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Let me start with my personal warm reminiscences of scientist Ilia N. Vekua.
As a graduate student of the Institute of Mathematics of the Siberian Branch

of the USSR (now Russian) Academy of Sciences at Novosibirsk, I attended
in 1961–1963 a graduate course and two research seminars of Ilia Vekua at
Novosibirsk State University. At that time, he was Rector of the university. His
course was devoted to generalized analytic functions, a new theory established
and developed by Vekua, Bers et al. The seminars dealt with partial differential
equations, complex analysis, geometry, boundary value problems, etc.

At the end of 1962, Vekua brought to a seminar meeting numerous new math-
ematical books by some leading American, French and German mathematicians
on Riemann surfaces, complex manifolds, the modern theory of differential equa-
tions on manifolds, geometry, and topology, which had been recently translated
into Russian. He then made the following comment to the participants of his
seminar:

“What we have been doing until now can be regarded only as walking or
at most riding a bicycle along narrow tracks, whereas the best foreign mathe-
maticians are rushing by car on wide roads and they have opened new vistas in
mathematics. We must diligently study their works, starting with these books.
Especially, this concerns our young researchers.”

This statement had a strong impact on me and influenced my research in a
significant way. Later I also had several very fruitful personal discussions with
I. N. Vekua on these and other fields and methods in mathematics. These dis-
cussions were very instructive in that they indicated me how a world renowned
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scientist conveys ideas to a student only beginning his research. Subsequently,
I successfully applied his methods and ideas. Later he also played an important
role in my life.

In my opinion, I. N. Vekua was not only one of the greatest mathematicians
and an outstanding representative of his native country Georgia and the world
of science and culture, but also a wonderful person.

This paper concerns both geometric complex analysis and differential geom-
etry, two closely related fields to which the contributions of I. N. Vekua were
fundamental.

1. Main Theorem

The aim of this paper is twofold. First, we give an alternate and much simpler
proof of the important theorem that all contractible invariant distances on the
universal Teichmüller space T coincide. This result established in [13] has many
applications. Here we apply this result to solve for T the problem of Kra on
isometric embeddings of a disk into Teichmüller spaces.

Denote the Carathéodory, Kobayashi and Teichmüller metrics on T by cT, dT

and τT, respectively. It is elementary that cT ≤ dT ≤ τT.

Theorem 1.1. All contractible invariant distances on the universal Teichmüller
space T coincide with its Teichmüller distance, and for any two points x1,x2 ∈
T(X) we have the equality

cT(x1,x2) = dT(x1,x2) = τT(x1,x2) = inf hyp(h−1(x1), (h
−1(x2)), (1.1)

where hyp denotes the hyperbolic Poincaré metric on the unit disk of curvature
−4 and the infimum is taken over all holomorphic maps h : ∆ → T(X).

The corresponding infinitesimal metrics coincide with the canonical Finsler
structure FT(x, v) on the tangent bundle T (T) of this space

A basic tool in the proof is the Grunsky inequalities technique. Another
essential ingredient is based on extremal properties of Finsler metrics of constant
negative holomorphic curvature.

In the last section, we apply this theorem to solving Kra’s problem mentioned
above.

2. Preliminaries

We briefly present here certain underlying results needed for the proof of
Theorem 1.1. The exposition is adapted to our special case.

2.1. Basic Finsler metrics on Teichmüller spaces. The universal Teichmüller
space T is the space of quasisymmetric homeomorphisms of the unit circle
S1 = ∂∆ factorized by Möbius maps. The canonical complex Banach structure
on T is defined by factorization of the ball of Beltrami coefficients

Belt(∆)1 = {µ ∈ L∞(C) : µ|∆∗ = 0, ‖µ‖ < 1},
letting µ1, µ2 ∈ Belt(∆)1 be equivalent if the corresponding quasiconformal
maps wµ1 , wµ2 (solutions of the Beltrami equation ∂zw = µ∂zw with µ = µ1, µ2)
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coincide on S1 (hence, on ∆∗) and passing to Schwarzian derivatives Sfµ . The
defining projection φT : µ → Swµ is a holomorphic map from L∞(∆) to B.
The equivalence class of a map wµ will be denoted by [wµ]. An appropriate
normalization of wµ will be indicated in subsection 2.3.

An intrinsic complete metric on the space T is the Teichmüller metric
defined by

τT(φT(µ), φT(ν))=
1

2
inf

{
log K

(
wµ∗◦(wν∗

)−1)
: µ∗∈φT(µ), ν∗∈φT(ν)

}
. (2.1)

It is generated by the Finsler structure on the tangent bundle T (T) = T×B
of T defined by

FT(φT(µ), φ′T(µ)ν) = inf
{∥∥ν∗(1− |µ|2)−1

∥∥
∞ : φ′T(µ)ν∗ = φ′T(µ)ν;

µ ∈ Belt(∆)1; ν, ν∗ ∈ L∞(C)
}
. (2.2)

The space T as a complex Banach manifold has also the contractible invariant
metrics. Two of these (the largest and the smallest one) are of special interest.
They are called the Kobayashi and the Carathéodory metric, respectively, and
are defined as follows.

The Kobayashi metric dT on T is the largest pseudometric d on T con-
tracted by holomorphic maps h : ∆ → T so that for any two points ψ1, ψ2 ∈ T
we have

dT(ψ1, ψ2) ≤ inf{d∆(0, t) : h(0) = ψ1, h(t) = ψ2},
where d∆ is the hyperbolic Poincaré metric on ∆ of Gaussian curvature −4,
with the differential form

ds = λhyp(z)|dz| := |dz|/(1− |z|2). (2.3)

The Carathéodory distance between ψ1 and ψ2 is

cT(ψ1, ψ2) = sup hyp(h̃(ψ1), h̃(ψ2)),

where the supremum is taken over all holomorphic maps h̃ : T → ∆.
The corresponding differential (infinitesimal) forms of the Kobayashi and

Carathéodory metrics are defined for the points (ψ, v) ∈ T (T), respectively,
by

KT(ψ, v) = inf{1/r : r > 0, h ∈ Hol(∆r,T), h(0) = ψ, dh(0) = v},
CT(ψ, v) = sup{|df(ψ)v| : f ∈ Hol(T, ∆), f(ψ) = 0}, (2.4)

where Hol(X, Y ) denotes the collection of holomorphic maps of a complex man-
ifold X into Y and ∆r is the disk {|z| < r}.

Due to the fundamental Gardiner–Royden theorem, the Kobayashi metric on
Teichmüller spaces is equal to the Teichmüller metric (cf. [4], [6], [8], [24]).
Its strengthened version obtained in [14] for the universal Teichmüller space by
applying the Grunsky inequalities states more:

Proposition 2.1. The differential Kobayashi metric KT(ϕ, v) on the tangent
bundle T (T) of the universal Teichmüller space T is logarithmically plurisub-
harmonic in ϕ ∈ T, equals the canonical Finsler structure FT(ϕ, v) on T (T)
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generating the Teichmüller metric of T and has the constant sectional holomor-
phic curvature κK(ϕ, v) = −4 on T (T).

Recall that the sectional holomorphic curvature of an upper semicontin-
uos Finsler metric on T equals the supremum of the Gaussian curvatures

κλ(t) = −∆ log λ(t)

λ(t)2
(2.5)

over an appropriate collection of holomorphic maps from the disk into X for a
given tangent direction at the image. For an arbitrary upper semicontinuous
Finsler metric ds = λ(t)|dt| on a plane domain, the curvature (2.5) is defined
using the generalized Laplacian

∆λ(t) = 4 lim inf
r→0

1

r2

{ 1

2π

2π∫

0

λ(t + reiθ)dθ − λ(t)
}

(for −∞ ≤ λ(t) < ∞). Similarly to C2 functions, for which ∆ coincides with
the usual Laplacian, λ is subharmonic on its domain if and only if ∆λ(t) ≥ 0,
and at the points t0 of local maxima of λ with λ(t0) > −∞, we have ∆λ(t0) ≤ 0.

As is well known, the holomorphic curvature of the Kobayashi metric K(x, v)
of any complete hyperbolic manifold X satisfies κKX

≥ −4 at all points (x, v)
of the tangent bundle T (X) of X, and for the Carathéodory metric CX we have
κC(x, v) ≤ −4 (provided X is complete C-hyperbolic). For details and general
properties of invariant metrics, we refer to [3], [11] (see also [1], [14]).

2.2. Frame maps and Strebel points. Let f0 := fµ0 be an extremal repre-
sentative of its class [f0] with dilatation

k(f0) = ‖µ0‖∞ = inf{k(fµ) : fµ|S1 = f0|S1},
and assume that in this class there exists a quasiconformal map f1 whose Bel-
trami coefficient µf1 satisfies the inequality

ess supAr
|µf1(z)| < k(f0)

in some annulus Ar := {z : r < |z| < 1}. Then f1 is called the frame map for
the class [f0], and the corresponding point in the space T is called the Strebel
point.

We use the following important properties of Srebel points adapted to our
case.

Proposition 2.2.

(i) If a class [f ] has a frame map, then the extremal map f0 in this class is
unique and either conformal or a Teichmüller map with Beltrami coef-
ficient µ0 = k|ψ0|/ψ0 on ∆, defined by an integrable holomorphic qua-
dratic differential ψ on ∆ and a constant k ∈ (0, 1) [25].

(ii) The set of Strebel points is open and dense in T [8].
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The assertion (i) holds, for example, for asymptotically conformal (hence for
all smooth) curves f(S1).

We shall use the following construction employed in [8]. Suppose f0 with
Beltrami coefficient µ0 is extremal in its class. Fix a number ε between 0 and
1, and take an increasing sequence {rn}∞1 with 0 < rn < 1 approaching 1. Put

µn(z) =

{
µ0(z) if |z| < rn,

(1− ε)µ0(z) otherwise
(2.6)

and let fn be a quasiconformal map with Beltrami coefficient µn. Then, for
sufficiently large n, fn is a frame map for its class, and the dilatation kn of the
extremal map in the class of fn approaches k0 = k(f0).

Similar results hold also for arbitrary Riemann surfaces (cf. [5], [8]).

2.3. Grunsky inequalities. The classical Grunsky theorem states that a holo-
morphic function

f(z) = z + const +O(z−1)

in a neighborhood U0 of z = ∞ can be extended to a univalent holomorphic
function on the disk

∆∗ = {z ∈ Ĉ = C ∪ {∞} : |z| > 1}
if and only if its Grunsky coefficients αmn satisfy the inequalities

∣∣∣
∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ ≤ 1, (2.7)

where αmn are generated by

log
f(z)− f(ζ)

z − ζ
= −

∞∑
m,n=1

αmnz
−mζ−n, (z, ζ) ∈ (∆∗)2,

x = (xn) runs over the unit sphere S(l2) of the Hilbert space l2 with ‖x‖2 =
∞∑
1

|xn|2, and the principal branch of the logarithmic function is chosen (cf. [9]).

The quantity

κ(f) := sup
{∣∣∣

∞∑
m,n=1

√
mn αmnxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}

(2.8)

is called the Grunsky norm of f .
Let Σ denote the collection of all univalent holomorphic functions

f(z) = z + b0 + b1z
−1 + · · · : ∆∗ → Ĉ \ {0},

and let Σ(k) be its subset of functions with k-quasiconformal extensions to the
unit disk ∆ = {|z| < 1} so that f(0) = 0. Put Σ0 =

⋃
k Σ(k).
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This collection is closely related to universal Teichmüller space T mod-
elled as a bounded domain in the Banach space B of holomorphic functions in
∆∗ with norm

‖ϕ‖B = sup
∆∗

(|z|2 − 1)2|ϕ(z)|.
All ϕ ∈ B can be regarded as the Schwarzian derivatives

Sf = (f ′′/f ′)′ − (f ′′/f ′)2/2

of locally univalent holomorphic functions in ∆∗. The points of T represent the
functions f ∈ Σ0 whose minimal dilatation

k(f) := inf{k(wµ) = ‖µ‖∞ : wµ|∂∆∗ = f}
determines the Teichmüller metric on T; here ‖µ‖∞ = ess supC |µ(z)|.

Grunsky’s theorem was strengthened for the functions with quasiconformal
extensions by many authors, resulting in the following sharp equalities for f ∈
Σ0 ([17], [20]; see also [23], [18], [26]):

κ(f) ≤ k(f) ≤ 3

2
√

2
κ(f) = 1.08 . . .κ(f). (2.9)

The second inequality in (2.9) is important in applications of Grunsky in-
equalities for example to Fredholm eigenvalues. The first inequality in (2.9) is
important in applications to Teichmüller spaces.

A point is that for a generic function f ∈ Σ0, we have in (2.9) the strict
inequality κ(f) < k(f) (cf. [12], [21], [19]). The functions with κ(f) = k(f)
play a crucial role in applications of the Grunsky inequality technique and are
characterized as follows.

Denote by A1(∆) the subspace of L1(∆) formed by holomorphic functions in
∆, and consider the set

A2
1 = {ψ ∈ A1(∆) : ψ = ω2, ω holomorphic}

which consists of the integrable holomorphic functions on ∆ having only zeros
of even order. Put

〈µ, ψ〉∆ =

∫∫

D

µ(z)ψ(z)dxdy, µ ∈ L∞(∆), ψ ∈ L1(∆) (z = x + iy).

Proposition 2.3 ([12], [16]). The equality κ(f) = k(f) holds if and only if

the function f is the restriction to ∆∗ of a quasiconformal self-map wµ0 of Ĉ
with Beltrami coefficient µ0 satisfying the condition

sup |〈µ0, ψ〉∆| = ‖µ0‖∞, (2.10)

where the supremum is taken over holomorphic functions ψ ∈ A2
1(∆) with

‖ψ‖A1(∆) = 1.
If, in addition, the class [f ] contains a frame map (is a Strebel point), then

µ0 is of the form

µ0(z) = ‖µ0‖∞|ψ0(z)|/ψ0(z) with ψ0 ∈ A2
1 in ∆. (2.11)
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For analytic curves f(S1), the equality (2.11) was obtained by a different
method in [21].

As is shown in [12], the elements of A2
1 are represented in the form

ψ(z) =
1

π

∞∑
m+n=2

√
mn xmxnz

m+n (2.12)

with x = (xn) ∈ S(l2).
Geometrically, the equality (2.10) means that on the holomorphic disk

∆(µ0) = {φ∞(tµ0/‖µ0‖) : t ∈ ∆} ⊂ T,

where φT is the canonical quotient map determining T, the Carathéodory and
Teichmüller metrics of T are equal. Together with (2.8) and (2.12), this equality
allows us to derive from the collection of holomorphic maps

hx(ϕ) =
∞∑

m,n=1

√
mn αmn(ϕ)xmxn : T → ∆ (2.13)

a sequence which is maximizing for the Carathéodory distance cT(ψ,0), ψ ∈
∆(µ0).

3. Two Auxiliary Transforms

3.1. We shall need an extension of Proposition 2.3 to quadratic differentials
with zeros of odd order obtained as follows.

Fix a ∈ ∆ \ {0} and compose the functions f ∈ Σ0 with the fractional linear
map

γa(z) =
a

a

z + a

1 + az
,

preserving both disks ∆ and ∆∗. Then

f ◦ γa(z) = f
( 1/z + 1/a

1 + 1/(āz)

)
= f

(1

a

)
+

(
1− 1

|a|2
)
f ′

(1

a

)1

z
+ · · · .

We define the transform

La : f 7→ fa(z) =
(1− 1/|a|2)f ′(1/a)

f ◦ γa(z)− f(1/a)
+

1

2

[(
1− 1

|a|2
)f ′′(1/a)

f ′(1/a)
− 2

a

]
+ · · ·

= z +
b1,a

z
+ · · · , (3.1)

which preserves the classes Σ(k) and Σ0. Both maps f ◦ γa and fa have the
same Beltrami coefficient

γ∗a(µ) = (µ ◦ γa)γ′a/γ
′
a.

Put

log
fa(z)− fa(ζ)

z − ζ
= −

∞∑
m,n=1

αa
mnz

−mζ−n,

choosing a single-valued branch of logarithm similar to above, and let κa(f) =
κ(fa).
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We shall also use the transform

M : f(z) 7→ f2(z) =
√

f(z2) = z +
b1
0

2z3
+ · · · , (3.2)

whose images are the odd functions from Σ0, and write

fa,2(z) =
√

fa(z2), κa,2(f) = κ(fa,2).

The squaring map

M0 : z 7→ z2

is a branched holomorphic covering map C̃ → Ĉ, where C̃ is the two-sheeted
sphere ramified over the points 0 and ∞. The transform (3.2) is well-defined
on the maps fµ ∈ Σ0.

Each Mfµ is a fiber-wise map of C̃, which means that this map is compatible
with the projection M0. Its restriction to one sheet of (choosing the branch of
the square root accordingly to (3.3)) gives an injective odd quasiconformal map

of Ĉ.

3.2. Note that a holomorphic map g : ∆ → ∆ transforms the Beltrami and
integrable forms on ∆, respectively, by

µ 7→ g∗(µ) := (µ ◦ g)g′/g′, ψ 7→ g∗(ψ) := (ψ ◦ g)(g′)2; (3.3)

hence

g∗(µ)g∗(ψ) = (µψ) ◦ g|g′|2.
In particular, let a quadratic differential ψ = ψ(ζ)dζ2 ∈ A1(∆) have zero of

odd order at the origin, i.e.,

ϕ(ζ) =
∞∑

2m−1

djζ
j with d2m−1 6= 0.

Lifting ψ to C̃, one gets the differential

ψ̃(z) = M∗
0ψ = 4(d2m−1z

4m−2 + d2mz4m + · · · )dz2 (ζ = z2)

which has at z = 0 zero of even order. If ψ has other zeros a1, a2, . . . in ∆\{0},
then ψ̃ has zeros of the same order at the points ±√aj on C̃. A choice of sign
determines the corresponding single-valued branch of the root as well as a sheet

of C̃ .

3.3. Together with Proposition 2.3, this yields

Proposition 3.1. Equality κa,2(f) = k(f) for f ∈ Σ0 holds if and only if the

function f is the restriction to ∆∗ of a quasiconformal map wµ0 of Ĉ whose
Beltrami coefficient µ0(z) in ∆ satisfies the relation

‖µ0(z)‖∞ = ‖γ∗aµ0(z
2)‖∞ = 2 sup

∣∣∣
∫∫

∆

γ∗aµ0(z
2) γ∗aψ(z2) |z|2dxdy

∣∣∣, (3.4)
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where the supremum is taken over the set of functions ψ ∈ A1(∆ \ {a}) such
that γ∗aψ(z2)z2 ∈ A2

1(∆) and

‖γ∗aψ(z2)z2‖A1(∆) =
1

2
‖ψ‖A1(∆\{a}) =

1

2
. (3.5)

This proposition involves a non-injective change of variables by integration.
A general rule says that for the Sobolev continuous maps g = (g1, ... , gn) ∈
W 1

n,loc(G) of a bounded domain G ⊂ Rn with the boundary of zero (n − 1)-
Lebesgue measure, we have the equality∫

G

u ◦ g(x)|Jg(x)|dx =

∫

Rn

u(y)N(y, g,G)dy, (3.6)

where Jg(x) is the Jacobian of g at the points x ∈ G, and N(y, g,G) denotes
the multiplicity of the map g at y determined as the (finite or infinite) number
of points of the set g−1{y} ∩G (see, e.g., [7]).

The actions of maps L∗a and M∗ on elements µ ∈ Belt(∆)1 by (3.3) are
holomorphic self-maps of this ball which descend to holomorphic self-maps of T.

4. Proof of Theorem 1.1

In view of the density of Strebel points in T, it suffices to establish the
equality of metrics on Teichmüller extremal disks

∆(µ∗0) = {φT(tµ∗0) : t ∈ ∆}, µ∗0 = |ψ0|/ψ0, with ψ0 ∈ A1(∆) \ {0}, (4.1)

and Proposition 2.3 allows us to consider only the disks (4.1) corresponding to
differentials ψ0 having zeros of odd order in ∆. The proof will be accomplished
in three stages.

Step 1. Quadratic differentials with a finite number of zeros of odd order. We
will use here the notation f 0 = f tµ∗0 for any t ∈ ∆.

Let ψ0 have in ∆ a single zero a of odd order; then the map f 0
a,2 := La ◦Mf 0

satisfies
κ(fa,2) := κa,2(f

0) = k(f 0).

Applying (2.7), (2.12) and Proposition 3.1, one gets for an appropriate sequence

x(p) = (x
(p)
n ) ∈ S(l2), the relations |hx(p)(ϕ)| < 1 for all ϕ ∈ T, while

lim
p→∞

|dhx(p)(0)(tSf0
a,2

)| = |〈t(M◦La)
∗µ∗0, (M◦La)

∗ψ0〉∆| = |t|. (4.2)

This equality means that

CT(0, φ′T(µ∗0)) = FT(0, φ′T(µ∗0)) = |t|. (4.3)

By Schwarz’s lemma, we obtain from here the equality of metrics cT and τT on
the disk (4.1).

Assume now that equality (4.3) holds for any quadratic differential ψ with
n = m ≥ 1 distinct zeros of odd order and consider a differential ψ0 whose zeros
of odd order in ∆ are the distinct points

a1, a2, . . . , am, am+1.
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Applying again the transforms (3.2) and (3.3), we get the extremal map f 0
a,2 :=

M◦Lam+1f
0 whose Beltrami coefficient

µf0
a,2

= t|ψ0,m+1|/ψ0,m+1

is defined by quadratic differential

ψ0,m+1 = (M◦Lam+1)
∗ψ0. (4.4)

The differential (4.4) has, on the covering surface C̃, at most 2m distinct zeros
of odd order, located at the points

±
√
M◦Lam+1(aj), j = 1, . . . , m.

Hence each sheet of C̃ contains at most m zeros of ψ0,m+1.
By assumption, there exists a sequence of holomorphic maps hp : T → ∆

with

lim
p→∞

|dhp(0)[φ′T(µ∗f0
a,2

)]| = CT(0, φ′T(µ∗f0
a,2

)) = FT(0, φ′T(µ∗f0
a,2

)) = 1. (4.5)

Then the functions

hp ◦ (M◦Lam+1)
∗, p = 1, 2, . . . ,

form a maximizing sequence for the Carathéodory metric on the original disk
(4.1), and the equalities (4.5) force equalizing this and Teichmüller metrics on
∆(µ∗0).

Applying induction, one obtains the desired equality of metrics on all disks
(4.1) defined by quadratic differentials ψ0 with a finite number of zeros of odd
order.

Step 2. Asymptotically conformal maps. We begin to consider the extremal
disks (4.1) corresponding to quadratic differentials ψ0 having in ∆ infinitely
many zeros of odd order.

Assume first that the restriction of maps fµ from a given class [f∗] to S1

is asymptotically conformal; in other words, for any pair of points a, b on
L = f(S1), we have

max
z∈L(a,b)

|a− z|+ |z − b|
|a− b| → 1 as |a− b| → 0,

where L(a, b) denotes the subarc of L with the endpoints a, b of smaller diameter.
Any such class [f∗] is a Strebel point (cf. [25]), hence it contains a unique

Teichmüller map f0 with Beltrami coefficient

µ∗ = k∗|ψ∗|/ψ∗, 0 < k∗ < 1, ψ∗ ∈ A1(∆) \ {0}. (4.6)

Assume that ψ∗ has in ∆ an infinite set of zeros of odd order (otherwise, there
is nothing to prove). Take a sequence of numbers rn < 1 approaching 1 and put

ψn(z) := ψ∗(rnz), µn(z) = k∗|ψn(z)|/ψn(z),

extending all µn by zero to ∆∗.
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The asymptotic conformality of the curve f0(S
1) = f∗(S1) implies

lim
n→∞

‖Sf0 − Sfµn‖B = 0. (4.7)

Indeed, for any asymptotically conformal quasicircle L = f(S1) we have (cf.
[2])

σf (r) := sup
1<|z|<r

(|z|2 − 1)2|Sf (z)| → 0 as r → 1.

Hence, for r > 1 and all n,

sup
|z|>1

(|z|2 − 1)2|Sf0(z)− Sfµn (z)| ≤ sup
|z|>r

(|z|2 − 1)2|Sf0(z)− Sfµn (z)|

+ sup
1<|z|<r

(|z|2 − 1)2|Sf0(z)|+ sup
1<|z|<r

(|z|2 − 1)2|Sfµn (z)|

≤ sup
|z|>r

(|z|2 − 1)2|Sf0(z)− Sfµn (z)|+ σf (r) + 6(r2 − 1)2. (4.8)

Given a small ε > 0, we fix r > 1 so that the second and the third terms on
the right-hand side of (4.8) do not exceed each ε/3, and thereafter find n0 such
that for all n ≥ n0, the first term becomes less than ε/3. This proves (4.7).

We turn back to the proof of our theorem. Every ψn has in ∆ only a finite
number of zeros of odd order, thus by Step 1,

cT(Sfn ,0) = τT(Sfn ,0), n = 1, 2, . . . ,

and, by continuity, we have the desired equality

cT(Sf0 ,0) = τT(Sf0 ,0) (4.9)

for all points of the disk (4.1) determined by ψ∗.

Step 3. General quadratic differentials with infinitely many zeros of odd order.
Let ϕ∗ ∈ T be a Strebel point, and its class [f ∗] contain a Teichmüller extremal
map with a Beltrami coefficient of the form (4.6) (again extended by 0 to ∆∗)
defined by the holomorphic quadratic differential ψ∗ having in ∆ infinitely many
zeros a1, a2, . . . of odd order.

We complexify the construction involving the coefficients (2.6). Fix r < 1
close to 1 and define a family of Beltrami coefficients µt = µ(·, t) depending on
a complex parameter t by

µ(z, t) =

{
µ∗(z), |z| < r,(
1− 1

1+t

)
µ∗(z), r < |z| < 1,

and µ(z, t) = 0 for |z| > 1. The admissible values of t are those for which
|µ(z, t)| < 1. This holds when t ranges over the disk

Ωa = {t′ ∈ C : |t′ + a| > R(a)}
with a = a(k∗) = 1/[1− (k∗)2] > 1, R(a) = a(a− 1). (4.10)

Two coefficients µt are of a special interest for us, namely, µ∞ = µ∗ and µ0

obtained by extension of µ∗||z|<r by zero to the disk {|z| > r}. We preserve for
this µ0 the notation from the previous step.
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The map f0 := fµ0 is asymptotically conformal; thus, by Step 2, we have for
its Schwarzian derivative Sf0 ∈ T both the equality (4.9) and its infinitesimal
version.

Note also that the image φT(Ωa) in T is a nondegenerate holomorphic disk,
hence a simply connected Riemann surface; it contains the points ϕ∗ = Sfµ

∗ and
ϕ0 = Sf0 .

Indeed, for any complex linear functional l(ϕ) : B → C with l(ϕ∗) 6= l(ϕ0),
the composed map l◦φT is holomorphic on the disk (4.10), thus l◦φT(Ωa) = ωa

is an open connected plane domain. Therefore, Ω̃a = l−1(ωa) must also be open
and connected (and then, by Zhuravlev’s theorem, it is simply connected).

Let us compare the infinitesimal Carathéodory and Kobayashi metrics CT and

KT on this disk Ω̃a, applying Proposition 2.1 and Minda’s maximum principle:

Lemma 4.1 ([22]). If a function u : Ω → [−∞, +∞) is upper semicontin-
uous in a domain Ω ⊂ C and its generalized Laplacian satisfies the inequality
∆u(z) ≥ Ku(z) with some positive constant K at any point z ∈ Ω, where
u(z) > −∞, then if lim supz→ζ u(z) ≤ 0 for all ζ ∈ ∂Ω, then either u(z) < 0
for all z ∈ Ω or else u(z) = 0 for all z ∈ Ω.

The restrictions of CT and KT to Ω̃a are conformal subharmonic Finsler met-
rics ds = λC(t)|dt| and ds = λK(t)|dt| on this disk with generalized Gaussian
curvatures κ(λC) ≤ −4 and κ(λK) ≡ −4.

Denote the complex parameter on Ω̃a again by t. For a sufficiently small
neighborhood U0 of the origin t = 0, we put

M = {sup λK(t) : t ∈ U0};
then in this neighborhood, λK(t) + λC(t) ≤ 2M . Taking u = log λC

λK
, we get for

t ∈ U0,

∆u(t) = log λC(t)− λK(t) = 4[λC(t)2 − λK(t)2] ≥ 8M [λC(t)− λK(t)]

(cf. [22], [15]). The elementary estimate

M log(t/s) ≥ t− s for 0 < s ≤ t < M

(with equality only for t = s) implies that

M log
λC(t)
λK(t)

≥ λC(t)− λK(t),

and hence, ∆u(t) ≥ 4M2u(t).
Applying Lemma 4.1, we obtain that in view of the equality (4.9) both metrics

λC and λK must be equal in U0 and then in the entire disk Ω̃a, in particular, at
the point ϕ∗ = Sfµ∗ , which is equivalent to desired equality

cT(0, ϕ∗) = dT(0, ϕ∗) = τT(0, ϕ∗).

We have established that the Carathéodory and Kobayashi distances cT(ϕ,0)
and dT(ϕ,0) coincide for any point ϕ ∈ T. Since the universal Teichmüller
space is a homogeneous Banach domain, we get the equality of these distances
between two arbitrary points ϕ1, ϕ2 in T, which completes the proof.
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5. Problem of Kra

At the Conference on Complex Analysis and Dynamical Systems at Nahariya
(Israel, January 2006), Irwin Kra posed the following

Problem. Is any isometric imbedding of the disk into a finite dimensional
Teichmüller space T(Γ) holomorphic or antiholomorphic?

Theorem 1.1 allows us to answer this question affirmatively for the universal
Teichmüller space. This case differs from the finite dimensional one, because
for any two points of T there are infinitely many geodesic disks passing through
these points.

Theorem 5.1. Every isometric imbedding of the disk into the universal Te-
ichmüller space T is either holomorphic or antiholomorphic.

Proof. We apply the following consequence of Theorem 1.1.

Corollary 5.2. The Teichmüller distance τT(ϕ, ψ) is logarithmically plurisub-
harmonic in each of its variables. Moreover, the pluricomplex Green function
of the space T equals

gT(ϕ, ψ) = log tanh τT(ϕ, ψ) = log k(ϕ, ψ), (5.1)

where k(ϕ, ψ) denotes the extremal dilatation of quasiconformal maps determin-
ing the Teichmüller distance between the points ϕ and ψ in T.

Recall that the pluricomplex Green function of a Banach manifold X is

gX(x, y) = sup uy(x) (x,y ∈ X),

where the supremum is taken over plurisubharmonic functions uy(x) : X →
[−∞, 0) such that

uy(x) = log ‖x− y‖+ O(1)

in a neighborhood of the point y (the pole of gX); here ‖ · ‖ is the norm on the
Banach space modeling X, and the remainder term O(1) is bounded from above
(cf. [3], [10], [14]). This function is related to Carathéodory and Kobayashi
distances by

log tanh cX(x,y) ≤ gD(x,y) ≤ log tanh dD(x,y). (5.2)

Let now F be a given isometric embedding of the unit disk ∆ into T so
that the Teichmüller distance on F (∆) equals the hyperbolic distance on ∆.
Composing F with biholomorphic automorphisms of ∆ and T, one can take
F so that F (0) = 0. We can also assume that F is orientation preserving,
otherwise we precede it by reflection t 7→ t. In each case, the image F (∆) is a
topological disk in T.

Corollary 5.2 and the equalities (5.1) imply that, for a fixed ϕ0 = F (t0) ∈
F (∆),

gT(ϕ0, ϕ) = g∆(t0, t) = log[(t− t0)/(1− t0t)], (5.3)

and that the norm ‖F (t)‖∞ is a logarithmically subharmonic function on ∆.
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The following lemma is a straightforward extension of Schwarz’s lemma to
logarithmically subharmonic functions (cf., e.g., [3], [13]).

Lemma 5.3. Let a function u(z) : ∆ → [0, 1) be logarithmically subharmonic
in the disk ∆ and such that the ratio u(z)/|z|m is bounded in a neighborhood of
the origin for some m ≥ 1. Then

u(z) ≤ |z|m for all z ∈ ∆ (5.4)

and

lim sup
|z|→0

u(z)

|z|m ≤ 1. (5.5)

Equality in (5.4), even for one z0 6= 0, or in (5.5), can hold only for u(z) = |z|m.

Using this lemma for m = 1 and the equalities (5.3), one concludes that there
exist the real tangent vectors d

dt
F (teiθ) to F (∆) in T. Since F is an isometry, the

Teichmüller norm of derivatives along the tangent vectors at the origin equals

‖F ′(0)‖∞ = lim
t→0

‖F (teiθ)‖∞
t

= 1 (0 ≤ θ ≤ 2π). (5.6)

Since T is complete C-hyperbolic, the family H := {h ∈ Hol(T, ∆); h(0) =
0} is normal on T (with respect to convergence in the Carathéodory metric).
Together with Theorem 1.1, this provides the existence of h0 ∈ H with |h′0(0)| =
1 and such that for all complex tangent vectors v to T at the origin we have
the equality

CT(0, v) = |dh0(0)v|. (5.7)

We compose h0 with F and take the function log |h0 ◦F |. Then the relations
(5.1), (5.6) and (5.7) imply that this function must coincide on ∆ with gT(0, ϕ)◦
F , and by (5.3) these both functions are equal to log |t| on ∆. Hence

h0 ◦ F (t) ≡ t on ∆.

The last identity implies that there exists the inverse function h−1
0 of the trace

of h0 on the disk F (∆) which is injective and holomorphic on ∆ and takes the
same values as the given embedding F . This proves the theorem. ¤
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