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THE ROBIN FUNCTION AND ITS EIGENVALUES

BODO DITTMAR AND MAREN HANTKE

Abstract. The paper deals with the Robin function and eigenvalue prob-
lems generated by the Robin operator. First we show that Green’s function
of an n-fold connected domain is the Robin function of an appropriate sim-
ply connected domain. The main part of the paper deals with eigenvalue
problems for the Robin operator: the mixed Stekloff eigenvalue problem and
the membrane problem with mixed boundary conditions. Isoperimetric in-
equalities are proved for the sum of reciprocal eigenvalues.
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1. Introduction

Green’s function is a powerful tool for solving boundary value problems of
potential theory. Depending on a boundary problem there are three kinds of
Green’s function. The Green function of a mixed boundary-value problem for
a harmonic function is sometimes called the Robin function.

Let Ω 3 ∞ be a domain of connectivity n in the extended complex plane Ĉ
with the boundary ∂Ω = C =

n⋃
i=1

Ci, where Ci are simple closed Jordan curves.

Assume that mij disjoint closed arcs Aij, j = 1, . . . , mij, are prescribed on
Ci. It may be that mi = 1 and Ai1 = Ci, or that mi = 0 and no arcs Aij are

prescribed on Ci. Let A =
n⋃

i=1

mij⋃
j=1

Aij, B = C \ A, with the understanding that

mij⋃
j=1

Aij is an empty set if mij = 0.

The Robin function RΩ,A(z, ζ) of the domain Ω with respect to the boundary
set A is defined by the following properties:

(1) RΩ,A(z, ζ) is harmonic in Ω and continuous in Ω, except at z = ζ, where
RΩ,A(z, ζ) + ln |z − ζ| is harmonic, for ζ = ∞ the property is modified
to require that RΩ,A(z, ζ)− ln |z| be harmonic in Ω,

(2) RΩ,A(z, ζ) = 0 for all z ∈ A,

(3)
∂RΩ,A(z,ζ)

∂n
(z, ζ) = 0 for all z ∈ B, where n denotes the inner normal.

The Robin function may be viewed as a generalization of Green’s function, to
which it reduces when the set B is empty. Both Green’s and the Robin function
are conformally invariant. Starting with P. L. Duren and M. M. Schiffer [11]
the Robin function has been investigated recently by many authors, we only
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mention here [12, 10]. A survey paper is given by P. L. Duren [9]. Let GΩ(z, ζ)
be Green’s function of the domain Ω. Then we have [9] for the Robin constant
γ(A)

γ(A) = lim
z→∞

(GΩ(z,∞)− ln |z|). (1.1)

The transfinite diameter d(A) or the capacity of the set A is

d(A) = e−γ(A). (1.2)

The Robin capacity δΩ(A) of A with respect to Ω is defined by

δΩ(A) = e−ρΩ(A), (1.3)

where
ρΩ(A) = lim

z→∞
(RΩ,A(z,∞)− ln |z|). (1.4)

It is evident that the Robin function is a generalization of the Green function

[11] but it is easy to see that the Green function of a domain Ω̃ is also the

Robin function of an appropriate subdomain Ω ⊂ Ω̃. What we show is that
every Green’s function of a finitely connected domain is also the Robin function
of a simply connected domain. We obtain this simply connected domain from
the given domain by cutting it along piecewise analytic arcs which connect the
boundary components and on which the normal derivative of Green’s function
vanishes. A remarkable consequence is that the capacity of a more component
set is equal to the Robin capacity of an appropriate set on the boundary of
a simply connected domain. The main part of the paper is devoted to the
study of the eigenvalue problems generated by the Robin operator. We wish to
investigate the mixed Stekloff problem and the membrane problem with mixed
boundary conditions (see below (3.1) and (3.2), respectively).

Following the basic ideas in [4, 5], we prove isoperimetric inequalities for
sums of reciprocal eigenvalues and derive formulas for such sums. On the basis
of these an existence proof for the Robin function could be established using
a complete orthonormal system of eigenfunctions and the fact that the Robin
function is a reproducing kernel. For an up-to-date treatment of eigenvalues
and conformal mappings we refer to [6].

2. Green’s Function and the Robin Function

Let Ω 3 ∞ be a domain of the above kind, and let Ω̃ be the component of

Ĉ \ A that contains infinity.
Let A be a subset of C as described above, then we have the following theorem

which goes back to Duren and Schiffer [11].

Theorem 1. Let Ω 3 ∞ be a finitely connected domain containing the point
at infinity and bounded by smooth Jordan curves Ci, i = 1, . . . , n. Let A be a

subset of C as described above and let Ω̃ be the component of Ĉ\A that contains
infinity. Then

d(A) = δΩ(A), (2.1)
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if and only if

GeΩ(z, ζ) ≡ RΩ,A(z, ζ). (2.2)

Proof. Let GeΩ(z, ζ) ≡ RΩ,A(z, ζ), then the assertion follows using (1.1), (1.2),
(1.3) and (1.4).

We have [11] δΩ(A) ≤ d(A), and the equality occurs if and only if B = C \A

lies on the slits where
∂GeΩ
∂n

= 0. This means that (2.2) holds. ¤

Theorem 2. Let Ω̃ 3 ∞ be an n-fold connected plane domain. Then there

exists a set of piecewise analytic curves B ⊂ Ω̃ such that

∂GeΩ(z, ζ)

∂n
= 0 for z on B. (2.3)

That is, if Ω = Ω̃ \B is a domain, then

RΩ,A(z, ζ) ≡ GeΩ(z, ζ), A = ∂Ω̃. (2.4)

In particular there exists a set of piecewise analytic arcs B connecting the bound-

ary curves Ci in such a way that the exterior Ω of Ĉ\(C∪B) is simply connected
and (2.4) holds.

Proof. The first assertion is evident if we consider analytic arcs orthogonal to
the level lines of the Green function.

It is also easy to see that a set of piecewise analytic curves of the above kind
exists. We prove this by complete induction. If we have a two-fold connected
domain then we can map it onto a circle domain. The curve B is given by the
straight line connecting both circles and orthogonal to both of them.

If we have a domain of connectivity n > 2 we first consider two boundary
components and we can see in the same way that a piecewise analytic curve ex-
ists connecting these two boundary components on which the normal derivative
of Green’s function vanishes. We slit the domain along this curve and map the
exterior of these two boundary components and the slit onto the exterior of a
disk with two radial slits. The image of the original domain furnished with this
slit is a domain with a connectivity n− 1, which makes the proof complete. ¤

3. Eigenvalues of the Robin Function

Let Ω be a bounded n-fold connected domain in the plane C and on the

boundary curves C =
n⋃

i=1

Ci the arcs Aij be given according to the assumptions

above.
Two eigenvalue problems are posed with the Robin function as a kernel func-

tion: the mixed Stekloff problem

∆u = 0 in Ω,

u = 0 on A, (3.1)

∂u

∂n
= λu on C \ A



406 B. DITTMAR AND M. HANTKE

and the membrane problem with mixed boundary conditions

∆u + µu = 0 in Ω,

u = 0 on A, (3.2)

∂u

∂n
= 0 on C \ A,

where ∂n is the outward normal derivative and λ and µ are the eigenvalue
parameters.

For both problems there exist infinitely many eigenvalues with finite multi-
plicity. We consider first the case where the domain Ω is doubly connected.
Later in Section 3.2, we consider the simply connected case.

3.1. Doubly connected domain. Let Ω be a doubly connected domain in the
plane with piecewise analytic boundary components A and B. We consider the
following eigenvalue problem:

∆u = 0 in Ω,

u = 0 on A, (3.3)

∂u

∂n
= λu on B.

We have the eigenvalues 0 < λ1 ≤ λ2 ≤ . . . with the corresponding system of
eigenfunctions u1, u2, . . . .

In the case of an annulus A(1, R) with radii 1 and R, 1 < R < ∞, the
eigenvalues and eigenfunctions are known [11, p. 271] for A = {z : |z| = 1}
and B = {z : |z| = R}. We have the radial eigenfunction

u
(0)
1 =

ln r√
R ln2 R · 2π

with λ
(0)
1 =

1

R ln R
, and with z = reiφ

u
(0)
2n

u
(0)
2n+1

=
rn − r−n

√
πR(Rn −R−n)

{
cos nφ

sin nφ
with λ

(0)
2n = λ

(0)
2n+1 = n

Rn−1 + R−n−1

Rn −R−n
,

for n = 1, 2, . . . . The eigenfunctions of the annulus are the eigenfunctions of
the following Robin function [11, p. 272]:

R(θ, φ) =
ln R

2π
+

∞∑
n=1

Rn −R−n

πn(Rn + R−n)
cos n(θ − φ)

on B(0) = {z : |z| = R}. We follow closely [1, p. 97], [5].
Let f be a mapping that conformally maps A(1, R) onto Ω. Then the eigenval-

ues of (3.3) satisfy the variational characterization based on the Robin function
(z = reiφ, ζ = seiθ)

Lemma 1.

1

λk

= max
h

∫

B(0)

∫

B(0)

R(z, ζ)h(z)h(ζ)|f ′(z)|f ′(ζ)| dsz dsζ ,
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where the maximum is taken over all h ∈ L2(B
(0)) with

∫
B(0) h2|f ′| ds = 1 and∫

B(0) huj|f ′| ds = 0, j = 1, 2, . . . , k − 1, where uj are the eigenfunctions of (3.3)
transplanted onto A(1, R).

Proof. Let h be a function that satisfies the requirements of Lemma 1 and let
uj be the eigenfunction transplanted onto A(1, R). We have [5, (2.9)]

R(z, ζ)|f ′(z)||f ′(ζ)| =
∞∑

j=1

uj(z)|f ′(z)|uj(ζ)|f ′(ζ)|
λj

,

where the convergence is in the mean. So we can change the order of integration
and summation to get using the Bessel inequality∫

B(0)

∫

B(0)

R(z, ζ)h(z)h(ζ)|f ′(z)||f ′(ζ)| dsz dsζ

=
∞∑

j=k

(∫
B(0) h(z)uj(z)|f ′(z)| dsz

)2

λj

≤
∫

B(0) h2(z)|f ′(z)| ds

λk

=
1

λk

.

This equality holds for h(z) = uk(z). ¤
Now we give a variational characterization independent of the transplanted

eigenfunctions.

Lemma 2.
1

λk

= max
Lk−1

min

∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|h(z)h(ζ) dsz dsζ ,

where the maximum is taken over all (k−1)-dimensional spaces Lk−1 ⊂ L2(B
(0))

and the minimum is taken over all h ∈ Lk−1 with
∫

B(0) h2|f ′| ds = 1.

Proof. We define

Λk = max
Lk−1

min

∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|h(z)h(ζ) dsz dsζ

under the restrictions of Lemma 2. In every space Lk−1 there exists a function
h with

∫
B(0) huj|f ′| ds = 0 for j = 1, 2, . . . , k − 1 and

∫
B(0) h2|f ′| ds = 1. Using

Lemma 1 we obtain

Λk ≤ min

∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|h(z)h(ζ) dsz dsζ

≤
∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|h(z)h(ζ) dsz dsζ ≤ 1

λk

. (3.4)

We choose the space Lk−1 = span{u1(z), . . . , uk−1(z)}. So we have

Λk ≥ min

∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|h(z)h(ζ) dsz dsζ =
1

λk

, (3.5)
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where the minimum is taken over all functions v ∈ Lk−1 with
∫

B(0) v2|f ′| ds = 1.
With (3.4) and (3.5) we get Lemma 2. ¤
Finally, we prove

Theorem 3.
n∑

j=1

1

λj

≥
n∑

j=1

∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|vj(z)vj(ζ) dsz dsζ ,

with the conditions
∫

B(0) |f ′|vivj ds = δij, i, j = 1, . . . , n and vj ∈ L2(B
(0)).

Proof. In every n-dimensional linear space Ln ⊂ L2(B
(0)) there exists a set

of functions {vj}n
j=1 with

∫
B(0) vivj|f ′| ds = δij and

∫
B(0) vkuj|f ′| ds = 0 for

i, j = 1, . . . , n and k = j + 1, . . . , n. We obtain

1

λj

≥
∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|h(z)h(ζ) dsz dsζ

and thus Lemma 1 implies Theorem 3. ¤
We define bj,k =

∫
B(0) u

(0)
k vj|f ′| ds so that∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)|vj(z)vj(ζ) dsz dsζ

=

∫

B(0)

∫

B(0)

∞∑

k=1

u
(0)
j (z)u

(0)
j (ζ)

λ
(0)
j

|f ′(z)||f ′(ζ)|vj(z)vj(ζ) dsz dsζ =
∞∑

k=1

b2
j,k

λ
(0)
k

with suitable functions vj, see Theorem 3. We choose vn =
n∑

j=1

cn,ju
(0)
j with

∫
B(0) |f ′|vi · vj ds = δij and demand cn,n > 0. So cn,j are determined and we get

Lemma 3. With the definitions above and di,j =
∫

B(0) |f ′|u(0)
i u

(0)
j ds we have

k∑
j=1

b2
j,k = dk,k.

Proof. With ~v = {vj}n
j=1, ~u(0) = {u(0)

j }n
j=1 and C = {cj,m}n

j,m=1 one has ~v =

C · ~u(0) and ~u(0) = C−1 · ~v = G · ~v with u
(0)
k =

∑k
m=1 gk,mvm. It follows

bj,k =

∫

B(0)

|f ′|vj

k∑
m=1

gk,mvm ds = gk,j.

We have

dk,k =

∫

B(0)

|f ′|u(0)
k u

(0)
k ds =

∫

B(0)

|f ′|
k∑

j=1

gk,jvj

k∑
j=1

gk,jvj ds =
k∑

j=1

g2
k,j,

which is the desired result. ¤
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In the case of the radial eigenfunction u
(0)
1 one gets

d1,1 =

∫

B(0)

1

2πR
|f ′(z)| dsz =

α0

2
,

where |B(0)| = πRα0 is the length of B(0).
Otherwise, for two eigenfunctions we have the same eigenvalue

dk,k + dk+1,k+1 =

∫

B(0)

1

πR
|f ′(z)| dsz = α0.

Now, with suitable numbering of the eigenvalues, we get the following isoperi-
metric result.

Theorem 4. For the eigenvalues of problem (3.3) in Ω we have
n∑

j=1

1

λj

≥ α0

2

n∑
j=1

1

λ
(0)
j

, α0 =
|B(0)|
πR

for any n. The equality holds if Ω is an annulus.

Because { 1
λj
}∞j=1 is a decreasing sequence of real numbers, the theorem implies

(see [17, p. 64],[16])

Corollary 1. Let Φ be a convex and increasing function. For any n we have
n∑

j=1

Φ
( 1

λj

)
≥

n∑
j=1

Φ
(α0

2

1

λ
(0)
j

)
.

It is remarkable that for Φ(x) = x2 we can give a formula for all reciprocals [3].

Theorem 5. Let f be a conformal mapping of an annulus A(1, R) onto the
doubly connected domain Ω with

∫
B(0) |f ′(z)| dsz < ∞, then we have

∫

B(0)

∫

B(0)

R2(z, ζ)|f ′(z)||f ′(ζ)| dsz dsζ =
∞∑

j=1

1

λ2
j

.

For the conformal mapping f we have on B(0) = {z : |z| = R}

|f ′(φ)| ∼ α0

2
+

∞∑
j=1

(αj cos jφ + βj sin jφ) . (3.6)

So we get the following

Theorem 6. Let f be a conformal mapping of an annulus A(1, R) onto the
doubly connected domain Ω with

∫
B(0) |f ′(z)| dsz < ∞, then for the eigenvalues

of Ω there holds
∞∑

j=1

1

λ2
j

=
α2

0

4
·R2 ·B0 +

∞∑
n=1

Bn ·R2 · (α2
n + β2

n) (3.7)
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with the notation

An =
1

n
· Rn −R−n

Rn + R−n
for R > 1,

An =
1

n
· R−n −Rn

R−n + Rn
for R < 1,

B0 = 2
∞∑

n=1

A2
n + ln2 R,

Bn =
∞∑

m=1

An+mAm +
1

2

n−1∑
m=1

An−mAm + ln R · An for R > 1,

Bn =
∞∑

m=1

An+mAm +
1

2

n−1∑
m=1

An−mAm − ln R · An for R < 1,

and coefficients αn, βn according to (3.6).

With formula (3.7) we get some interesting numerical results. So we obtain
for the annulus A(1, R)

R
∑∞

j=1
1
λ2

j
R

∑∞
j=1

1
λ2

j

11
10 0.393285533739

09
1
10 0.0851314170630

29

12
10 0.895331419777

6
2
10 0.2232421023873

2

13
18 1.512079754988

7
3
10 0.3705107818115

4

14
10 2.248995669580

79
4
10 0.5000889856240

39

15
10 3.111138309184

3
5
10 0.5909533153834

3

16
10 4.103217107733

2
6
10 0.6271313671194

3

17
10 5.229637607873

2
7
10 0.5960078700983

2

18
10 6.494540776025

4
8
10 0.4870209318947

6

19
10 7.901839344939

8
9
10 0.2910356691998

73

Theorem 7. Let A(1, R) be an annulus with radii r1 = 1 and r2 = R > 1.

Then the sum
∞∑

j=1

1
λ2

j
is strongly increasing in R.

Proof. The result of Theorem 7 follows from the strong monotonicity of An =
1
n
· Rn−R−n

Rn+R−n in R for every fixed n. ¤

Let us consider the conformel mapping fr(z) = z+ 1
r2z

which maps the annulus
onto an elliptic ring Dr. We have the following numerical results:



THE ROBIN FUNCTION AND ITS EIGENVALUES 411

R = 10
5 R = 9

5 R = 8
5 R = 7

5 R = 6
5

r→∞ 9.4552530462
1 6.4945407761

0 4.103217107733
2 2.248995669580

79 0.895331419777
6

r = 10
5 9.4905669799

89 6.5319345245
24 4.14148996255

058 2.28515811000
0814 0.92222223953

787

r = 9
5 9.5090774404

392 6.5515351301
275 4.16155128285

042 2.30411308950
721 0.93631729639

434

r = 8
5 9.5414703954

39 6.5858357732
699 4.19665802877

569 2.33728355454
164 0.96098293167

2908

r = 7
5 9.6023395132

13 6.6502894469
27 4.26262597089

6687 2.39961234954
575 1.00733021904

566

r = 6
5 9.7277622583

58 6.7830977667
09 4.39855266408

5862 2.52803757984
468 1.10282400746

286

r = 5
5 10.020394373

66 7.0929597447
365 4.71568209403

8616 2.82765067827
085 1.32559543252

2591

Further we obtain

Theorem 8. For fixed R the sum
∞∑

j=1

1
λ2

j
of Dr is strongly decreasing in r with

r ≥ 1.

Proof. The monotonicity of the sum follows from the properties of the Fourier
coefficients of |f ′r(φ)|, cf. (3.6). For details see [13]. ¤

Remark 1. For similar conformal mappings more monotonicity results are
given in [13].

As the last example we consider the conformal mapping fx(z) = z−x
1−zx

with
x ∈ R and 0 ≤ x < 1. For the first eigenvalue of the fixed membrane problem
this issue has been considered in [2]. For Rx ≤ 1 some examples are given on
Fig. 1

 
Fig. 1

for x = 0, x = 1/4, x = 1/3, x = 1/2 and R = 2. The case Rx > 1 gives
completely different images. For x = 2/3, x = 3/4 and R = 2 the pictures are
given on Fig. 2.
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Fig. 2

Using the conformal mapping

f̃x(z) =
1

R
· 1− x2R2

1− x2
· z − x

1− zx

we obtain the numerical results summarized in the tables below.

Remark 2. For the monotonicity results we refer to [13].

Next, we consider the eigenvalue problem

∆u + µu = 0 in Ω

u = 0 on A (3.8)

∂u

∂n
= 0 on B,

with the same notation as in (3.3).

R = 10
5 R = 9

5 R = 8
5 R = 7

5 R = 6
5

x = 0 2.36381326154
3 2.00448789384

3 1.60281918271
0 1.14744677020

19 0.62175793041
0

x = 1
20 2.41035584564

3 2.03662400384
3 1.61894066967

6 1.15867812288
7 0.62624267544

3

x = 2
20 2.55540437223

2 2.13609555048
7 1.66853260815

4 1.19303364433
2 0.63989241578

7

x = 3
20 2.81683757460

59 2.31283493394
3 1.75551442932

1 1.25259648500
499 0.66331529022

1

x = 4
20 3.23080147568

7 2.58622446309
8 1.88729690847

6 1.34119602360
59 0.69760150661

0

x = 5
20 3.86561139860

59 2.99086332188
7 2.07646518969

8 1.46505650290
89 0.74445588766

5

x = 6
20 4.85549541504

3 3.58913146693
2 2.34412421458

7 1.63398876930
29 0.80642520756

5

x = 7
20 6.49389038493

2 4.50070824520
19 2.72679329380

79 1.86359380634
3 0.88728131510

09

x = 8
20 9.56012203187

6 5.98239191535
4 3.29184814201

0 2.17952715560
59 0.99267888345

4

x = 9
20 17.1249737439

5 8.69917470034
3 4.17680402975

4 2.62637677107
6 1.13133002201

0
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R = 10
5 R = 9

5 R = 8
5 R = 7

5 R = 6
5

x = 11
20 18.41430230122

29867 −−− −−− −−− −−−
x = 12

20 11.2526346341
0 19.04908173109

58105 −−− −−− −−−
x = 13

20 8.37125245875
4 11.0743253825

4 20.77800058443
2 −−− −−−

x = 14
20 6.81440424461

0 8.05243376368
7 9.80597048522

1 −−− −−−
x = 15

20 5.84471637348
7 6.45832690207

6 6.72800966975
4 17.66161067237

6 −−−
x = 16

20 5.18664436325
4 5.47811481661

0 5.25999788324
3 9.07317730102

1 −−−
x = 17

20 4.71340970124
3 4.81801134489

8 4.40375575608
7 6.25454574111

0 21.647548

x = 18
20 4.35851482158

7 4.34561851804
3 3.84560832909

8 4.85117749988
7 7.436184481

223

x = 19
20 4.08374722138

7 3.99245705916
5 3.45482235713

2 4.01507474980
8 4.59253289867

6

In the case of an annulus A(1, R), with the Dirichlet conditions on the outer
circle A(0) of radius R and the Neumann conditions on the inner circle B(0) of
radius 1 the eigenfunctions have the form

u(0)
m,n = (Am,nJn(km,n · r) + Bm,nYn(km,n · r))

{
cos nφ

sin nφ
,

where Jn and Yn Bessel functions of first and second kind, respectively, see
[18], [15]. The constants Am,n, Bm,n and km,n are determined by the boundary

conditions and the normalizing condition
∫

A
u

(0)2

m,n dA = 1. The eigenvalues are

given by

√
µ

(0)
m,n = km,n.

We write in the sequel µ
(0)
j and also u

(0)
j for the eigenvalues and the eigenfunc-

tions of the annulus A(1, R), where the eigenvalues are numbering in increasing
order.

Let f map the annulus onto Ω, and let R(z, ζ) be the Robin function in
A(1, R). In the same way as before we obtain for the eigenvalues of Ω

Theorem 9.

n∑
j=1

1

µj

≥
n∑

j=1

∫

Ω

∫

Ω

R(z, ζ)|f ′(z)|2|f ′(ζ)|2vj(z)vj(ζ) dAz dAζ

with the conditions
∫

Ω
|f ′|2vivj dA = δij and vj ∈ L2(A(1, R)).

Again we define bj,k =
∫

A(1,R)
u

(0)
k vj|f ′|2 dA and di,j =

∫
A(1,R)

|f ′|2u(0)
i u

(0)
j dA.

It follows as above
n∑

j=1

1

µ j

≥
n∑

j=1

dj,j

µ
(0)
j

,
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where mu
(0)
j is mu

(0)
m,n for a suitable choice of numbering. Now we have to

calculate dj,j, see [14]. For f , we have

f(z) = a1z + a2z
2 + a3z

3 + · · ·+ a−1z
−1 + a−2z

−2 + a−3z
−3 + · · ·

for 1 < r0 < R. Therefore it follows with z = reiφ and 1 < r0 < R that∫

|z|=r0

f ′(z) dφ = 2πa1 (3.9)

and, by using Schwarz’s inequality, we obtain

2π

∫

|z|=r0

|f ′(z)|2 dφ ≥
( ∫

|z|=r0

|f ′(z)| dφ

)2

≥
∣∣∣∣∣

∫

|z|=r0

f ′(z) dφ

∣∣∣∣∣

2

= (2π|a1|)2. (3.10)

Let u
(0)
j be an eigenfunction of radial type. So we have with (3.9) and (3.10)

and the normalizing condition
∫

A(1,R)
u

(0)2

j dA = 1

dj,j =

∫

A(1,R)

|f ′|2u(0)2

j dA =

R∫

1

r · |f ′|2u(0)2

j dr dφ ≥ 2π|a1|2
R∫

1

r · u(0)2

j dr

= |a1|2
∫

A

u
(0)2

j dA = |a1|2. (3.11)

Now let u
(0)
j be a nonradial eigenfunction and u

(0)
j+1 be the eigenfunction to

the same eigenvalue. So u
(0)2

j + u
(0)2

j+1 is radial. In the same way we conclude that

dj,j + dj+1,j+1 = |a1|2
∫

A(1,R)

(
u

(0)2

j + u
(0)2

j+1

)
dA ≥ 2|a1|2. (3.12)

(3.11) and (3.12) imply

Theorem 10. For the eigenvalues of problem (3.8), in Ω we have
n∑

j=1

1

µj

≥ a2
1

n∑
j=1

1

µ
(0)
j

for any n. The equality holds if A is an annulus.

Obviously, this theorem implies

Corollary 2. Let Φ be a convex and increasing function, for any n we have
n∑

j=1

Φ
( 1

µj

)
≥

n∑
j=1

Φ
(
|a2

1|
1

µ
(0)
j

)
.

Remark 3. Theorem 10 and Corollary 2 were first proved by Laugesen and
Morpugo [16].
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For completeness we mention here a formula given in [3] which is closely
related to Theorem 10.

Theorem 11. Let f be a conformal mapping of the annulus A(1, R) onto the
domain Ω satisfying

∫
A(1,R)

|f ′(z)|2 dAz < ∞, then we have

∫

A(1,R)

∫

A(1,R)

R2(z, ζ)|f ′(z)|2|f ′(ζ)|2 dAz dAζ =
∞∑

j=1

1

µ2
j

.

3.2. Simply connected domain. Now let Ω be a simply connected domain
and consider problem (3.3) for it.

In the case of the semicircle with A(0) = {z : −1 ≤ z ≤ 1} we have λ
(0)
n = n

and u
(0)
n =

√
2
π

rn sin nφ. For further results in this context we refer to [7],[8].

If R(z, ζ) is the Robin function of the semicircle, we follow [3] and obtain

Theorem 12. Let f be a conformal mapping of the semicircle onto the do-
main Ω with f : A(0) → A and f : B(0) → B. For the eigenvalues of problem
(3.3) for a simply connected domain Ω we have

∞∑
j=1

1

λ2
j

=

∫

B(0)

∫

B(0)

R(z, ζ)|f ′(z)||f ′(ζ)| dsz dsζ .

By using Theorem 12 we obtain a formula only in terms of the Fourier coef-
ficients of the mapping function.

Theorem 13. For the eigenvalues of problem (3.3) for a simply connected
domain Ω it follows that

∞∑
j=1

1

λ2
j

=
π2

6
· α2

0

4
− α0

2

∞∑
n=1

α2n

n2
+

1

4

∞∑
n=1

α2
n+m

n ·m

−
∞∑

n=2

n−1∑
m=1

αn+mαn−m

n ·m +
1

2

∞∑
n=2

n−1∑
m=1

α2
n−m

n ·m

with (z ∈ B(0))

|f ′(z)| ∼ α0

2
+

∞∑
n=1

(αn cos nφ + βn sin nφ).

This follows using the Fourier series and the Robin function of the semidisk
on B(0)

R(z, ζ) =
1

π

∞∑
n=1

sin nφ sin nθ

n
=

1

2π
ln

∣∣∣∣
z − ζ

z − ζ

∣∣∣∣

with z = eiφ and ζ = eiθ.
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Applying Theorem 13 to the Joukowski mapping f(z) = z +1/z we calculate
for the eigenvalues of the half-plane

∞∑
j=1

1

λ2
j

= 4.22079672
66 .

Further, for the eigenvalues of the semicircle with switched boundary compo-
nents we obtain ∞∑

j=1

1

λ2
j

= 0.568767
53

using the mapping function f(z) = z−i
zi−1

, i2 = −1.

Remark 4. For more similar results see [13].
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