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THE ROBIN FUNCTION AND ITS EIGENVALUES

BODO DITTMAR AND MAREN HANTKE

Abstract. The paper deals with the Robin function and eigenvalue prob-
lems generated by the Robin operator. First we show that Green’s function
of an n-fold connected domain is the Robin function of an appropriate sim-
ply connected domain. The main part of the paper deals with eigenvalue
problems for the Robin operator: the mixed Stekloff eigenvalue problem and
the membrane problem with mixed boundary conditions. Isoperimetric in-
equalities are proved for the sum of reciprocal eigenvalues.
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1. INTRODUCTION

Green’s function is a powerful tool for solving boundary value problems of
potential theory. Depending on a boundary problem there are three kinds of
Green’s function. The Green function of a mixed boundary-value problem for
a harmonic function is sometimes called the Robin function. N

Let €2 5 0o be a domain of connectivity n in the extended complex plane C

with the boundary 090 = C' = U C;, where C; are simple closed Jordan curves.

Assume that m;; disjoint closed arcs A;;, 7 = 1,...,my;, are prescribed on
C;. It may be that m; = 1 and All C;, or that m; = 0 and no arcs A;; are
prescribed on C;. Let A = U A;j, B=C\ A, with the understanding that

i=1j=1
myg
J A;; is an empty set if m;; = 0.
j=1

The Robin function Rg 4(z, () of the domain © with respect to the boundary
set A is defined by the following properties:

(1) Ra.a(z,¢) is harmonic in € and continuous in ©, except at z = (, where
R a(z,¢) + In|z — ¢| is harmonic, for ¢ = oo the property is modified
to require that Rg a(z, () — In |z| be harmonic in €2,

(2) Raa(z,¢) =0 forall z € A,

ORg A(0)
(3) ==

The Robin function may be viewed as a generalization of Green’s function, to
which it reduces when the set B is empty. Both Green’s and the Robin function
are conformally invariant. Starting with P. L. Duren and M. M. Schiffer [11]
the Robin function has been investigated recently by many authors, we only

(2,¢) = 0 for all z € B, where n denotes the inner normal.

ISSN 1072-947X / $8.00 / © Heldermann Verlag www.heldermann.de



404 B. DITTMAR AND M. HANTKE

mention here [12, 10]. A survey paper is given by P. L. Duren [9]. Let Ggq(z,()
be Green’s function of the domain 2. Then we have [9] for the Robin constant

v(A)

v(A) = lim (Gg(z,00) — In |2|). (1.1)
The transfinite diameter d(A) or the capacity of the set A is
d(A) = e, (1.2)
The Robin capacity do(A) of A with respect to €2 is defined by
Jo(A) = e, (1.3)
where
pa(4) = lim (Ra.a(2,00) — In |2]). (1.4)

It is evident that the Robin function is a generalization of the Green function
[11] but it is easy to see that the Green function of a domain €2 is also the
Robin function of an appropriate subdomain 2 C Q. What we show is that
every Green’s function of a finitely connected domain is also the Robin function
of a simply connected domain. We obtain this simply connected domain from
the given domain by cutting it along piecewise analytic arcs which connect the
boundary components and on which the normal derivative of Green’s function
vanishes. A remarkable consequence is that the capacity of a more component
set is equal to the Robin capacity of an appropriate set on the boundary of
a simply connected domain. The main part of the paper is devoted to the
study of the eigenvalue problems generated by the Robin operator. We wish to
investigate the mixed Stekloff problem and the membrane problem with mixed
boundary conditions (see below (3.1) and (3.2), respectively).

Following the basic ideas in [4, 5], we prove isoperimetric inequalities for
sums of reciprocal eigenvalues and derive formulas for such sums. On the basis
of these an existence proof for the Robin function could be established using
a complete orthonormal system of eigenfunctions and the fact that the Robin
function is a reproducing kernel. For an up-to-date treatment of eigenvalues
and conformal mappings we refer to [6].

2. GREEN’S FUNCTION AND THE ROBIN FUNCTION

Let 2 5 oo be a domain of the above kind, and let Q be the component of
C \ A that contains infinity.

Let A be a subset of C' as described above, then we have the following theorem
which goes back to Duren and Schiffer [11].

Theorem 1. Let 25 oo be a finitely connected domain containing the point
at infinity and bounded by smooth Jordan curves Cy,i = 1,...,n. Let A be a
subset of C' as described above and let ) be the component of C\ A that contains
infinity. Then

d(A) = da(A), (2.1)
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if and only iof
Proof. Let Gg(z,() = Ra.a(z, (), then the assertion follows using (1.1), (1.2),
(1.3) and (1.4).

We have [11] dq(A) < d(A), and the equality occurs if and only if B = C'\ A
lies on the slits where 222 = 0. This means that (2.2) holds. O

on

Theorem 2. Let Q 3 oo be an n-fold connected plane domain. Then there

exists a set of piecewise analytic curves B C Q such that

0Gg(2,¢)
o =0 for z on B. (2.3)
That is, if Q = Q \ B is a domain, then
Roa(z,¢) = Gg(2,¢), A=0Q. (2.4)

In particular there exists a set of piecewise analytic arcs B connecting the bound-

ary curves C; in such a way that the exterior () of@\(C’UB) 1s simply connected
and (2.4) holds.

Proof. The first assertion is evident if we consider analytic arcs orthogonal to
the level lines of the Green function.

It is also easy to see that a set of piecewise analytic curves of the above kind
exists. We prove this by complete induction. If we have a two-fold connected
domain then we can map it onto a circle domain. The curve B is given by the
straight line connecting both circles and orthogonal to both of them.

If we have a domain of connectivity n > 2 we first consider two boundary
components and we can see in the same way that a piecewise analytic curve ex-
ists connecting these two boundary components on which the normal derivative
of Green’s function vanishes. We slit the domain along this curve and map the
exterior of these two boundary components and the slit onto the exterior of a
disk with two radial slits. The image of the original domain furnished with this
slit is a domain with a connectivity n — 1, which makes the proof complete. [J

3. EIGENVALUES OF THE ROBIN FUNCTION

Let €2 be a bounded n-fold connected domain in the plane C and on the

n
boundary curves C' = (J C; the arcs A;; be given according to the assumptions
i=1
above.
Two eigenvalue problems are posed with the Robin function as a kernel func-

tion: the mixed Stekloff problem
Au = 0 in €,
u = 0 on A, (3.1)
ou

o Au on C\A
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and the membrane problem with mixed boundary conditions

Au+pu = 0 in €,

u = 0 on A, (3.2)
0
O_Z =0 on C\ A,
where On is the outward normal derivative and A and p are the eigenvalue

parameters.

For both problems there exist infinitely many eigenvalues with finite multi-
plicity. We consider first the case where the domain €2 is doubly connected.
Later in Section 3.2, we consider the simply connected case.

3.1. Doubly connected domain. Let () be a doubly connected domain in the
plane with piecewise analytic boundary components A and B. We consider the
following eigenvalue problem:

Au = 0 in €,

u = 0 on A, (3.3)
% = \u on B.

We have the eigenvalues 0 < Ay < Ay < ... with the corresponding system of
eigenfunctions uy, us, ... .

In the case of an annulus A(1, R) with radii 1 and R, 1 < R < oo, the
eigenvalues and eigenfunctions are known [11, p. 271] for A = {z : |z| = 1}
and B = {z : |z|] = R}. We have the radial eigenfunction

1 1 .
uﬁ‘” = ——— 1 with )\go) = ———. and with z=re"
VRIn*R - 21 RlnR

(0) n -n n—1 —n—1

Uop rt—r COS N _ 0) 0) R4 R
= . with Ay, = X5 1 =n ,
W), VER(R" = R) {sm no o R R
for n = 1,2,.... The eigenfunctions of the annulus are the eigenfunctions of

the following Robin function [11, p. 272]:

In R R"— R™
R _ 0 —
(0,9) 5 + ; W(R T R cosn(f — ¢)

on BO = {2 : |z| = R}. We follow closely [1, p. 97], [5].

Let f be a mapping that conformally maps A(1, R) onto €2. Then the eigenval-
ues of (3.3) satisfy the variational characterization based on the Robin function
(z = re, ¢ = se?)

Lemma 1.

Ai:max / / R(z, OR()R(Q)|F ()] /()] ds. dse.

k h
B(0) B(o)
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where the mazimum is taken over all h € Ly(BY)) with [y h*|f'|ds =1 and
S hu|f'|ds =0, j=1,2,... .k —1, where u; are the eigenfunctions of (3.3)
transplanted onto A(1, R).

Proof. Let h be a function that satisfies the requirements of Lemma 1 and let
u; be the eigenfunction transplanted onto A(1, R). We have [5, (2.9)]

RO EIFQ) = 3 B OO QL

J

j=1
where the convergence is in the mean. So we can change the order of integration
and summation to get using the Bessel inequality

|| BO@mOI @I O] ds ds

B(0) B(o)
_ i (fa h(2)u;(2)| £'(2)| ds-) fB<o> WE)f(2)lds 1
= ‘Xj —Xk /Xk'
This equality holds for h(z) = ug(z). ]

Now we give a variational characterization independent of the transplanted
eigenfunctions.

Lemma 2.
1 . / /
& =maxmin [ [ RGO GIF O ds.dsc.

B(0) B(o)

where the mazimum is taken over all (k—1)-dimensional spaces Lj_, C Ly(B©)
and the minimum is taken over all h € Ly_y with [, h?|f'|ds = 1.

Proof. We define
mzmwmm/ /R@OV%mf@m@MO®M&

L1
B(0) B(0)

under the restrictions of Lemma 2. In every space L;_; there exists a function
h with [p0 hu;|f'lds = 0 for j =1,2,...,k — 1 and [ h*|f'|ds = 1. Using

Lemma 1 we obtain

msmg//R@OW@w«mwmmmw<

B(0) B(0)
1
< [ [ RGO dsdsc < 5 ()
B(0) B(O)
We choose the space Ly = span{u(z),...,ux_1(2)}. So we have
1
Ay > min / / AL ORI dsods = 5 (35)

B(0) B(0)
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where the minimum is taken over all functions v € Lj_y with [y v*|f'|ds = 1.
With (3.4) and (3.5) we get Lemma 2. O
Finally, we prove

Theorem 3.

>3 [ [ RGOS O ds.dse

= A 7=1p(0) o)
with the conditions [y |f'|vivids = 0;, 4,5 =1,...,n and v; € Ly(BWY).

Proof. In every n-dimensional linear space L, C Ly(B®) there exists a set
of functions {v;}}_, with fB(O) vvi|f'lds = & and [50) veu;|f'lds = 0 for
1,7 =1,. nandk—y—i—l ,n. We obtain

]‘ ! !
e / / Rz Ol I (QI)R(C) ds, dse

B(0) B()
and thus Lemma 1 implies Theorem 3. U

We define b, = fB(O) u,(co)vj\f’\ ds so that

|| B Ol ds. ds

B(0) B(O)
/ / Z oi NIy <) dszdsc =, <G5y
B0 gy k=1 k=1 "k
with suitable functions v;, see Theorem 3. We choose v,, = Z cn]u ) with

fB(0> |f'|vi - v; ds = 6;; and demand ¢, , > 0. So ¢, ; are determlned and we get

Lemma 3. With the definitions above and d;; = [p0, |f’\u§0)u§0) ds we have

k
j=1
Proof. With @ = {v;}7_;, @ = {u§ i_y and C = {¢jm}},,—; one has ' =

C . i® and @ = C-1. 5= G - ¥ with U,Q = > GkmUm. It follows

Jk_/|f’1)]zgkmvmd3—gkj

B(0)
We have

dkk:—/|f|uk uk ds—/|f|zgkjvjzgkjvjds ng]a

B() B
which is the desired result. O
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In the case of the radial eigenfunction ugo) one gets

1 /
dig = / _27TR|f (2)|ds, =
B(0)

where |B()| = 7 Ray is the length of B©).
Otherwise, for two eigenfunctions we have the same eigenvalue

1
i + dpg1 1 = / ﬁ%\f/(zﬂ ds, = ay.

B(0)

%)
2

Now, with suitable numbering of the eigenvalues, we get the following isoperi-
metric result.

Theorem 4. For the eigenvalues of problem (3.3) in Q we have

1 \B(O)]
Z_ _Z)\(O)’ ~ IR

for any n. The equalzty holds if 2 is an annulus.

Because {,\_1]}]011 is a decreasing sequence of real numbers, the theorem implies
(see [17, p. 64],[16])

Corollary 1. Let ® be a convex and increasing function. For any n we have
" 1 - ap 1
>o(3) 2 Xe(Fw)
j=1 J j=1 J
It is remarkable that for ®(x) = 2% we can give a formula for all reciprocals [3].

Theorem 5. Let f be a conformal mapping of an annulus A(1, R) onto the
doubly connected domain Q with [, |f'(2)]ds, < oo, then we have

=1
//R2 2)|1f( )|dszdsczzﬁ.
j=1"9

B(O B(O
For the conformal mapping f we have on B = {2 : |z| = R}
|ﬂ|~—+2%wwﬂ@mm> (3.6)

So we get the following

Theorem 6. Let f be a conformal mapping of an annulus A(1, R) onto the
doubly connected domain Q with [0 |f'(2)]ds. < oo, then for the eigenvalues
of 1 there holds

Zﬁ:ZO-RQ-BO+ZB,L~R2-(04§+62) (3.7)
j=1 "7 n=1
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with the notation

1 RP—R™™
e oy S LU
1 R"—R"
An:—'— 17
e =T T for R<

By=2) Al+In’R,

n=1

0o n—1
1
B, = E ApimApm + 3 E A A +InR-A, for R>1,
m=1 m=1

00 n—1
1
B, = E ApimAm + 3 g ApmAn—InR-A, for R<1,
m=1 m=1

and coefficients o, B, according to (3.6).

With formula (3.7) we get some interesting numerical results. So we obtain
for the annulus A(1, R)

=

R Tk

15 | 0.39328553375

Sk

0.0851314170639

12 1 0.89533141977

13
12 | 1.512079754987

0.2232421023873

0.3705107818115

141 9.24899566955)

1 0.5000889856249

131°3.111138309184%

10 0.5909533153833

161 4.103217107733

10 0.6271313671193

171 5229637607873

10 0.5960078700983

18 1 6494540776025

18 0.4870209318947

191 7.901839344933

10 0.29103566919%%

sle Sl |5l (Sle Sl |Sle [Sle |Sle |5l

Theorem 7. Let A(1, R) be an annulus with radii ry =1 and 1 = R > 1.

A\?

Then the sum Y. < is strongly increasing in R.
=17

Proof. The result of Theorem 7 follows from the strong monotonicity of A, =
L B—R"" in R for every fixed n. O

n RPHR—™

Let us consider the conformel mapping f,(z) = 2+ which maps the annulus
onto an elliptic ring D,. We have the following numerical results:
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R=12 R=2 R=3 R=1 R=2%

r—o0 | 9.4552530467 | 6.494540776] | 4.103217107733 | 2.24899566953] | 0.895331419777
r =40 119.4905669739 | 6.531934523; | 4.1414899625% | 2.285158142%7 | 0.92222223933
r=2 | 9.5090774393 | 6.551535139 | 4.161551282%3 | 2.30411308%37 | 0.93631729%3%
r=2 | 9.5414703933 | 6.5858357%32 | 4.19665802877 | 2.337283551%1 | 0.96098293557
r=1 |9.6023395133 | 6.6502894437 | 4.26262597052 | 2.3996123422¢ | 1.0073302120¢
r=2 | 9.727762258 | 6.78309776%7 | 4.39855265205 | 2.52803757%54 | 1.10282400%4¢
r=2 | 10.0203943% | 7.0929597447 | 4.71568203¢08 | 2.82765067537 | 1.32559543253

Further we obtain
Theorem 8. For fized R the sum ) % of D, is strongly decreasing in r with
=17
r>1.

Proof. The monotonicity of the sum follows from the properties of the Fourier
coefficients of |f/(#)|, cf. (3.6). For details see [13]. O

Remark 1. For similar conformal mappings more monotonicity results are
given in [13].

As the last example we consider the conformal mapping f,(z) = == with
x € Rand 0 <z < 1. For the first eigenvalue of the fixed membrane problem
this issue has been considered in [2]. For Rz < 1 some examples are given on

Fig. 1

()

Fig. 1

for x = 0,2 = 1/4,2 = 1/3,x = 1/2 and R = 2. The case Rz > 1 gives
completely different images. For x = 2/3,x = 3/4 and R = 2 the pictures are
given on Fig. 2.
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we obtain the numerical results summarized in the tables below.
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@ |0

Using the conformal mapping

fo(2) = = -

R

Fig. 2
1—2°R? z-—=x
1—22 1-—zx

Remark 2. For the monotonicity results we refer to [13].

Next, we consider the eigenvalue problem

Au+pu = 0 in
u = 0 on A (3.8)
g—z =0 on B,
with the same notation as in (3.3).
R=1 R=2 R=28 R=1 R=E
=0 | 236381326154 | 2.0044878938% | 1.6028191827} | 114744677023 | 0.6217579304
x =& || 2.41035584563 | 2.03662400384 | 1.61894066967 | 1.15867812288 | 0.6262426754%
$:2% 2.55540437223 | 2.13609555043 | 1.66853260813 | 1.19303364433 | 0.6398924157%
v =2 || 2.816837574% | 2.3128349339% | 175551442932 | 1.25259648399 | 0.66331520022
x =4 | 3.23080147563 | 2.58622446309 | 1.88729690847 | 1.341196023% | 0.6976015066}
v =25 | 3.86561139880 | 2.99086332188 | 2.07646518963 | 1.4650565023 | 0.7444558876¢
v =& || 4.85549541504 | 3.58913146693 | 2.3441242145% | 1.63398876930 | 0.8064252075¢
v =L | 6.49389038493 | 4.500708245%) | 2.72679320359 | 1.86359380634 | 0.8872813154
$:2% 9.56012203187 | 5.98239191533 | 3.2918481420} | 2.17952715589 | 0.99267888343
v =2 || 171249737432 | 8.69917470034 | 4.17680402977 | 2.62637677107 | 1.1313300220}
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R=1 R=1 R=2§ R=1 R=1%
@ = g5 || 18.41430230332 - —- -—- - S—_
x =32 || 11.252634634f | 19.0490817310 - - -
r =1 | 83712524587 | 11.074325382] | 20.77800058443 - —_
z =13 || 6.8144042446] | 8.05243376365 | 9.8059704852% —-—— -
x =12 || 584471637348 | 6.45832690207 | 6.72800966973 | 17.6616106723] -———
x =18 | 518664436327 | 5.4781148166 | 5.2599978832% | 9.07317730103 ———
v =11 || 4.7134097012% | 4.8180113448% | 4.40375575608 | 6.2545457411} 21.841
v =18 | 4.3585148215% | 4.34561851804 | 3.84560832903 | 4.8511774998% |  7.43618435}
x =12 | 4.0837472213% | 3.9924570591¢ | 3.45482235713 | 4.01507474983 | 4.59253289867

In the case of an annulus A(1, R), with the Dirichlet conditions

on the outer

circle A©® of radius R and the Neumann conditions on the inner circle B© of
radius 1 the eigenfunctions have the form
(Ao (i - 7) 4 Bonn Y (i - 7)) 4 €279
- mndn\Fmn T mnin\Fmn T . )
’ ’ ’ ’ sin ng

where J, and Y,, Bessel functions of first and second kind, respectively, see
[18], [15]. The constants Ay, ,, B, and k,,,, are determined by the boundary

conditions and the normalizing condition [, u&?)i dA = 1. The eigenvalues are

#m n = kn, n

We write in the sequel u ) and also u ) for the eigenvalues and the eigenfunc-
tions of the annulus A(1, R) where the elgenvalues are numbering in increasing
order.

Let f map the annulus onto 2, and let R(z,{) be the Robin function in
A(1, R). In the same way as before we obtain for the eigenvalues of 2

given by

Theorem 9.

n

Z// O PP Py ) dA. A

J=1

with the conditions [, |f'|*viv; dA = &;; and v; € Ly(A(1, R)).

Again we define b;; = fA(l R |f’|2u50)u§0) dA.

It follows as above

0
)U;(C )Uj|f’|2dA and d; ; = fA(l,R)

Z Z (0)’

1 Hi j=1 Hj
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where mug ) is muﬁn)n for a suitable choice of numbering. Now we have to
calculate d; ;, see [14]. For f, we have
f(2)=az+az? +azz® +---+a1z7  tagz P tasz -
for 1 < ry < R. Therefore it follows with z = re’® and 1 < 7y < R that
/ f(z)d¢ = 2may (3.9)
|z|=ro

and, by using Schwarz’s inequality, we obtain

2 [ Ir |2d¢>< JC |d¢)

|z|=ro |z|=ro

= (27|a1|)?. (3.10)

| e \ad|

|z|=ro

Let u ) be an eigenfunction of radial type. So we have with (3.9) and (3.10)

and the normalizing condition [ A(LR) u;o)Q dA =1

R R
d;; = 120 ga = [ v | P drd > orlag | [ r- u® dr
5. j j j
A(LR) 1 1
= /u§0>2 dA = |ai]?. (3.11)

A
Now let ug-o) be a nonradial eigenfunction and u(-(jr)l be the eigenfunction to

02, (0

the same eigenvalue. So u;”+u;/; is radial. In the same way we conclude that

de + dj+1,j+1 = ‘CL1|2 / (UEO) + u§321> dA Z 2|a1‘2. (312)
A(1,R)
(3.11) and (3.12) imply
Theorem 10. For the eigenvalues of problem (3.8), in  we have

n i ) n L
Zﬂj Zal;uﬁp)

for any n. The equality holds if A is an annulus.
Obviously, this theorem implies

Corollary 2. Let ® be a convex and increasing function, for any n we have

& 1 & 5 1
>0(,) =2 e(lel)
i=1 S Hj

Remark 3. Theorem 10 and Corollary 2 were first proved by Laugesen and
Morpugo [16].
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For completeness we mention here a formula given in [3] which is closely
related to Theorem 10.

Theorem 11. Let f be a conformal mapping of the annulus A(1, R) onto the
domain Q satisfying fA(l ") |f(2)|?dA, < oo, then we have

| | ®eo NWWM&Z—

A(1,R) A(L,R)

3.2. Simply connected domain. Now let () be a simply connected domain
and consider problem (3.3) for it.

In the case of the semicircle with A® = {z: —1 < z < 1} we have A =
and v = \/g r"sinng. For further results in this context we refer to [7],[8].
If R(z,() is the Robin function of the semicircle, we follow [3] and obtain

Theorem 12. Let f be a conformal mapping of the semicircle onto the do-
main Q with f: AQ — A and f: B© — B. For the eigenvalues of problem
(8.3) for a simply connected domain Q we have

Sy= [ [ ROl ds

J=1 B(0) B(0)

By using Theorem 12 we obtain a formula only in terms of the Fourier coef-
ficients of the mapping function.

Theorem 13. For the eigenvalues of problem (3.3) for a simply connected
domain ) it follows that

oo o0
Z I 7 oy «ao ooy 1 O
L \?2 6 4 2 n? 4 n-m
oo n—1 oo n—1 o
~Y S tmten (55
n-m 2 n-m
n=2 m=1 n=2 m=1

with (2 € BY)
If(2)| ~ % + ;(an cosng + [, sinng).

This follows using the Fourier series and the Robin function of the semidisk
on B

1 X sin ng sinnb 1
R(z,() = ;Z— =—1In

n 2

zZ—(
z—C‘

n=1

with z = €’ and ¢ = €.
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Applying Theorem 13 to the Joukowski mapping f(z) = z+ 1/z we calculate
for the eigenvalues of the half-plane

o

1
> == 4.22079672 .
j=1 "7
Further, for the eigenvalues of the semicircle with switched boundary compo-
nents we obtain

1
> 3 = 0.5687%7
j=1"9

using the mapping function f(z) = 2=% % = —1.

zt—17

Remark 4. For more similar results see [13].
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