(z) dz +
T γ+1

η

(
T

η

)δ
T∫

T− η(T−t0)
T

(T − z)δ ω0(T − z) dz

≤ T γ+δ+1

η2

T∫

0

(
zγ + zδ

)
ω0(z) dz = A < ∞ ,

where the constant A is independent of the function u.
Integrating c ≤ −u′′ on [t0, t] we get

c(t0 − t) ≤ u′(t) = |u′(t)| for t ∈ [0, t0] , (3.9)

c(t− t0) ≤ −u′(t) = |u′(t)| for t ∈ [t0, T ] . (3.10)

Since ω1 is nonincreasing, we have

T∫

0

ω1(|u′(t)|) dt =

t0∫

0

ω1(|u′(t)|) dt +

T∫

t0

ω1(|u′(t)|) dt

≤
t0∫

0

ω1 (c(t0 − t)) dt +

T∫

t0

ω1 (c(t− t0)) dt .



334 I. RACHŮNKOVÁ AND J. STRYJA

Without loss of generality we can assume c < 1 and, by (3.2), substituting
z = c(t0− t) into the first integral and z = c(t− t0) into second the integral, we
get

T∫

0

ω1(|u′(t)|) dt ≤
t0∫

0

ω1 (c(t0 − t)) dt +

T∫

t0

ω1 (c(t− t0)) dt

= −1

c

0∫

ct0

ω1(z) dz +
1

c

c(T−t0)∫

0

ω1(z) dz = B < ∞ ,

where B is independent of u, too.
We set max{|u′(t)|; t ∈ [0, T ]} = max{|u′(0)|; |u′(T )|} = |u′(τ0)| = ρ. Then

−ρT ≤ u(t) ≤ ρT for t ∈ [0, T ] .

Let C = ω0(1)
∫ T

0
tγ(T − t)δ dt + ω1(1)T . Integrating (3.6) from τ0 to t0 we get

|u′(τ0)| = ρ ≤ C +

∣∣∣∣∣

t0∫

τ0

tγ(T − t)δω0(u(s)) ds

∣∣∣∣∣ +

∣∣∣∣∣

t0∫

τ0

ω1(|u′(s)|) ds

∣∣∣∣∣

+

∣∣∣∣∣

t0∫

τ0

h0(s) + h1(s)(|u(s)|α + 1) + h2(s)(|u′(s)|β + 1) ds

∣∣∣∣∣

and

ρ ≤ A + B + C +

∣∣∣∣∣

t0∫

τ0

h0(s) + h1(s)(|u(s)|α + 1) + h2(s)(|u′(s)|β + 1) ds

∣∣∣∣∣ .

Hence, since |u(s)|α ≤ |ρT |α, |u′(s)|β ≤ ρβ we have

ρ ≤ A + B + C +

∣∣∣∣∣

t0∫

τ0

h0(s) + h1(s)((ρT )α + 1) + h2(s)(ρ
β + 1) ds

∣∣∣∣∣

and, consequently,

ρ ≤ A + B + C + ‖h0‖L + ((ρT )α + 1)‖h1‖L + (ρβ + 1)‖h2‖L . (3.11)

By contradiction we show, that there exists a constant r∗ > 0 (independent of
u) such that ρ < r∗ for every u. Assume that there is a sequence {un} satisfying
(1.2), (3.5) and (3.6) and the corresponding sequence {ρn} is not bounded.

• Let α, β < 1, then from (3.11) we get

1 ≤ A + B + C + ‖h0‖L + ‖h1‖L + ‖h2‖L

ρn

+
Tα‖h1‖L

ρ
(1−α)
n

+
‖h2‖L

ρ
(1−β)
n

and for n →∞ we get
1 ≤ 0 ,

which is a contradiction.
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• Let α = 1, β < 1, then for n →∞ from (3.11) we get

1 ≤ A + B + C + ‖h0‖L + ‖h1‖L + ‖h2‖L

ρn

+ T‖h1‖L +
‖h2‖L

ρ
(1−β)
n

,

1 ≤ T‖h1‖L .

By (3.3) we have T‖h1‖L < 1 and we have a contradiction.
• Let α < 1, β = 1, then for n →∞ from (3.11) we get

1 ≤ A + B + C + ‖h0‖L + ‖h1‖L + ‖h2‖L

ρn

+
Tα‖h1‖L

ρ
(1−α)
n

+ ‖h2‖L ,

1 ≤ ‖h2‖L .

By (3.3) we have ‖h2‖L < 1 and we have a contradiction too.
• Let α = β = 1, then

ρn ≤ A + B + C + ‖h0‖L + ‖h1‖L + ‖h2‖L + ρnT‖h1‖L + ρn‖h2‖L ,

1 ≤ A + B + C + ‖h0‖L + ‖h1‖L + ‖h2‖L

ρn

+ T‖h1‖L + ‖h2‖L .

By (3.3) we have T‖h1‖L + ‖h2‖L < 1 and thus

1 ≤ T‖h1‖L + ‖h2‖L < 1 ;

we again have a contradiction.

Hence there exists r∗ > 0 such that ρ < r∗ for each u satisfying (1.2), (3.5)
and (3.6). Since ‖u‖C1 ≤ ρT + ρ, we set r = r∗T + r∗ + 1. ¤

Proof of Theorem 3.1.
Step 1. Construction of an auxiliary singular problem.
Let r ∈ (1,∞) be given by Lemma 3.3. For a.e. t ∈ [0, T ] and for all

x, y, z ∈ R define the auxiliary functions

σ(z) =

{
z for |z| ≤ r,
r sign z for |z| > r

and

g(t, x, y) = f(t, |σ(x)|, σ(y)) .

We apply Theorems 2.1 and 2.2 to the auxiliary singular problem

−u′′ = g(t, u, u′) , u(0) = 0 , u(T ) = 0 (3.12)

and we prove that problem (3.12) has a solution u such that

0 < u(t) ≤ r for t ∈ (0, T ) and ‖u′‖C ≤ r . (3.13)

Then u is also a solution of problem (1.1), (1.2).
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Step 2. Construction of approximate regular problems.
Since f has no time singularities at t = 0 and t = T , we can put ∆n = [0, T ]

for n ∈ N. Now, choosing an arbitrary n ∈ N, for a.e. t ∈ [0, T ] and all x, y ∈ R
we obtain

gn(t, x, y) =

{
g(t, |x|, y) if |x| ≥ 1

n
,

g
(
t, 1

n
, y

)
if |x| < 1

n

and

fn(t, x, y) =

{
gn(t, x, y) if |y| ≥ 1

n
,

n
2

[
gn

(
t, x, 1

n

) (
y + 1

n

)− gn

(
t, x,− 1

n

) (
y − 1

n

)]
if |y| < 1

n
.

We see that fn ∈ Car([0, T ]× R2 satisfies

fn(t, x, y) = g(t, x, y) for a.e. t ∈ [0, T ]

and all x ∈
[

1

n
,∞

)
, |y| ∈

[
1

n
,∞

)
. (3.14)

Further we have

c ≤ fn(t, x, y) ≤ tγ(T −t)δω0

(
1

n

)
+ω1

(
1

n

)
+h0(t)+h1(t)r

α +h2(t)r
β = mn(t)

for a.e. t ∈ [0, T ].
Since mn ∈ L[0, T ], Theorem 1.5 yields a solution un of the problem

−u′′ = fn(t, u, u′) , u(0) = 0 , u(T ) = 0 (3.15)

for each n ∈ N.
Step 3. Convergence of a sequence {un} of approximate solutions.
By (3.4) and (3.14) we get

c ≤ −u′′n(t) ≤ tγ(T − t)δ (ω0(un(t)) + ω0(1)) + ω1(1) + ω1 (|u′n(t)|)

+h0(t) + h1(t) (un(t)α + 1) + h2(t)
(|u′n(t)|β + 1

)

for a.e. t ∈ [0, T ] and all n ∈ N.
Therefore, due to Lemma 3.3,

‖un‖C1 ≤ r for each n ∈ N . (3.16)

Define the set

Ω =
{
x ∈ C1[0, T ] : ‖x‖C1 ≤ r

}
.

By Theorem 2.1 there exist u ∈ C[0, T ] and a subsequence {uk} ⊂ {un} such
that (2.3) holds.

Further we have

un(0) = 0 , un(T ) = 0 and u′′n(t) < 0 for a.e. t ∈ [0, T ] .
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Therefore un > 0 on (0, T ) and un has a unique maximum point tn ∈ (0, T ).
By Lemma 3.2, there is η ∈ (

0, rT
2

)
such that

un(tn) > η , un(t) ≥
{

ηt
T

for t ∈ [0, tn],
η(T−t)

T
for t ∈ [tn, T ] ,

u′n(tn) = 0 ,
c (tn − t) ≤ u′n(t) for t ∈ [0, tn] ,

c (t− tn) ≤ −u′n(t) for t ∈ [tn, T ] , n ∈ N.

(3.17)

By (3.16) and the Mean Value Theorem for un on the intervals [0, tn] and [tn, T ]
we get

0 <
η

r
≤ tn ≤ T − η

r
< T , n ∈ N,

and we can choose a subsequence {uk} in such a way that it satisfies (2.3) and
lim
k→∞

tk = t0 ∈ (0, T ). Then

u(t) ≥
{ ηt

T
for t ∈ [0, t0]

η(T−t)
T

for t ∈ [t0, T ] .
(3.18)

Put Σ = {t0} and choose an arbitrary interval [a, b] ⊂ (0, T ) \ Σ. For example,
let [a, b] ⊂ (0, t0). Then there exists k0 ∈ N such that for k ≥ k0 we have

|tk − t0| ≤ 1

2
(t0 − b) , [a, b] ⊂

(
1

k
, tk

)
,

uk(t) ≥ ηa

T
= m0 , u′k(t) ≥ c(tk − t) ≥ c(tk − b) ≥ 1

2
(t0 − b) = m1

for t ∈ [a, b]. If we choose [a, b] ⊂ (t0, T ), we argue similarly.
Thus, for a.e. t ∈ [a, b]

|fk(t, uk(t), u
′
k(t))| ≤ ψ(t) ∈ L[a, b] ,

where
ψ(t) = sup {|f(t, x, y) : m0 ≤ x ≤ r , m1 ≤ |y| ≤ r} .

We have proved that on each [a, b] ⊂ (0, T )\Σ there exists ψ ∈ L[a, b] such that

|u′′k(t)| ≤ ψ(t) for a.e. t ∈ [a, b] and all k ∈ N , k ≥ k0 .

By virtue of the absolute continuity of the Lebesgue integral we see that the
sequence {u′k} satisfies (2.4) and, by Theorem 2.1, u ∈ C1 ((0, T ) \ Σ) and (2.5)
is valid.

Step 4. The function u is a solution of problem (1.1), (1.2).
Conditions (2.5) and (3.17) imply

c (t0 − t) ≤ u′(t) for t ∈ (0, t0) ,

c (t− t0) ≤ −u′(t) for t ∈ (t0, T ) .
(3.19)

Since u′k is decreasing on [0,T] for each k ≥ k0, u′ is noincreasing on (0, t0) and
on (t0, T ). Therefore there exist the limits

lim
t→t0−

u′(t) , lim
t→t0+

u′(t)
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and
lim

t→0+
u′(t) ≥ ct0 > 0 , lim

t→T−
u′(t) ≤ −c(T − t0) < 0 .

We summarize that u′(t) > 0 on [0, t0) and u′(t) < 0 on (t0, T ]. So, t0 is the
unique point where u′(t0) = 0 or u′(t0) does not exist. By (3.18), u is positive on
(0, T ). Hence Σ = {t0} satisfies (2.8) and, by Theorem 2.2, u ∈ AC1

loc((0, T )\Σ)
is a w-solution of problem (3.12). Finally, by (3.4), we have fk(t, uk(t), u

′
k(t)) ≥

0 for a.e. t ∈ [0, T ] and all k ∈ N. Hence (2.9) holds and, by Theorem 2.2,
u is a solution of problem (3.12). Having in mind that u > 0 on (0, T ) and
‖uk‖C1 ≤ r hold, we get by (2.3) and (2.5) that estimate (3.13) is satisfied and
thus u is a solution of problem (1.1), (1.2). ¤

Example 3.4. Let h1, h2 ∈ L[0, T ] be nonnegative. For a.e. t ∈ [0, T ] and
all x, y ∈ R define the function

f(t, x, y) = 1 +
t

3
2 (T − t)

3
2

x2
+ h1(t)

√
x +

1√
|y|(1 + h2(t)|y|) .

The second term of f has a space singularity at x = 0 and the last one a
singularity at y = 0. We can check that f satisfies the conditions of Theorem 3.1
with h0(t) ≡ c = 1, α = β = 1

2
, γ = δ = 3

2
, ω0(x) = 1

x2 and ω1(|y|) = 1√
|y| .

Example 3.5. Let T = 1. For a.e. t ∈ [0, 1] and all x, y ∈ R define the
function

f(t, x, y) =
√

1− t

(
1 +

t2

x

)
+

3
3
√
|y| +

1

6
√

t
(x + |y|) .

The first term has space singularity at x = 0 and the second one at y = 0. We
see that f satisfies the conditions of Theorem 3.1 if we put α = β = 1, γ = 2,
δ = 1

2
, ω0(x) = 1

x
, ω1(|y|) = 3

3
√
|y| , h0(t) =

√
1− t, h1(t) = 1

6
√

t
, h2(t) = 1

6
√

t
, and

choose c > 0 sufficiently small.

Example 3.6. Let T = 2π. We define the function f for a.e. t ∈ [0, 2π] and
all x, y ∈ R by

f(t, x, y) = t
5
√

t3

(
e + 10

3
√

(2π − t)4

x2

)
+

e
5
√
|y| + t3 6

√
x +

5t4 + 2t

10000
|y| .

The function f has space singularities at x = 0 and y = 0. We can check that
f satisfies the assumptions of Theorem 3.1 for α = 1

6
, β = 1, γ = 8

5
, δ = 4

3
,

ω0(x) = 10
x2 , ω1(|y|) = e

5
√
|y| , h0(t) = et

5
√

t3, h1(t) = t3, h2(t) = 5t4+2t
10000

and

sufficiently small c.
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VŠB - Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba
Czech Republic
E-mail: jakub.stryja@vsb.cz


