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ON SOLVABILITY OF THE NEUMANN PROBLEM IN AN
ENERGY SPACE FOR A DOMAIN WITH PEAK

VLADIMIR G. MAZ’YA AND SERGEI V. POBORCHI

Abstract. We describe the dual space of the boundary trace space for func-
tions with a finite Dirichlet integral for a domain with a vertex of an isolated
cusp at the boundary. This leads to conditions of solvability of the Neu-
mann problem for elliptic equations of second order. In particular, we give
an explicit necessary and sufficient condition for q such that the Neumann
problem is solvable if the boundary function is in Lq over the boundary of a
domain with an outer peak.
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1. Introduction

Let Ω be a domain in Rn and let W 1
2 (Ω) denote the space of functions on Ω

with the finite norm

‖v‖W 1
2 (Ω) =

( ∫

Ω

(|v(x)|2 + |∇v(x)|2)dx

)1/2

.

By TW 1
2 (Ω) we mean the space of boundary traces u|∂Ω of the functions in

W 1
2 (Ω) with the norm

‖v‖TW 1
2 (Ω) = inf{‖u‖W 1

2 (Ω) : u ∈ W 1
2 (Ω), u|∂Ω = v}.

If Ω belongs to the class C0,1 (i.e., Ω has a compact closure and its boundary
is a locally Lipschitz graph), then Gagliardo’s theorem [1] says that TW 1

2 (Ω)

coincides with the space W
1/2
2 (∂Ω) consisting of functions on S = ∂Ω having

the finite norm

‖v‖
W

1/2
2 (S)

= ‖v‖L2(S) + [v]S,

where

[v]S =

( ∫ ∫

S×S

|v(x)− v(ξ)|2 dsxdsξ

|x− ξ|n
)1/2

, (1.1)

and dsx, dsξ are area elements on S.

For Ω ∈ C0,1 and S ⊂ ∂Ω we introduce the space W
−1/2
2 (S) of linear contin-

uous functionals on W
1/2
2 (S) with the norm

‖f‖
W
−1/2
2 (S)

= sup{|〈f, v〉| : ‖v‖
W

1/2
2 (S)

≤ 1}.
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By Sobolev’s theorem the restriction operator

W 1
2 (Ω) 3 v 7→ v|∂Ω ∈ Lq(∂Ω), q = 2(n− 1)/(n− 2),

is continuous for Ω ∈ C0,1, hence Lq′(∂Ω) ⊂ W
−1/2
2 (∂Ω) with the minimal

possible exponent q′ = 2(n− 1)/n.
Let Ω be a domain in Rn of the class C0,1. Consider the Neumann problem

−
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a(x)u = 0, x ∈ Ω, (1.2)

n∑
i,j=1

aij(x)
∂u

∂xj

cos(ν, xi)
∣∣
∂Ω

= f. (1.3)

We assume that aij, i, j = 1, 2, . . . , n, and a are functions in L∞(Ω), aij = aji,
a(x) ≥ const > 0 a.e. in Ω, and the following ellipticity condition holds

n∑
i,j=1

aij(x)ξiξj ≥ c |ξ|2 for all ξ ∈ Rn, x ∈ Ω,

where c = const > 0. Furthermore, ν in (1.3) denotes the unit outward normal
to Ω at the point x ∈ ∂Ω. A function u ∈ W 1

2 (Ω) is called a solution of problem
(1.2), (1.3) if

[u, v] =

∫

∂Ω

f(x)v(x)dsx, (1.4)

for all v ∈ W 1
2 (Ω), where dsx is an area element in ∂Ω and

[u, v] =

∫

Ω

( n∑
i,j=1

aij(x)
∂u

∂xj

∂v

∂xi

+ a(x)uv

)
dx.

In case f ∈ W
−1/2
2 (∂Ω), the functional on the right-hand side of (1.4) is contin-

uous with respect to v ∈ W 1
2 (Ω) so that the above problem is uniquely solvable.

Suppose that Ω is a bounded domain whose boundary has a finite number
of non-Lipschitz points (for example, there is a vertex of an isolated peak at

the boundary). Then, generally TW 1
2 (Ω) 6= W

1/2
2 (∂Ω) and hence the space

TW 1
2 (Ω)∗, dual of TW 1

2 (Ω), does not coincide with W
−1/2
2 (∂Ω). Nevertheless,

we can set problem (1.2), (1.3) for such Ω and observe that for f ∈ TW 1
2 (Ω)∗

the right-hand side of (1.4) is again a continuous linear functional in W 1
2 (Ω).

Therefore, the above Neumann problem has a unique solution.
Below, in Section 3 we give a description of the space TW 1

2 (Ω)∗ for a domain

with a vertex of an outer peak at ∂Ω in terms of the space W
−1/2
2 for Lipschitz

surfaces and in terms of some function spaces for interval (0, 1) of the real axis.
Theorem 1 in Section 3 is the mainre sult of the paper. Its proof is based on
the explicit characterization of the space TW 1

2 (Ω) for a domain with an outer
peak (see [3], [4], [5, Ch. 7]). The description of the dual space of TW 1

2 (Ω)
leads to some explicit conditions on the boundary data in (1.3) which provide
the solvability of problem (1.2), (1.3). For example, necessary and sufficient
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conditions on f ∈ Lq(∂Ω) are given for the Neumann problem to be uniquely
solvable in a domain with an outer peak. The case of a domain with an inner
peak is considered in Section 4. Section 2 contains some auxiliary assertions.

2. Notation and Some Lemmas

We now give the definition of a domain with an outer peak.
Let Ω be a bounded domain in Rn (n > 2). Suppose that the point O belongs

to ∂Ω and the surface ∂Ω \ {O} is locally a Lipschitz graph. We locate at O
the origin of the Cartesian coordinates x = (y, z), y ∈ Rn−1, z ∈ R1. Let ϕ
be an increasing function in C0,1([0, 1]) such that ϕ(0) = 0, ϕ′(t)→0 as t→ +0,
and let ω be a bounded simply connected domain in Rn−1 of the class C0,1.

Definition. The point O is the vertex of a peak directed into the exterior of
Ω if it has a neighborhood U such that

U ∩ Ω = {x = (y, z) : z ∈ (0, 1), y/ϕ(z) ∈ ω}.
For simplicity, we additionally assume that ϕ′(z) ≤ 1/2 for almost all z ∈

(0, 1). We also assume that ω ⊂ {y : |y| < 1} and U ∩ ∂Ω = {O} ∪ Γ where

Γ = {x = (y, z) : z ∈ (0, 1), y/ϕ(z) ∈ ∂ω}. (2.1)

We now introduce some notation. Below for brevity we write T (Ω) instead
of TW 1

2 (Ω) and T (Ω)∗ instead of TW 1
2 (Ω)∗. If f ∈ T (Ω)∗ and λ is a Lipschitz

continuous function on ∂Ω, we define

〈λf, v〉 = 〈f, λv〉, v ∈ T (Ω).

Let v be a function defined on Γ. Then the mean value of v on the section of
Γ by the hyperplane z = const is

v̄(z) =
1

|γ|
∫

γ

v(ϕ(z)y, z)dγ(y), γ = ∂ω, (2.2)

where |γ| is the area of γ.
If f ∈ T (Ω)∗ and the support of v ∈ T (Ω) lies in Γ, we put

〈f̄ , v〉 = 〈f, v̄〉.
In what follows some special partition of unity for ∂Ω will be important for

us. To construct it, we define a sequence {zk} by

z0 ∈ (0, 1), zk+1 + ϕ(zk+1) = zk, k = 0, 1, . . . .

Clearly, {zk} is decreasing and also

zk → 0, z−1
k+1zk → 1, ϕ(zk+1)

−1ϕ(zk) → 1.

The number z0 can be chosen so small that for z < 2 z0

ϕ(z − 2ϕ(z)) > 3ϕ(z)/4 and ϕ(z) < z/4. (2.3)
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Let {µk}k≥1 be a smooth partition of unity for (0, z1] subordinated to the cov-
ering by intervals ∆k = (zk+1, zk−1), i.e., the set of functions µk ∈ C∞

0 (∆k) such
that

0 ≤ µk ≤ 1,
∑

k≥1

µk(z) = 1, z ∈ (0, z1].

This partition of unity can be constructed to satisfy

dist(supp µk,R
1 \∆k) ≥ const · ϕ(zk), |µ′k| ≤ const · ϕ(zk)

−1 (2.4)

with constants depending only on ϕ.
We introduce another set of functions {λk}k≥1,

0 ≤ λk ≤ 1, λk ∈ C∞
0 (∆k), λk|supp µk

= 1.

Then λkµk = µk for all k ≥ 1. Next we define µ0(z) = 0 for z < z1 and
µ0(z) = 1 − µ1(z) for z ≥ z1. It is clear that then

∑
k≥0 µk(z) = 1 for all

z ∈ (0, 1]. The partition of unity just constructed as well as the set {λk}
depend only on ϕ. In what follows we suppose that they are fixed.

Let

Γk = {(y, z) ∈ Γ : z ∈ ∆k}, ∆k = (zk+1, zk−1), k = 1, 2 . . . ,

and

Γ0 = ∂Ω \ {x ∈ Γ : z ≤ z1}.
We note that the above partition of unity for (0, 1] induces a partition of unity
for ∂Ω \ {O}, subordinate to the covering {Γk}k≥0 if we put µ0 = 1 on Γ0 \ Γ.

Let f ∈ T (Ω)∗. If 〈f, v〉 = 0 for all v ∈ T (Ω) with v|Γk
= 0, we say that the

support of f lies in Γk and write supp f ⊂ Γk.
Turning to the study of the space T (Ω)∗, we first mention some known results

concerning T (Ω). If Ω has an outer peak, T (Ω) can be explicitly characterized
as follows (see [3], [4], [5, 7.2]): this space consists of the functions on ∂Ω with
the finite norm

(
‖v‖2

W
1/2
2 (Γ0)

+

∫

Γ

v(x)2ϕ(z)dsx + |v|2Γ
)1/2

, (2.5)

where Γ is given by (2.1),

|v|Γ =

( ∫ ∫

{x,ξ∈Γ:|ζ−z|<M(z,ζ)}

|v(x)− v(ξ)|2 dsxdsξ

|x− ξ|n
)1/2

, (2.6)

x = (y, z), ξ = (η, ζ), M(z, ζ) = max{ϕ(z), ϕ(ζ)}, and dsx, dsξ are the area
elements in Γ. Furthermore the norm in T (Ω) is equivalent to that in (2.5).
The equivalence remains valid if Γ0 in (2.5) is replaced by the surface ∂Ω\{x ∈
Γ : z ≤ δ}, δ ∈ (0, 1), and the integral over Γ is omitted.

Positive quantities a, b are called equivalent or comparable (and written as
a ∼ b) if c1 ≤ a/b ≤ c2 for some positive constants c1, c2, depending only on Ω.
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Lemma 1. The following relation holds for v ∈ L2,loc(0, 1)
∫ ∫

{x,ξ∈Γ:|ζ−z|<M(z,ζ)}

|v(z)− v(ζ)|2 dsxdsξ

|x− ξ|n

∼
∫ ∫

{z,ζ∈(0,1):|ζ−z|<M(z,ζ)}

|v(z)− v(ζ)|2M(z, ζ)n−2

|z − ζ|2 dz dζ (2.7)

and the estimate

|v̄|Γ ≤ c(Ω)‖v‖T (Ω) (2.8)

is true for v ∈ T (Ω).

Proof. The left-hand side of (2.7) is comparable to

1∫

0

dz

z∫

z−ϕ(z)

|v(z)− v(ζ)|2(ϕ(z)ϕ(ζ))n−2dζ

∫ ∫

γ×γ

dγ(y)dγ(η)

|z − ζ|n + |ϕ(z)y − ϕ(ζ)η|n ,

and furthermore we have for y, η ∈ γ

|z − ζ|n + |ϕ(z)y − ϕ(ζ)η|n ∼ |z − ζ|n + ϕ(ζ)n|y − η|n.
Hence

(ϕ(z)ϕ(ζ))n−2

∫ ∫

γ×γ

dγ(y)dγ(η)

|z − ζ|n + |ϕ(z)y − ϕ(ζ)η|n

∼ (ϕ(z)ϕ(ζ))n−2

|z − ζ|n
∫

γ

dγ(y)

∫

γ

dγ(η)

1 + λn|y − η|n , (2.9)

where λ = ϕ(ζ)|z − ζ|−1. After the change of variable η = y + λ−1t in the last
integral over γ for fixed y ∈ γ the expression on the right-hand side of (2.9)
takes the form

ϕ(z)n−2

|z − ζ|2
∫

γ

dγ(y)

∫

Sλ

dSλ(t)

1 + |t|n .

Here Sλ is the surface {t : t/λ + y ∈ γ}, and dSλ(t) the element of the (n− 2)-
dimensional area. It remains to note that ϕ(z) ∼ ϕ(ζ) for |z − ζ| < M(z, ζ).
Therefore λ ≥ const > 0, and the last integral is bounded from above and below
uniformly in λ.

We now turn to (2.8). Using Hölder’s inequality, one obtains from (2.2) that

|v̄(z)− v̄(ζ)|2 ≤ c

∫

γ

|v(ϕ(z)y, z)− v(ϕ(ζ)y, ζ)|2dγ(y).

The last estimate and (2.7) show that it will suffice to establish the inequality

Iγ(v) ≤ c ‖v‖T (Ω), (2.10)
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where

Iγ(v)2 =

1∫

0

ϕ(z)n−2dz

z∫

z−ϕ(z)

dζ

|z − ζ|2
∫

γ

|v(ϕ(z)y, z)− v(ϕ(ζ)y, ζ)|2dγ(y).

Let v = u|∂Ω for some u ∈ W 1
2 (Ω). We first establish the estimate

Iγ(v) ≤ c ‖∇u‖L2(Ω∩U). (2.11)

This estimate is known if ω = {y : |y| < 1} (see Lemma 7.6/3 in [5] and
Lemma 2.4 in [4]). When ω is starshaped with respect to a ball centered at the
origin, the proof of (2.11) almost verbatim repeats the argument for ω = {y :
|y| < 1}. We omit it.

Let ω ⊂ {y ∈ Rn−1 : |y| < 1} be starshaped with respect to a ball centered
at y0 ∈ ω, y0 6= 0. Then the change of variables

x = (y, z) 7→ x′ = (y′, z′) : z′ = z, y′ = y − ϕ(z)y0,

transforms Ω ∩ U onto

Ω′ = {(y′, z′) : z′ ∈ (0, 1), y′/ϕ(z′) ∈ ω − y0}
where ω− y0 is a domain in Rn−1 starshaped with respect to a ball centered at
the origin. Let ũ be defined on Ω′ by

Ω′ 3 (y′, z′) 7→ ũ(y′, z′) = u(y′ + ϕ(z′)y0, z
′).

Then ũ ∈ W 1
2 (Ω′). Furthermore we have |∇x′ũ| ∼ |∇xu| and dx′ = dx. Hence

‖∇ũ‖L2(Ω′) ∼ ‖∇u‖L2(Ω∩U).

One can also observe that

Iγ(v) = Iγ−y0(ṽ), ṽ = ũ|∂Ω′ .

According to what has been said above, we have

Iγ(v) = Iγ−y0(ṽ) ≤ c ‖∇ũ‖L2(Ω′) ≤ c ‖∇u‖L2(Ω∩U).

Finally, let ω be the sum of a finite number of domains starshaped with respect

to a ball: ω =
N⋃

i=1

ωi. Here γ = ∂ω ⊂
N⋃

i=1

γi, γi = ∂ωi and therefore

Iγ(v)2 ≤
N∑

i=1

Iγi
(v)2 ≤ c ‖∇u‖2

L2(Ω∩U).

It remains to note that any domain ω ∈ C0,1 can be represented as the sum of
a finite number of domains starshaped with respect to a ball [2]. So estimate
(2.11) follows. To obtain (2.10) for v ∈ T (Ω), one should extend given v with
finite norm ‖v‖T (Ω) inside Ω in such a way that for the extended function u we
have

‖u‖W 1
2 (Ω) ≤ c ‖v‖T (Ω)

(see [4], [5, 7.2]). Then (2.10) follows from (2.11), which concludes the proof of
the lemma. ¤
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Lemma 2. Let v ∈ T (Ω), v(x) = 0 for x ∈ Γ, z > z0. Then |v|Γ is equivalent
to the seminorm( ∫ ∫

{x,ξ∈Γ:|ζ−z|<2M(z,ζ)}

|v(x)− v(ξ)|2 dsxdsξ

|x− ξ|n
)1/2

,

with the same notation as in (2.6).

Proof. It suffices to establish the estimate∫ ∫

S

|v(x)− v(ξ)|2 dsxdsξ

|x− ξ|n ≤ c|v|2Γ, (2.12)

where the integration on the left is taken over the set

S = {(x, ξ) ∈ Γ× Γ : ϕ(z) < z − ζ < 2ϕ(z)}.
Since v(x) = 0 for z > z0, it follows that the integrand in (2.12) is not zero
only if z−2ϕ(z) < z0. A nondecreasing function z 7→ z−2 ϕ(z) takes the value
no less than z0 for z = 2 z0 because of (2.3). Hence z − 2ϕ(z) < z0 only for
z < 2 z0. We also observe that |x− ξ| ∼ ϕ(z) for (x, ξ) ∈ S. We establish (2.12)
by the so-called fictitious integration. Put

x′ = (y′, z′) ∈ Γ : z′ ∈ δ1(z) = (z − ϕ(z), z − 3ϕ(z)/4),

ξ′ = (η′, ζ ′) ∈ Γ : ζ ′ ∈ δ2(z) = (z − 3ϕ(z)/2, z − 5ϕ(z)/4).

Then
0 < z − z′ < ϕ(z) = M(z, ζ). (2.13)

In view of (2.3) we have

0 < z′ − ζ ′ < 3ϕ(z)/4 < ϕ(z − 3ϕ(z)/2) < ϕ(z′) = M(z′, ζ ′) (2.14)

and
|ζ ′ − ζ| ≤ 3ϕ(z)/4 < ϕ(ζ ′) ≤ M(ζ, ζ ′). (2.15)

Integrating the inequality

c |v(x)− v(ξ)|2 ≤ |v(x)− v(x′)|2 + |v(x′)− v(ξ′)|2 + |v(ξ′)− v(ξ)|2
with respect to x′, ξ′ and using the fact that any of the quantities

|x− x′|, |x′ − ξ′|, |ξ′ − ξ|
does not exceed c |x− ξ| (which is comparable to ϕ(z)), we obtain

c
|v(x)− v(ξ)|2
|x− ξ|n ≤ 1

ϕ(z)n−1

∫

{x′∈Γ:z′∈δ1(z)}

|v(x′)− v(x)|2 dsx′

|x′ − x|n

+
1

ϕ(z)2(n−1)

∫ ∫

{x′,ξ′∈Γ:z′∈δ1(z),ζ′∈δ2(z)}

|v(x′)− v(ξ′)|2 dsx′dsξ′

|x′ − ξ′|n

+
1

ϕ(z)n−1

∫

{ξ′∈Γ:ζ′∈δ2(z)}

|v(ξ′)− v(ξ)|2 dsξ′

|ξ′ − ξ|n .
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In view of (2.13)–(2.15) the integration of the last inequality over S combined
with Fubini’s theorem gives (2.12). The proof of the lemma is concluded. ¤

Remark 1. It follows from (2.5) that the linear map T (Ω) 3 v 7→ ψv ∈ T (Ω)
is continuous if ψ is Lipschitz continuous on ∂Ω 1.

In what follows we need a version of the “Poincaré inequality” for functions
defined on surfaces. Let σ be a measurable subset of the boundary of a domain
of the class C0,1 with positive area |σ|.

Lemma 3. If v ∈ L2(σ), then

‖v − ṽ‖2
L2(σ) ≤ (diam σ)n|σ|−1[v]2σ,

where ṽ is the mean value of v on σ:

ṽ = |σ|−1

∫

σ

v(x)dsx

and [·]σ is the seminorm defined in (1.1).

This assertion easily follows by Hölder’s inequality.

3. Space TW 1
2 (Ω)∗ for a Domain with an Outer Peak

The theorem stated below gives a description of the space T (Ω)∗ dual of T (Ω)
for a domain with an outer peak. To state the theorem, we need a new space

of functions defined on the interval (0, 1) of the real axis. Let W
1/2

2 (0, 1) be the
space of functions in L2,loc(0, 1) having the finite norm

‖u‖
W

1/2
2 (0,1)

=

( 1∫

0

u(z)2ϕ(z)n−1dz

+

∫ ∫

{z,ζ∈(0,1):|ζ−z|<M(z,ζ)}

|u(z)− u(ζ)|2M(z, ζ)n−2

|z − ζ|2 dzdζ

)1/2

,

where, as before, M(z, ζ) = max{ϕ(z), ϕ(ζ)}.
Theorem 1. Let Ω ⊂ Rn be a domain with an outer peak and {µk}k≥0 the

partition of unity for ∂Ω \ {O} constructed above.
(i) If f ∈ T (Ω)∗, then f can be represented as the sum of three summands

f = µ0f + (1− µ0)f̄ + (1− µ0)(f − f̄) = f (1) + f (2) + f (3)

1 We arrive at the same conclusion for an arbitrary domain if we use the following fact:
a function, which is Lipschitz continuous on ∂Ω, can be extended to a Lipschitz continuous
function on Rn with the same Lipschitz constant and the same maximum of the modulus
(Stein; see [8], Ch. VI, § 2). Then

‖ψv‖TW 1
2 (Ω) = inf{‖u‖W 1

2 (Ω) : u|∂Ω = ψv} ≤ inf{‖ψu‖W 1
2 (Ω) : u|∂Ω = v}

≤ c(ψ) inf{‖u‖W 1
2 (Ω) : u|∂Ω = v} = c(ψ)‖v‖TW 1

2 (Ω).
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in T (Ω)∗ with the following properties. The support of f (1) lies in Γ0 and f (1) ∈
W

−1/2
2 (Γ0). The term f (2) defined by

T (Ω) 3 v 7→ 〈f (2), v〉 = 〈f, (1− µ0)v̄〉,
has the support in {x ∈ Γ : z ≤ z0} and belongs to W

1/2

2 (0, 1)∗ in the sense that

|〈f (2), v〉| ≤ const · ‖v̄‖
W

1/2
2 (0,1)

. (3.1)

The support of f (3) lies in {x ∈ Γ : z ≤ z0}, the decomposition

〈f (3), v〉 =
∑

k≥1

〈µk(f − f̄), v〉, v ∈ T (Ω),

holds and the estimate
( ∑

k≥1

‖µk(f − f̄)‖2

W
−1/2
2 (Γk)

)1/2

≤ c ‖(1− µ0)(f − f̄)‖T (Ω)∗ (3.2)

with a constant depending only on Ω is valid.

(ii) Let fk ∈ W
−1/2
2 (Γk) for k ≥ 1. Suppose that supp fk ⊂ Γk, 〈fk, v〉 = 0 if

v ∈ W
1/2
2 (Γk), v(y, z) depends only on z, and

∑

k≥1

‖λkfk‖2

W
−1/2
2 (Γk)

< ∞. (3.3)

Define

T (Ω) 3 v 7→ 〈f (3), v〉 =
∑

k≥1

〈λkfk, v〉. (3.4)

Then f (3) belongs to T (Ω)∗, its support lies in {x ∈ Γ : z ≤ z0} and the estimate

‖f (3)‖T (Ω)∗ ≤ c

( ∑

k≥1

‖λkfk‖2

W
−1/2
2 (Γk)

)1/2

(3.5)

with a constant depending only on Ω holds. Furthermore, let h ∈ W
−1/2
2 (Γ0)

and g ∈ W
1/2

2 (0, 1)∗. Define f (1) = µ0h,

〈f (2), v〉 = 〈g, (1− µ0)v̄〉, v ∈ T (Ω). (3.6)

Then f (1), f (2) ∈ T (Ω)∗ and moreover f (1) ∈ W
−1/2
2 (Γ0).

Proof. (i) The inclusion f (1) = µ0f ∈ T (Ω)∗ follows from Remark 1. Next, we
have

|〈f (1), v〉| = |〈f, µ0v〉| ≤ c ‖f‖T (Ω)∗‖µ0v‖W
1/2
2 (Γ0)

because ‖v‖T (Ω) ∼ ‖v‖
W

1/2
2 (Γ0)

for the functions supported in Γ0. Gagliardo’s

theorem and Remark 1 also imply that

‖µ0v‖W
1/2
2 (Γ0)

≤ c ‖v‖
W

1/2
2 (Γ0)

.

Thus f (1) ∈ W
−1/2
2 (Γ0).



508 V. G. MAZ’YA AND S. V. POBORCHI

Consider the term f (2). Here

|〈f (2), v〉| = |〈f, (1− µ0)v̄〉|, (3.7)

where v̄ = v̄(z) is the mean value of v|Γ, defined in (1.2). By using the continuity
of f and the equivalence ‖v‖T (Ω) ∼ |v|Γ for v supported in {x ∈ Γ : z ≤ z0}, we
dominate quantity (3.7) by expression c(f)|(1−µ0)v̄|Γ (recall that the seminorm
|·|Γ is defined in (2.6)). An application of Lemma 1 gives the following majorant
for the square of quantity (3.7):

c

∫ ∫

S

|(1− µ0(z))v̄(z)− (1− µ0(ζ))v̄(ζ)|2M(z, ζ)n−2 dzdζ

|z − ζ|2 , (3.8)

where S = {(z, ζ) ∈ (0, 1)× (0, 1) : |z− ζ| < M(z, ζ)}. We dominate expression
(3.8) by the sum

c

∫ ∫

S

|v̄(z)− v̄(ζ)|2
|z − ζ|2 M(z, ζ)n−2dzdζ

+ c

∫ ∫

S

|µ0(z)− µ0(ζ)|2
|z − ζ|2 v̄(z)2M(z, ζ)n−2dzdζ.

The last term does not exceed

c

1∫

0

v̄(z)2ϕ(z)n−1dz,

which is not greater than c
∫
Γ
v(x)2ϕ(z)dsx, and we arrive at (3.1) with a con-

stant independent of v. It remains to observe that the right-hand side of (3.1)
does not exceed c‖v‖T (Ω) in view of Lemma 1. Hence f (2) ∈ T (Ω)∗.

We now consider f (3). The inclusion f (3) ∈ T (Ω)∗ is a consequence of the in-

clusions f (1), f (2) ∈ T (Ω)∗. To check (3.2), we choose an element vk ∈ W
1/2
2 (Γk),

k = 1, 2, . . . , such that ‖vk‖W
1/2
2 (Γk)

≤ 1 and

‖µk(f − f̄)‖
W
−1/2
2 (Γk)

≤ 2 〈µk(f − f̄), vk〉.

Put αk = ‖µk(f − f̄)‖
W
−1/2
2 (Γk)

and fix any integer N ≥ 1. Then

N∑

k=1

α2
k ≤ 2

N∑

k=1

αk〈µk(f − f̄), vk〉 = 2 〈f − f̄ ,

N∑

k=1

αkµk(vk − v̊k)〉, (3.9)

where v̊k is the mean value of vk on the surface Γk. Clearly, µk = (1 − µ0)µk

for k ≥ 2. We also have µ1 = (1− µ0)µ1 on [z2, z1] and µ1 = 1− µ0 on [z1, z0].
Thus µ1 can be represented by the product (1− µ0)ν1 where

ν1(z) =

{
µ1(z), z ∈ [z2, z1],
λ1(z), z ∈ [z1, z0].
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We recall that λk ∈ C∞
0 (∆k) is a set of functions for which µkλk = µk, k =

1, 2, . . . Hence ν1 ∈ C∞
0 (z2, z0), 0 ≤ ν1 ≤ 1. Letting νk = µk for k = 2, 3, . . . ,

we rewrite inequality (3.9) as

N∑

k=1

α2
k ≤ 2 〈(1− µ0)(f − f̄),

N∑

k=1

αkνk(vk − v̊k)〉. (3.10)

Assuming that νk(z)vk(x) = 0 outside Γk, define a function v on Γ by

v(x) =
N∑

k=1

αkνk(z)wk(x), wk(x) = vk(x)− v̊k.

Let us now estimate ‖v‖T (Ω) from above. Since supp v ⊂ {x ∈ Γ : z ≤ z0}, it
suffices to estimate |v|Γ. Let x, ξ ∈ Γ. Clearly,

v(x)− v(ξ) =
N∑

k=1

αk (νk(z)wk(x)− νk(ζ)wk(ξ)) ,

and the last sum contains at most four nonzero summands. Therefore

|v(x)− v(ξ)|2 ≤ 4
N∑

k=1

α2
k (νk(z)wk(x)− νk(ζ)wk(ξ))

2 ,

hence

|v|2Γ ≤ 4
N∑

k=1

α2
k|νkwk|2Γ. (3.11)

Note that the function

Γ× Γ 3 (x, ξ) 7→ νk(z)wk(x)− νk(ζ)wk(ξ)

is zero if x /∈ Γk and ξ /∈ Γk so that

|νkwk|2Γ ≤ [νkwk]
2
Γk

+2

∫

Γk

|νk(z)wk(x)|2dsx

∫

{ξ /∈Γk:|z−ζ|<M(z,ζ)}

|x−ξ|−ndsξ, (3.12)

where [·]Γk
is the seminorm defined in (1.1). Next, for z ∈ supp νk, ζ /∈ ∆k (2.4)

implies that |z− ζ| ≥ c ϕ(zk), hence we have |x− ξ| ∼ ϕ(zk) in the last integral.
Thus the second term on the right-hand side of (3.12) does not exceed

c ϕ(zk)
−1

∫

Γk

|vk(x)− v̊k|2dsx (3.13)

with a constant independent of k and vk. Finally, by Lemma 3 expression (3.13)
is not greater than c [vk]

2
Γk

.
To estimate [νkwk]Γk

, we first use the inequality

[νkwk]
2
Γk
≤ c [vk]

2
Γk

+ c

∫

Γk

|vk(x)− v̊k|2dsx

∫

Γk

|νk(z)− νk(ζ)|2
|x− ξ|n dsξ. (3.14)
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According to (2.4), one has

|νk(z)− νk(ζ)| ≤ c ϕ(zk)
−1|z − ζ|,

therefore the last integral over Γk is dominated by

c ϕ(zk)
−2

∫

Γk

|x− ξ|2−ndsξ ≤ c ϕ(zk)
−1.

Then, by Lemma 3 the second term on the right-hand side of (3.14) is majorized
by c [vk]

2
Γk

.
Thus we have established that

|νkwk|Γ ≤ c [vk]Γk

with a constant independent of k and vk. Since ‖vk‖W
1/2
2 (Γk)

≤ 1, it follows from

the last estimate and (3.11) that

|v|2Γ ≤ c

N∑

k=1

α2
k.

So the expression on the right-hand side of (3.10) does not exceed

c ‖(1− µ0)(f − f̄)‖T (Ω)∗

( N∑

k=1

α2
k

)1/2

.

Now (3.10) gives

N∑

k=1

α2
k ≤ c ‖(1− µ0)(f − f̄)‖T (Ω)∗

( N∑

k=1

α2
k

)1/2

.

with a constant independent of αk = ‖µk(f − f̄)‖
W
−1/2
2 (Γk)

and N . Hence we

obtain (3.2).
(ii) Let v ∈ T (Ω). Then

∑

k≥1

|〈λkfk, v〉| ≤
∑

k≥1

|〈λkfk,
∑

|k−i|≤1

µi(v − v̊k)〉|

≤
∑

k≥1

∑

|k−i|≤1

‖λkfk‖W
−1/2
2 (Γk)

‖µi(v − v̊k)‖W
1/2
2 (Γk)

, (3.15)

where v̊k is the mean value of v on Γk. Clearly

‖µi(v − v̊k)‖W
1/2
2 (Γk)

≤ ‖v − v̊k‖L2(Γk) + [µi(v − v̊k)]Γk
.

We estimate the first term on the right by Lemma 3:

‖v − v̊k‖L2(Γk) ≤ c ϕ(zk)
1/2[v]Γk

.

Next, we have

[µi(v − v̊k)]
2
Γk
≤ c [v]2Γk

+ c

∫

Γk

|v(x)− v̊k|2dsx

∫

Γk

|µi(z)− µi(ζ)|2
|x− ξ|n dsξ. (3.16)



ON THE SOLVABILITY OF THE NEUMANN PROBLEM 511

Since |k−i| ≤ 1, it follows that |µi(z)−µi(ζ)| ≤ c ϕ(zk)
−1|z−ζ|, and the second

term on the right-hand side of (3.16) is dominated by the first term in the same
way as the second term on the right in (3.14) has been majorized by the first
one. Thus we have shown that

‖µi(v − v̊k)‖W
1/2
2 (Γk)

≤ c [v]Γk
.

Now (3.15) implies the estimate
∑

k≥1

|〈λkfk, v〉| ≤ c
∑

k≥1

‖λkfk‖W
−1/2
2 (Γk)

[v]Γk

≤ c

( ∑

k≥1

‖λkfk‖2

W
−1/2
2 (Γk)

)1/2( ∑

k≥1

[v]2Γk

)1/2

. (3.17)

We observe that |z − ζ| < 2M(z, ζ) for x, ξ ∈ Γk, whence

∑

k≥1

[v]2Γk
≤

∫ ∫

{x,ξ∈Γ:|ζ−z|<2M(z,ζ)}

|v(x)− v(ξ)|2 dsxdsξ

|x− ξ|n .

In view of Lemma 2 the right-hand side of the last inequality does not exceed

c |(1− µ0)v|2Γ + c ‖µ0v‖2

W
1/2
2 (Γ0)

,

which is not greater than c ‖v‖2
T (Ω) by Remark 1. Now (3.17) implies that

definition (3.4) is correct, f (3) is continuous and (3.5) holds.

The inclusion f (1) ∈ W
−1/2
2 (Γ0) follows from Gagliardo’s theorem and Re-

mark 1. Since T (Ω) ⊂ W
1/2
2 (Γ0), we also have f (1) ∈ T (Ω)∗.

The proof of the continuity, in T (Ω), of the functional f (2) given by (3.6) for

g ∈ W
1/2

2 (0, 1)∗ is carried out in the same way as in assertion (i). The proof of
the theorem is finished. ¤

We now state some consequences of the theorem.

Corollary 1. Let Ω be a domain with an outer peak. If f is a linear functional
defined on T (Ω) and f can be represented as the sum of three terms f (1), f (2),
f (3) with properties described in assertion (ii) of the theorem, then the Neumann
problem (1.2), (1.3) has a unique solution.

Corollary 2. Let Ω be a domain with outer peak and let f be a linear func-
tional defined on T (Ω). For v ∈ T (Ω), supp v ⊂ Γ, define

〈f̄ , v〉 = 〈f, v̄〉.
Then the functional (1− µ0)(f − f̄) is continuous on T (Ω) if and only if

∑

k≥1

‖µk(f − f̄)‖2

W
−1/2
2 (Γk)

< ∞. (3.18)
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Furthermore, the following relation holds
( ∑

k≥1

‖µk(f − f̄)‖2

W
−1/2
2 (Γk)

)1/2

∼ ‖(1− µ0)(f − f̄)‖T (Ω)∗

with constants depending only on Ω.

Proof. The lower bound for ‖(1 − µ0)(f − f̄)‖T (Ω)∗ was obtained in assertion
(i) of the theorem. To establish the upper bound, consider the functionals
fk = µk(f − f̄) satisfying (3.18) for k = 1, 2, . . . It is clear that supp fk ⊂ Γk

and that 〈fk, v〉 = 0 if v ∈ W
1/2
2 (Γk), v(x) depends only on z. We have λkfk =

µk(f − f̄) = fk for each k ≥ 1, and assertion (ii) of the theorem gives

‖
∑

k≥1

fk‖T (Ω)∗ ≤ c

(∑

k≥1

‖fk‖2

W
−1/2
2 (Γk)

)1/2

,

thus concluding the proof. ¤

The preceding assertion enables us to prove the continuity of the linear map

T (Ω) 3 v 7→ v − v̄ ∈ Lq(Γ)

with a maximal Sobolev exponent q and to establish the inclusion f−f̄ ∈ T (Ω)∗

for f ∈ Lq′(∂Ω) with a minimal possible exponent q′ = q/(q − 1).

Corollary 3. Let Ω be a domain with an outer peak, let q = 2(n−1)/(n−2)
and q′ = q/(q − 1). If f ∈ Lq′(∂Ω), then the functional

T (Ω) 3 v 7→ 〈(1− µ0)(f − f̄), v〉 =

∫

Γ

f(x)(v(x)− v̄(z))(1− µ0(z))dsx

is in T (Ω)∗ and the estimate

‖(1− µ0)(f − f̄)‖T (Ω)∗ ≤ c ‖f − f̄‖Lq′ (Γ) (3.19)

is valid with a constant independent of f . Furthermore, for all v ∈ T (Ω) we
have

‖v − v̄‖Lq(Γ) ≤ c ‖v‖T (Ω) (3.20)

with a constant independent of v.

Proof. According to Corollary 2 we should bound the sum on the left of (3.18).

Let v ∈ W
1/2
2 (Γk). An application of Hölder’s inequality gives

|〈µk(f − f̄), v〉| =
∣∣∣∣
∫

Γk

µk(f − f̄)(v − v̊k)dsx

∣∣∣∣

≤ ‖f − f̄‖Lq′ (Γk)‖µk(v − v̊k‖Lq(Γk), (3.21)

where, as above, v̊k denotes the mean value of v on Γk. Since

Ωk = {(y, z) : z ∈ (zk+1, zk−1), y/ϕ(z) ∈ ω}
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is a domain of the class C0,1, Sobolev’s theorem applies. Hence for any u ∈
W

1/2
2 (∂Ωk) the following estimate holds:

‖u‖Lq(∂Ωk) ≤ c ϕ(zk)
n−1

q
−n−1

2 ‖u‖L2(∂Ωk) + c ϕ(zk)
1+n−1

q
−n

2 [u]∂Ωk

= c ϕ(zk)
−1/2‖u‖L2(∂Ωk) + c [u]∂Ωk

.

Here [·]∂Ωk
is the seminorm defined in (1.1). Inserting u = µk(v − v̊k) into the

last inequality (we assume that u = 0 on ∂Ωk \ Γk) and, using Lemma 3 to
bound the first term on the right, we obtain

‖µk(v − v̊k‖Lq(Γk) ≤ c [v]Γk
+ c [µk(v − v̊k]∂Ωk

. (3.22)

The last term will be estimated as follows. First note that

[µk(v − v̊k]
2
∂Ωk

= [µk(v − v̊k]
2
Γk

+ 2

∫

Γk

|µk(z)(v(x)− v̊k)|2dsx

∫

∂Ωk\Γk

|x− ξ|−ndsξ. (3.23)

If x = (y, z) ∈ Γk, z ∈ supp µk, and ξ /∈ Γk, then |x − ξ| ≥ cϕ(zk) in view of
(2.4). Therefore the last term in (3.23) does not exceed

c ϕ(zk)
−1

∫

Γk

|v(x)− v̊k|2dsx,

which is not greater than c [v]2Γk
by Lemma 3. Then we dominate the quantity

[µk(v − v̊k]
2
Γk

by the right-hand side of inequality (3.14) where vk(x) should be
replaced by v(x) and νk should be replaced by µk. The same argument as in
Theorem 1 gives

[µk(v − v̊k]Γk
≤ c [v]Γk

.

Inequalities (3.22), (3.23) combined with the last estimates show that

‖µk(v − v̊k‖Lq(Γk) ≤ c [v]Γk
.

This and (3.21) imply

‖µk(f − f̄)‖
W
−1/2
2 (Γk)

≤ c ‖f − f̄‖Lq′ (Γk).

Thus ( ∑

k≥1

‖µk(f − f̄)‖2

W
−1/2
2 (Γk)

)1/2

≤ c

( ∑

k≥1

‖f − f̄‖2
Lq′ (Γk)

)1/2

. (3.24)

Applying an algebraic inequality
( ∑

k≥1

a2
k

)1/2

≤
( ∑

k≥1

aq′
k

)1/q′

, ak ≥ 0, 0 < q′ < 2,

we majorize the left-hand side of (3.24) by the expression c ‖f − f̄‖Lq′ (Γ). Now

(3.19) follows from Corollary 2.
Turning to (3.20), we note that

〈f, (1− µ0)(v − v̄)〉 = 〈(1− µ0)(f − f̄), v〉
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and that ‖f̄‖Lq′ (Γ) ≤ c ‖f‖Lq′ (Γ). So (3.19) implies

|〈f, (1− µ0)(v − v̄)〉| ≤ c ‖f‖Lq′ (Γ)‖v‖T (Ω) (3.25)

for all f ∈ Lq′(Γ) and v ∈ T (Ω). Let V denote the unit ball in T (Ω). For every
v ∈ V and f ∈ Lq′(Γ) define

Fv(f) = 〈f, (1− µ0)(v − v̄)〉 =

∫

Γ

f(x)(1− µ0(z))(v(x)− v̄(z))dsx.

In view of (3.25), the functionals Lq′(Γ) 3 v 7→ Fv(f) are continuous and
pointwise bounded for v ∈ V . Hence their norms are uniformly bounded, which
means that ‖(1− µ0)(v − v̄)‖Lq(Γ) ≤ const for v ∈ V . Thus

‖(1− µ0)(v − v̄)‖Lq(Γ) ≤ const · ‖v‖T (Ω)

for all v ∈ T (Ω). To conclude the proof of (3.20), we show that

‖µ0(v − v̄)‖Lq(Γ) ≤ const · ‖v‖T (Ω).

By definition (2.2) and Hölder’s inequality we obtain

|v̄(z)|qϕ(z)n−2|γ| ≤
∫

y∈ϕ(z)γ

|v(y, z)|qdγ(y).

Integration over z ∈ (z1, 1) gives

‖µ0v̄‖q
Lq(Γ∩Γ0) ≤ c ‖µ0v‖q

Lq(Γ∩Γ0).

It remains to observe that by Sobolev’s theorem the last norm does not exceed
c ‖µ0v‖W

1/2
2 (Γ0)

which, according to Remark 1, is not greater than ‖v‖T (Ω). The

result follows. ¤
A combination of Theorem 1 with Corollary 3 enables us to state the following

proposition.

Proposition. Let Ω be a domain with an outer peak and 1 ≤ q ≤ 2(n −
1)/(n− 2), q−1 + q′−1 = 1. The following assertions are equivalent.

(A) The Neumann problem (1.2), (1.3) is uniquely solvable for all f∈Lq′(∂Ω).
(B) For all f ∈ Lq′(∂Ω) the functional

T (Ω) 3 v 7→
∫

∂Ω

fvdsx

is continuous.
(C) The space T (Ω) is continuously imbedded into Lq(∂Ω).
(D) The map T (Ω) 3 v 7→ v̄ ∈ Lq(Γ) is continuous.

(E) W
1/2

2 (0, 1) is continuously imbedded in the weighted Lq with the norm

u 7→
( 1∫

0

|u(z)|qϕ(z)n−2dz

)1/q

.
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Proof. (A) → (B). Let E : T (Ω) → W 1
2 (Ω) be a linear continuous extension

operator. For any given f ∈ Lq′(∂Ω) let u denote the solution of the problem
(1.2), (1.3). Since (1.4) holds, we have

∫

∂Ω

fvdsx = [u,Ev] for all v ∈ T (Ω)

so that ∣∣∣∣
∫

∂Ω

fvdsx

∣∣∣∣ ≤ c ‖u‖W 1
2 (Ω)‖Ev‖W 1

2 (Ω) ≤ c ‖u‖W 1
2 (Ω)‖v‖T (Ω),

and the result follows.
(B) → (C). Using the well known fact that bounded functions are dense in

W 1
2 (Ω), one can easily obtain that bounded functions are also dense in T (Ω).

Let

V = {v ∈ T (Ω) ∩ L∞(∂Ω) : ‖v‖T (Ω) ≤ 1}.
For every v ∈ V consider a functional

Lq′(∂Ω) 3 f 7→ Fv(f) =

∫

∂Ω

fvdsx.

Clearly, Fv is continuous on Lq′(∂Ω) and, by assumption, |Fv(f)| ≤ c(f)‖v‖T (Ω).
Thus {Fv}v∈V are pointwise bounded. Hence ‖Fv‖ = ‖v‖Lq(∂Ω) ≤ const for all
v ∈ V . This means that

‖v‖Lq(∂Ω) ≤ const · ‖v‖T (Ω)

for all v ∈ T (Ω) ∩ L∞(∂Ω). Thus T (Ω) is continuously imbedded into Lq(∂Ω).
(C) → (A). Let f ∈ Lq′(∂Ω) and v ∈ W 1

2 (Ω). Then by Hölder’s inequality
∣∣∣∣
∫

∂Ω

fvdsx

∣∣∣∣ ≤ ‖f‖Lq′ (∂Ω)‖v‖Lq(∂Ω).

By assumption, the last norm does not exceed c ‖v‖T (Ω) which is not greater
than c‖v‖W 1

2 (Ω). So the functional on the right in (1.4) is continuous with respect

to v ∈ W 1
2 (Ω). Hence the Neumann problem is solvable.

The equivalence of (C) and (D) follows from Corollary 3.

(D) → (E). Let u ∈ W
1/2

2 (0, 1). Suppose that λ ∈ C∞(0, 1) and

0 ≤ λ ≤ 1, λ|(0,z2) = 1, λ|(z1,1) = 0.

We define v ∈ T (Ω) by v(x) = λ(z)u(z) for x ∈ Γ, and v = 0 on ∂Ω \ Γ. Then,
since v|Γ0 = 0, and in view of Lemma 1, the inequality ‖v̄‖Lq(Γ) ≤ c ‖v‖T (Ω)

transforms to

( 1∫

0

|λ(z)u(z)|qϕ(z)n−2dz

)1/q

≤ c ‖λu‖
W

1/2
2 (0,1)

.
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The same reasoning as in the proof of inequality (3.1) in Theorem 1 shows that
the right-hand side of the last inequality does not exceed c(λ) ‖u‖

W
1/2
2 (0,1)

. Thus

we have

‖λu‖Lq(Γ) ≤ c ‖u‖
W

1/2
2 (0,1)

. (3.26)

On the other hand,

‖(1− λ)u‖Lq(Γ) ≤ c

( 1∫

z2

|u(z)|qdz

)1/q

.

Since W
1/2
2 (z2, 1) is continuously imbedded into Lq(z2, 1), it follows that

( 1∫

0

|(1− λ(z))u(z)|qϕ(z)n−2dz

)1/q

≤ c ‖u‖
W

1/2
2 (z2,1)

≤ c ‖u‖
W

1/2
2 (0,1)

.

The last inequality and (3.26) give the desired result.
(E) → (D). Let v ∈ T (Ω). Lemma 1 says that ‖v̄‖

W
1/2
2 (0,1)

≤ c ‖v‖T (Ω). Hence

( 1∫

0

|v̄(z)|qϕ(z)n−2dz

)1/q

≤ c ‖v‖T (Ω)

which means the continuity of the map T (Ω) 3 v 7→ v̄ ∈ Lq(Γ). The proof of
the proposition is finished. ¤

The results of the paper [6] enable us to complete the above proposition
by one more assertion. Any of statements (A)–(E) above is equivalent to the
following one:
(F) If 1 ≤ q < 2, then

1∫

0

[ z∫

0

ϕ(t)n−2dt

( 1∫

z

dt

ϕ(t)n−1

)q−1
] 2

2−q
dz

ϕ(z)n−1
< ∞,

and if q ≥ 2, then

sup
r∈(0,1)

( r∫

0

ϕ(z)n−2dz

)1/q( 1∫

r

ϕ(z)1−ndz

)1/2

< ∞.

4. A Domain with an Inner Peak

In this section we describe the space dual of TW 1
2 for a domain with the

vertex of an inner peak at the boundary. Let Ω ⊂ Rn be the domain with an
outer peak as above. Here we introduce a domain with an inner peak as Rn \ Ω̄.
For brevity, we write below T (Rn \ Ω̄) instead of TW 1

2 (Rn \ Ω̄). According
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to Theorems 7.3 and 7.4.2 in [5] (see also [3], [4]), the norm in T (Rn \ Ω̄) is
equivalent to the norm

(
‖v‖2

W
1/2
2 (Γ0)

+

∫

Γ

v(x)2ϕ(z)−1dsx + |v|2Γ
)1/2

for n > 3 and to the norm{
‖v‖2

W
1/2
2 (Γ0)

+ |v|2Γ +

∫

Γ

v(x)2dsx

ϕ(z) log(z/ϕ(z)

+

∫ ∫

{x,ξ∈Γ:|z−ζ|>M(z,ζ)}

|v(x)− v(ξ)|2 M(z, ζ)−2χ(1/2,2)(z/ζ)dsxdsξ

|x− ξ|( log(1 + |x− ξ|/M(z, ζ))
)2

}1/2

for n = 3. Here we have used the same notation as in (2.6), and if n = 3 it
must be additionally assumed that ϕ′(z) = O(ϕ(z)/z)) for z → 0.

The norms just indicated induce the following norms in W
1/2

2 (0, 1), which are
the restriction of norms in T (Rn \ Ω̄) to the subspace of functions with support
in Γ, depending only on z. Thus for n > 3 we can take the norm

( 1∫

0

u(z)2ϕ(z)n−3dz +

∫ ∫

{z,ζ∈(0,1):|ζ−z|<M(z,ζ)}

|u(z)− u(ζ)|2M(z, ζ)n−2

|z − ζ|2 dzdζ

) 1
2

,

and for n = 3 the norm in W
1/2

2 (0, 1) can be written in the form

( 1∫

0

u(z)2dz

log(z/ϕ(z))
+

∫ ∫

{z,ζ∈(0,1),z−1ζ∈(1/2,2)}

|u(z)− u(ζ)|2
|z − ζ| Q

( |z − ζ|
M(z, ζ)

)
dzdζ

) 1
2

,

where

Q(t) =

{
t−1, t ∈ (0, 1),
(log(et))−1, t > 1.

The following theorem gives a description of the space (TW 1
2 )∗ for a domain

with an inner peak.

Theorem 2. Let Ω be a domain with an outer peak and let {µk}k≥0 be the
partition of unity from Theorem 1.
(i) Any functional f in T (Rn \ Ω̄)∗ can be represented as the sum

f = µ0f + (1− µ0)f̄ + (1− µ0)(f − f̄),

where each term belongs to the same space. Furthermore the first term is in

W
−1/2
2 (Γ0) and has support in Γ0. The second term is supported in {x ∈ Γ : z ≤

z0} and belongs to the space W
1/2

2 (0, 1)∗ in the sense that estimate (3.1) holds,
where Ω on the right-hand side should be replaced by Rn \ Ω̄. For the third term
we have

(1− µ0)(f − f̄) =
∑

k≥1

µk(f − f̄)
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and (3.2) is valid if Ω is replaced by Rn \ Ω̄ on the right.

(ii) Suppose that fk ∈ W
−1/2
2 (Γk) satisfy condition (ii) of Theorem 1, k =

1, 2, . . . . Suppose further that g and h belong to W
1/2

2 (0, 1)∗ and W
−1/2
2 (Γ0),

respectively. Then each functional f (1) = µ0h,

T (Rn \ Ω̄) 3 v 7→ 〈f (2), v〉 = 〈g, (1− µ0)v̄〉,
T (Rn \ Ω̄) 3 v 7→ 〈f (3), v〉 =

∑

k≥1

〈λkfk, v〉

is continuous in T (Rn \ Ω̄). Moreover, f (1) ∈ W
−1/2
2 (Γ0), and the norm of f (3)

is dominated by the right-hand side of (3.5).

The proof of Theorem 2 is similar to that of Theorem 1.
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