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Abstract. Originally I. N. Vekua’s theory of generalized analytic functions
dealt only with linear systems of partial differential equations in the plane.
The present paper shows why I. N. Vekua’s ideas are also fruitful for the
solution of linear and non-linear partial differential equations in higher di-
mensions.

One of the highlights of the theory of generalized analytic functions in the
plane is the reduction of boundary value problems for general (linear or non-
linear) equations to boundary value problems for holomorphic functions using
the well-known weakly singular and strongly singular T - and Π-operators,
respectively. The present paper is mainly aimed at reducing boundary value
problems in higher dimensions to boundary value problems for monogenic
functions.
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1. Goal of the Paper

Only some of the results of mathematical research have the chance to become
a basic component of mathematics. The theory of generalized analytic functions
founded by I. N. Vekua [1] and L. Bers [2] succeeded in being included in the
pool of important techniques of the theory of partial differential equations. The
reason is that the theory of generalized analytic functions is in a position to use
the advantages of complex analysis for solving more general systems of partial
differential equations than this is possible in the framework of classical complex
analysis.

Originally I. N. Vekua’s theory investigated only linear uniformly elliptic
systems for two desired real-valued functions in the plane. Today I. N. Vekua’s
ideas are applied to partial differential equations in higher dimensions. Of
course, a theory of the same high generality could not yet be developed so
far, and in the sequel we shall explain why a comparable generality cannot be
expected.
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However, we shall be in a position to reduce boundary value problems for non-
linear systems in higher dimensions to analogous boundary value problems for
monogenic functions of Clifford analysis. This method generalizes the reduction
of boundary value problems for non-linear systems in the plane to boundary
value problems for holomorphic functions.

2. Short Survey on Generalized Analytic Functions in the Plane

2.1. Linear systems for two desired real-valued functions. Generalized
analytic functions in the sense of I. N. Vekua are solutions to an equation of
form

∂zw = A(z)w + B(z)w. (1)

This differential equation is the canonical form of a linear and uniformly elliptic
first order system of two real equations for two desired real-valued functions u
and v. The complex rewriting of this system as a complex equation for w =
u + iv contains, in general, both first order derivatives ∂zw and ∂zw. However,
carrying out a transformation of the independent variable z and introducing a
slightly modified desired function, one comes to the above equation (1). The
new independent variable ζ has to satisfy the Beltrami equation ∂zζ = q(z)∂zζ,
where |q(z)| ≤ q0 < 1.

The main results of the theory of generalized analytic functions are:

1. Factorization of a generalized analytic function in the form Φw0 where
Φ is an analytic function and w0 6= 0 everywhere.

2. Construction of generalized analytic functions having prescribed zeros
and prescribed singularities.

3. Solution of boundary value problems.

The factorization is a special case of a general representation theorem proved
by L. Bers and L. Nirenberg [3]. The factorization shows, especially, that the
zeros of a generalized analytic function are isolated unless the function va-
nishes identically (Carleman’s Theorem [4]). A short and simple proof of the
factorization theorem and of Carleman’s Theorem is given by I. N. Vekua [5].

The construction of generalized analytic functions with prescribed zeros leads,
in particular, to generalized Cauchy kernels, to a generalized Cauchy Integral
Formula and generalized Cauchy type integrals. Boundary value problems for
generalized analytic functions can be reduced to singular integral equations for
the desired densities of generalized Cauchy type integrals.

2.2. Linear systems for 2n desired real-valued functions. A first general-
ization of the theory of generalized analytic functions is B. Bojarski’s theory [6]
of generalized analytic vectors. This is a complex method for the investigation
of linear and uniformly elliptic systems of 2n equations for 2n desired real-
valued functions u1, . . . , un, v1, . . . ,vn. Introducing n complex-valued functions
wj = uj + ivj, j = 1, . . . , n, the system can be reduced to a vector differential
equation for w = (w1, . . . , wn) of the form

∂zw −Q(z)∂zw = A(z)w + B(z)w, (2)
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whose coefficients Q(z), A(z) and B(z) are n× n-matrices. Since the complex
rewriting of a given system for 2n desired functions contains 2n conplex deriva-
tives ∂zwj and ∂zwj, in the case n > 1 it is in general impossible to eliminate the
term ∂zw from (2). However, the matrix Q(z) has a special simplified structure.

B. Bojarski’s paper [6] contains a general theory. An overview on various
types of boundary value problems for generalized analytic vectors can be found
in G. F. Manjavidze’s and G. Ya. Akhalaya’s paper [7].

An alternative approach to complex methods for linear systems of 2n de-
sired real-value functions makes use of hypercomplex numbers

∑r−1
k=0(ak+ibk)e

r,
where ak and bk are real, i2 = −1, ie = ei and er = 0 (see A. Douglis [8]). Using
this commutative associative algebra generated by i and e, R. P. Gilbert and
G. Hile developed in [9] a generalized hyperanalytic function theory (see also
R. P. Gilbert’s Lecture Notes [10]).

2.3. Non-linear equations. Provided a certain solvability condition is sat-
isfied (see Subsection 5.2), fully non-linear systems for 2n desired real-valued
functions can be reduced to equations of the form

∂zw = F (z, w, ∂zw) (3)

for the desired vector w = (w1, . . . , wn) with complex-valued components (see
the paper [11] and the book [12]). While for linear systems in the case n = 1
the term ∂zw can be eliminated, the normal form (3) for non-linear systems
contains this derivative, in general. Nevertheless, boundary value problems for
(3) can be reduced to boundary value problems for holomorphic functions. This
reduction is based on the following construction:

Consider a non-linear differential equation of the form

Lu = F (x, u), (4)

where x varies in a domain Ω in an Euclidean space. Suppose that L is a linear
operator having a fundamental solution E(x, ξ) with singularity at ξ. Then
solutions of (4) can be represented in the form

u(x) = ũ(x) +

∫

Ω

E(x, ξ)F
(
ξ, u(ξ)

)
dξ, (5)

where ũ is a solution of the linear differential equation Lũ = 0. The right-hand
side of (5) defines an operator whose fixed points are solutions of (4). Choosing
the functions ũ (depending on u) in a way such that the right-hand sides of (5)
satisfy the given boundary condition, it follows that a possibly existing fixed
element is a solution of the boundary value problem under consideration.

Applying this idea to the partial complex differential equation (3), boundary
value problems for (3) can be reduced to boundary value problems for holomor-
phic functions.

Whereas boundary value problems for linear equations can be reduced to
(singular) boundary integral equations (see Subsection 2.1), one obtains here
domain integral equations. However, this reduction has an important advan-
tage: Since one needs a fundamental solution only to the Cauchy–Riemann
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operator on the left-hand side of (3), the kernel of the corresponding integral
equation is always the Cauchy kernel (whereas the Cauchy kernel to a general-
ized analytic function in the sense of Subsection 2.1 depends on the coefficients
A(z) and B(z) of (1)). Of course, if the right-hand side F (z, w, ∂zw) depends
not only on z and w, but also on ∂zw, then there appears the strongly singular
Π-operator (whose kernel is the square of the Cauchy kernel).

A well-posed boundary value problem for (3) is the following Dirichlet prob-
lem for a simply connected domain: one prescribes the real part of the desired
solution on the whole boundary and the imaginary part at one point (some-
times this problem is quoted as Schwarz problem). This problem is well-posed
because the real part of a holomorphic function satisfies the Laplace equation,
and thus the real part can be chosen arbitrarily on the whole boundary. After
constructing the real part in the whole domain, the imaginary part can be cal-
culated by using the Cauchy–Riemann system. This is a compatible first order
system because the real part satisfies the Laplace equation. Consequently, the
imaginary part is uniquely determined up to an arbitrary constant.

In case the boundary values of the real part are only continuous, it can
happen that the imaginary part does not have limits on the boundary. In order
to ensure the existence of the imaginary part in the closure of the (smoothly
bounded) domain Ω, one assumes that the boundary values of the real part
are Hölder continuous. In case the boundary values of the real part are even
Hölder continuously differentiable, the desired solution is Hölder continuously
differentiable Ω. Then the desired solution turns out to be a fixed-point of
the corresponding operator in the space of complex-valued functions which are
Hölder continuously differentiable in Ω (see [12]).

In order to solve boundary value problems with boundary data which are only
Hölder continuous (but not Hölder continuously differentiable), one can solve
the fixed-point problems in the space of Hölder continuous functions whose first
order derivatives belong to an Lp-space. This is done in the paper [13] of G. F.
Manjavidze and the author. Still more general boundary data are those which
belong piecewise to fractional order spaces. Under this assumption the Dirichlet
boundary value problem is solved in the paper [14] of G. F. Manjavidze, H. L.
Vasudeva and the author.

3. Previous Methods and Results in Real Higher-Dimensional
Euclidean Spaces

Generally speaking, the theory of generalized analytic functions tries to apply
methods of complex analysis to systems of differential equations which are more
general than the Cauchy–Riemann system. Clearly, the more general a system
is, the less general results can be expected. Therefore it makes sense to consider
classes of systems which are not too general. In the case of the plane such
classes are p-analytic and (p, q)-analytic functions for which a special theory
can be developed (see G. M. Polozhĭı’s monograph [15]).
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Such relations between the depth of the expected results and the generality
of the systems under consideration appear, especially, in the case of higher-
dimensional (real) Euclidean spaces. Thus understandably the first investiga-
tions were devoted to systems with constant coefficients. A. V. Bitsadze [16],
for instance, proves the Cauchy–Pompeiu Formula in R3 implying the Cauchy
Integral Theorem for potential vectors v (for which div v = curl v = 0). Gener-
alized analytic vectors in higher dimensions can be defined by the generalized
Moisil–Théodurescu system

div v + (a · v) = 0, grad ϕ + curl v + [v × b] + cϕ = 0

and the generalized Riesz system
∑ [

∂xj
uj + ajuj

]
= 0, ∂xk

uj − ∂xj
uk − bkuj + bjuk = 0,

respectively. A unified approach to such systems is possible in the framework
of Clifford analysis because both systems are special cases of Du + Hu = 0,
where u is the desired Clifford-algebra-valued function and D =

∑n
j=0 ej∂xj

is
the Cauchy–Riemann operator of Clifford analysis, where, as usual, e0 = 1,
e2
1 = · · · = e2

n = −1 and ejek + ekej = 0 if j, k = 1, . . . , n and j 6= k. If, in
particular, the coefficient H is a constant (in the Clifford algebra), the above
linear differential equation for generalized analytic functions has been investi-
gated by E. Obolashvili (see her book [17]; if H is a constant, then solutions
can be constructed using Fourier integral transformations). Higher order differ-
ential equations can also be solved in the framework of Clifford analysis, see K.
Gürlebeck and W. Sprößig [18], V. V. Kravchenko and M. V. Shapiro [19] and
E. Obolashvili [20]. Assuming that e2

j = +1 or e2
j = 0 for some j, hyperbolic

and parabolic differential equations can also be included in Clifford analysis.
Solving real partial differential equations within the framework of Clifford

analysis has, generally speaking, some advantages. Firstly, it leads to the uni-
fication of statements, secondly, in some cases one obtains simpler explicit rep-
resentations. However, using the matrix notation instead of a rewriting in the
language of Clifford analysis, sometimes more general results can be obtained.
An example is given in the paper [21], where an initial value problem for a hy-
perbolic first order system is solved using the matrix notation. The solvability
conditions obtained in [21] are weaker than those obtained by E. Obolashvili in
[17] in the framework of Clifford analysis.

4. Boundary Value Problems for Monogenic Functions

A (left-)monogenic function is a solution of the differential equation Du = 0.
Its real-valued components are solutions of the Laplace equation. However, they
are not independent of each other because they are connected by the Cauchy–
Riemann system Du = 0. In other words, one cannot arbitrarily prescribe the
boundary values of all of the real-valued components. The situation is similar
to the case of holomorphic functions in the complex plane: Prescibing the real
part on the boundary, the imaginary part is then already uniquely determined
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up to an arbitrary constant (see Subsection 2.3). In the sequel we shall discuss
the case of R3.

Denote the independent variables in R3 by x0, x1, x2. The real-valued
components of a monogenic functions are denoted by u0, u1, u2, u12. Then
the Cauchy–Riemann system can be written in the form

∂x0u0 = ∂x1u1 + ∂x2u2, (6)

∂x0u12 = −∂x1u2 + ∂x2u1, (7)

∂x1u12 = +∂x2u0 + ∂x0u2, (8)

∂x2u12 = −∂x0u1 − ∂x1u0. (9)

In order to formulate a well-posed boundary value problem, we consider cylin-
drical domains Ω of the form

Ω =
{

x = (x0, x1, x2) : ψ1(x1, x2) ≤ x0 ≤ ψ2(x1, x2), (x1, x2) ∈ M
}

,

where M is a simply connected domain in the (x1, x2)-plane and ψ1 and ψ2 are
continuously differentiable in M . Then the lower base of Ω in the direction of
the x0-axis is

S =
{

x = (x0, x1, x2) : x0 = ψ1(x1, x2), (x1, x2) ∈ M
}

.

Since the real-valued components of a monogenic function are solutions of the
Laplace equation, the following Dirichet boundary value problem is uniquely
solvable for the Cauchy–Riemann system (6)-(9):

Find a monogenic function u satisfying the following conditions:

• Two components u1 and u2 are arbitrarily prescribed on the whole
boundary ∂Ω of Ω.

• The component u0 is given on the lower base S.
• The last component u12 can be chosen arbitrarily at one point of Ω.

Indeed, after having chosen u1 and u2, the right-hand side of (6) is a given
continuous function (provided the boundary values of u1 and u2 are continuously
differentiable on S). Then equation (6) leads for each fixed pair (x1, x2) to
u0(x0, x1, x2) by integration in the x0-direction.

It remains to calculate u12. Equations (7), (8) and (9) are a first order system
of the form

∂xj
u12 = pj, j = 0, 1, 2,

whose right-hand sides are now given functions depending on x. The right-hand
sides are compatible, because we have, for instance,

∂x1p0 − ∂x0p1 =
(−∂2

x1
u2 + ∂x1∂x2u1

)− (
∂x0∂x2u0 + ∂2

x0
u2

)

= ∂2
x2

u2 + ∂x1∂x2u1 − ∂x0∂x2u0

= ∂x2 (∂x2u2 + ∂x1u1 − ∂x0u0) = 0

in view of the Laplace equation for u2 and equation (6).
In the literature one can also find other boundary conditions. E. Obolashvili

[22] prescribes, for instance, two components on the whole boundary, whereas
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the two remaining coefficients have to satisfy the Riemann–Hilbert boundary
condition on a curve on the boundary. The above-formulated boundary con-
dition is, however, an immediate generalization of the boundary condition for
holomorphic functions discussed in Subsection 2.3.

5. Generalized Monogenic Functions

5.1. Definition. A generalized analytic function in the z-plane is a function
w(z) in case ∂zw can be expressed by z, w and ∂zw (see equation (3)). Since
Clifford analysis replaces the Cauchy–Riemann equation ∂zw = 0 by Du = 0,
a generalized monogenic function can be defined as a solution of a differential
equation of the form

Du = F (x, u, ∂x0uA, . . . , ∂xnuA) , (10)

where x = (x0, x1, . . . , xn) and uA, A ∈ {
0, 1, . . . , n, 12, . . . , 12 . . . n

}
, are the 2n

real-valued components of u. Of course, the differential equation is a linear one
if its right-hand side F is linear in uA and ∂xj

uA, j = 0, 1, . . . , n. Using the Bel-
trami equation in the case of a scalar-valued linear differential equation in the
plane, the term ∂zw on the right-hand side can be eliminated (see Subsection
2.1). This elimination is no longer possible already in the case of generalized an-
alytic vectors so that the corresponding canonical form (2) of the system under
consideration contains the term ∂zw, in general. The same situation appears in
the case of linear systems (10) because one has only n + 1 coordinates, whereas
the number of (real) derivatives equals (n+1)2n. Consequently, linear equations
of the form Du = F (x, u) (where the right-hand side does not depend on the
derivatives) are only special systems. Nevertheless, for such linear equations
a far-reaching theory of qualitative properties of solutions of such systems is
developed in B. Goldschmidt’s papers [23, 24].

On the one hand, also in the case of linear systems (10) one cannot eliminate
all first order derivatives on the right-hand side, as this is possible in the case
of scalar linear equations (1) in the plane. On the other hand, we shall show
that all 2n first order derivatives ∂x0uA can be eliminated. This can be done
even in the case of fully non-linear systems (see Subsection 5.3 below). This
construction generalizes an analogous procedure for fully non-linear systems in
the plane which will be sketched in the following Subsection 5.2.

5.2. A complex normal form for first order systems in the plane. A
fully non-linear first order system for two desired real-valued functions u(x, y)
and v(x, y) has the form

Hj(x, y, u, v, ∂xu, ∂yu, ∂xv, ∂yv) = 0, j = 1, 2. (11)

Introduce four linear combinations p1, p2, q1, q2 of the first order derivatives
∂xu, ∂yu, ∂xv, ∂yv, where p1 + ip2 = ∂z(u + iv) and q1 + iq2 = ∂z(u + iv). Then
replace the first order derivatives of u and v in (11) by these linear combinations.
In case the new system can be solved with respect to q1 and q2, one obtains the
complex normal form (3), cf. [11, 12].

Next an analogous construction will be carried out in higher dimensions.
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5.3. A Clifford-analytic normal form of first order systems in higher
dimensions. Consider a fully non-linear first order system of 2n equations for
2n desired real-valued functions u0, u1, . . . , un, u12, . . . , u12...n depending on n+1
real variables x0, x1, . . . , xn:

Hj (x0, . . . , xn, u0, . . . , u12...n, ∂x0u0, . . . , ∂xnu12...n) = 0, j = 1, . . . , 2n. (12)

The 2n desired real-valued functions can be interpreted as the components
of a Clifford-algebra-valued function u(x) depending on x = (x0, x1, . . . , xn).
Clearly, Du has also 2n real components qA which can be expressed by the first
order derivatives of the real-valued components uA of u. The definition of the
Cauchy–Riemann operator D shows that

qA = ∂x0uA + derivatives with respect to x1, . . . , xn.

Consequently, all derivatives with respect to x0 can be expressed by the 2n

real variables qA and derivatives with respect to x1, . . . , xn. Carrying out this
substitution, system (12) turns out to be a system of 2n equations depending
on the (n+1)+(n+2)2n variables x0, . . . , xn, uA, qA, ∂xk

uA, k = 1, . . . , n. Now
assume that this system can be solved for the 2n variables qA. Then system
(12) passes into its Clifford-analytic normal form

Du = F (x, u, ∂x1u0, . . . , ∂xnu12...n). (13)

5.4. Reduction of boundary value problems to fixed-point problems.
Consider a first order system, for instance system (12) in its Clifford-analytic
normal form (13). Note that

1

ωn+1

· x− ξ

|x− ξ|n+1
(14)

is a fundamental solution of the Cauchy–Riemann equation Du = 0 in Rn+1

with singularity at ξ (where ωn+1 is the surface measure of the unit sphere,
while x means x0 − e1x1 − · · · − enxn in case x = x0 + e1x1 + · · · = enxn).
By representation (5) in Subsection 2.3, a solution u(x) of (13) in Ω can be
represented by

u(x) = ũ(x) +
1

ωn+1

∫

Ω

x− ξ

|x− ξ|n+1
F

(
ξ, u(ξ), ∂x1uA(ξ), . . . , ∂xnuA(ξ)

)
dξ,

where ũ is monogenic. Therefore fixed points of the operator

U(x) = ũ(x) +
1

ωn+1

∫

Ω

x− ξ

|x− ξ|n+1
F

(
ξ, u(ξ), ∂x1uA(ξ), . . . , ∂xnuA(ξ)

)
dξ (15)

are solutions of the non-linear equation (13) provided ũ is monogenic.
Now we consider the boundary value problem

Bu = g. (16)

Suppose that this boundary value problem is uniquely solvable for monogenic
functions. Then one gets the following statement.
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Theorem. Choosing the monogenic function ũ depending on u as a solution
of the boundary value problem

Bũ(x) = g(x)− 1

ωn+1

∫

Ω

x− ξ

|x− ξ|n+1
F

(
ξ, u(ξ), ∂x1uA(ξ), . . . , ∂xnuA(ξ)

)
dξ,

the fixed points of operator (15) are solutions of the boundary value problem
(13), (16).

The existence of fixed points can be proved using fixed-point theorems such
as the contraction-mapping principle. Notice, finally, that this reduction of the
boundary value problem (13), (16) to the fixed-point problem for the operator
(15) is also possible if the right-hand side of (13) depends on the derivatives
∂x0uA. In such a case the reduction of this system to the Clifford-analytic
normal form (13) is not necessary.

5.5. Application of fixed-point theorems. The investigation of operator
(15) in the framework of Clifford analysis is similar as this can be done in the
complex plane (see Subsection 2.3). In the sequel we sketch the crucial points.
Calculating the derivatives of the images U(x) with respect to xj, j = 0, 1, . . . , n,
the following strongly singular integrals occur

∫

Ω

h(ξ)∂xj

(
x− ξ

|x− ξ|n+1

)
dξ, (17)

where h(ξ) = F
(
ξ, u(ξ), ∂x1uA(ξ), . . . , ∂xnuA(ξ)

)
. This can be rewritten as

∫

Ω

(
h(ξ)− h(x)

)
∂xj

(
x− ξ

|x− ξ|n+1

)
dξ + h(x)

∫

Ω

∂xj

(
x− ξ

|x− ξ|n+1

)
dξ. (18)

Suppose the right-hand side F satisfies a Lipschitz condition with respect to
the desired uA and their derivatives. Then the absolute value of h(ξ)−h(x) can
be estimated by const · |x− ξ|λ provided u is Hölder continuously differentiable
with exponent λ, 0 < λ < 1. Thus the first integral in (18) turns out to be
weakly singular.

Let Ωε be the domain Ω from which the ball |x− ξ| ≤ ε is removed. Then
∫

Ωε

∂xj

(
x− ξ

|x− ξ|n+1

)
dξ =

∫

∂Ω

x− ξ

|x− ξ|n+1
Njdµ +

∫

|x−ξ|=ε

x− ξ

|x− ξ|n+1
Njdµ,

where (N0, N1, . . . , Nn) is the outer unit normal and dµ is the measure element
on the boundary. Notice that the Euclidean length of x − ξ equals ε and
dµ = εndµ1, where dµ1 is the surface element of the unit sphere in Rn+1. Hence
the second integral on the right-hand side of the last formula does not depend
on ε, and so its limit exists as ε → 0. Consequently, the second integral in (18)
exists as a principal value, and it can be expressed by a Cauchy type integral
over ∂Ω.
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Mapping properties of singular integral operators can be found, for instance,
in C. Miranda’s book [25]. Concerning the application of fixed-point methods
to partial differential equations see also [26].

6. Recent Trends. Outlook

6.1. Specific features of higher-dimensional cases. On the one hand, the
preceding sections show that many constructions of the theory of generalized
analytic functions in the complex plane can be carried out in higher-dimensional
Euclidean spaces as well. On the other hand, in the higher-dimensional case
many aspects are still to be developed in greater detail. This concerns, for
instance, boundary value problems for monogenic functions, Cauchy type inte-
grals, singular integral equations in higher dimensions, and mapping properties
of integral operators.

6.2. Generalized analytic functions in several complex variables. Gen-
eralizations of the theory of generalized analytic functions considered in the
present paper concern generalizations to real higher-dimensional spaces. How-
ever, there are also generalizations to several complex variables. In the paper
[27], for instance, I. N. Vekua’s idea [5] for proving Carleman’s Theorem (see
Subsection 2.1) has been used in order to prove a factoriation theorem for gen-
eralized analytic functions in several complex variables. Under suitable assump-
tions one can show that the set of all zeros of a generalized analytic function in
several complex variables is an analytic set (in the sense of the theory of holo-
morphic functions in several complex variables), whereas the zeros are isolated
in the case of a not identically vanishing generalized analytic function in the
complex plane.

Many interesting results have also been obtained for second order elliptic
equations in several complex variables, see H. Begehr’s and A. Dzhuraev’s ar-
ticle [28], where further references can be found. Such systems generalize, in
particular, the famous Bitsadze equation ∂z

2u = 0 (cf. [29]) which is elliptic
but not strongly elliptic.

6.3. Generalized analytic and generalized monogenic functions as ini-
tial function. Most of the applications of complex methods to partial differen-
tial equations deal with boundary value problems. Initial value problems, how-
ever, can also be solved using tools of complex analysis. Cauchy–Kovalevskaya
problems, for instance, are solvable in case the initial functions are holomor-
phic. Since holomorphic and generalized analytic functions have many common
properties, one can expect that initial value problems with generalized analytic
initial functions are also solvable. This is indeed possible, see the paper [30]
or the booklet [31]. An important tool for the corresponding constructions is
again the representation of generalized analytic functions by holomorphic ones.

Concerning higher dimensions, one can also solve initial value problems with
monogenic or generalized monogenic functions. A special class of generalized
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monogenic functions is the one satisfying a differential equation with the anti-
monogenic right-hand side (in the case of the complex plane a differential equa-
tion with an anti-monogenic right hand side has the form ∂zw = b(z)w). Further
references can be found in the paper [32] of Nguyen Thanh Van and the author.

The possibility to solve initial value problems in suitably chosen classes of
generalized analytic or generalized monogenic functions leads, finally, to the
concept of associated spaces (see [33]): an initial function belonging to an as-
sociated space is admissible. Since an evolution operator may possess different
associated spaces, one can decompose initial functions into components belong-
ing to different associated spaces. That way even ill-posed initial value problems
are solvable (see [34]).

6.4. The Cimmino system. At present, complex methods for partial differen-
tial equations in higher dimensions are mainly applied either in the framework
of Clifford-algebra-valued functions or in the framework of (complex-valued)
holomorphic functions in several complex variables. In both cases the number
of desired (real-valued) functions is different from the number of (real-valued)
independent variables. That makes a big difference from the case of complex-
valued functions in the plane, where both numbers of (real) independent and
dependent variables equal two.

There is another possibility to apply complex methods to systems of partial
differential equations with the same number of (more than two) independent
and dependent variables. This is the case of the Cimmino system

∂x1u1 − ∂x2u2 + ∂x3u3 − ∂x4u4 = 0, (19)

∂x2u1 + ∂x1u2 − ∂x4u3 − ∂x3u4 = 0, (20)

∂x3u1 − ∂x4u2 − ∂x1u3 + ∂x2u4 = 0, (21)

∂x4u1 + ∂x3u2 + ∂x2u3 + ∂x1u4 = 0 (22)

for four desired real-valued functions uj depending on four real variables xj,
j = 1, 2, 3, 4. This system was introduced in 1941 by G. Cimmino [35] in
connection with systems whose solutions satisfy the Laplace equation. Using
its complex form ∂zf+∂wg = 0, ∂wf−∂zg = 0 (where z = x1+ix2, w = x3+ix4,
f = u1 + iu2, g = u3 + iu4), recently Sorin Dragomir and E. Lanconelli [36]
resumed investigating the Cimmino system. They proved, for instance, the
Cauchy–Pompeiu Integral Formula.

The Cimmino system (19)–(22) is a system in four real variables, whereas the
Cauchy–Riemann system (6)–(9) is a system in only three real variables. There-
fore the Dirichlet boundary value problem of Section 4 should to be modified,
and we shall come to an easier formulation. Indeed, first one has to take into
consideration that all components uj of a solution to the Cimmino system satisfy
the Laplace equation. Here even three components u1, u2, u3 can be arbitrarily
prescribed on the whole boundary. Then the Cimmino system can be inter-
preted as a first order system of the form ∂xj

u4 = pj, j = 1, 2, 3, 4, for the fourth
component u4. One has p1 = −∂x4u1−∂x3u2−∂x2u3, p2 = −∂x3u1+∂x4u2+∂x1u3

and so on. A straightforward calculation shows that this system is compatible
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because one has, for instance, ∂x2p1 − ∂x1p2 = 0 in view of the Laplace equa-
tion for u3 and equations (19) and (20). Consequently, u4 can be arbitrarily
prescribed at one point (we suppose, of course, that each closed curve is homo-
topically equal to a point).

So far the inhomogeneous Cimmino system has been investigated only for
right-hand sides depending only on the variable x = (x1, x2, x3, x4). The ques-
tion is, how general Cimmino systems are whose right-hand sides depend on the
desired u = (u1, u2, u3, u4) and its first order derivatives. Consider a first order
system

Hj(x, u, ∂x1u1, . . . , ∂x4u4) = 0, j = 1, 2, 3, 4. (23)

Denote the four linear combinations of the first order derivatives on the left-
hand side of (19)–(22) by q1, q2, q3 and q4 respectively. So we have, for instance,
∂x1u1 − ∂x2u2 + ∂x3u3 − ∂x4u4 = q1. Clearly, the four derivatives ∂x4uj can be
expressed by q1, q2, q3, q4. Substituting these expressions into (23), one obtains
a system of four equations in x, u, q1, q2, q3, q4, ∂x1u1, . . . , ∂x3u4. Now suppose
that the new system can be solved for q1, q2, q3, q4. Then (23) takes the form

∂x1u1 − ∂x2u2 + ∂x3u3 − ∂x4u4 = F1(x, u, ∂x1u1, . . . , ∂x3u4), (24)

∂x2u1 + ∂x1u2 − ∂x4u3 − ∂x3u4 = F2(x, u, ∂x1u1, . . . , ∂x3u4), (25)

∂x3u1 − ∂x4u2 − ∂x1u3 + ∂x2u4 = F3(x, u, ∂x1u1, . . . , ∂x3u4), (26)

∂x4u1 + ∂x3u2 + ∂x2u3 + ∂x1u4 = F4(x, u, ∂x1u1, . . . , ∂x3u4). (27)

The new system can be considered as some kind of normal form which is similar
to the normal forms (3) and (13) in Subsections 2.3 and 5.3, respectively.

6.5. Quaternionic analysis. Generally speaking, generalized monogenic func-
tions in Clifford analysis are solutions of systems of 2n real equations for 2n

desired real-valued functions in n + 1 real variables. The numbers of desired
functions and independent real variables coincide only in the case of the complex
plane (n = 1). However there is still another case in the framework of Clifford
analysis in which the number of desired real-valued components is equal to the
number of real variables. This is the case of quaternionic analysis.

Quaternions x = x1 + ix2 + jx3 +kx4 have four real components x1, x2, x3, x4,
where i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j. Consider a quaternion-
valued function u = u1 + iu2 + ju3 + ku4 depending on a quaternion-valued
variable x. Then the so-called (left-)regular functions of quaternionic analysis
are defined by Du = 0, where D is the Cauchy–Riemann operator D = ∂x1 +
i∂x2 + j∂x3 +k∂x4 . Using the quaternionic variable x = x1 + ix2− jx3 +kx4, the
component-wise rewriting of the Cauchy–Riemann equation Du = 0 is identical
with the Cimmino system (19)–(22). Therefore the (non-linear) generalized
Cimmino system (24)–(27) can be solved using tools of Clifford analysis. For
instance, with the help of the Cauchy kernel (14) a boundary value problem
for the non-linear system (24)–(27) can be reduced to an analogous boundary
value problem for the Cimmino system. The corresponding fixed-point problem
can be solved by the contraction-mapping principle in case the right-hand side
satisfies a Lipschitz condition with Lipschitz constants which are small enough.
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The investigation of generalized inhomogeneous Cimmino systems with an
arbitrary number of desired real-valued functions and with the same number of
independent real variables could lead to an alternative to generalized monogenic
functions. It seems to be clear that the ideas of the theory of generalized analytic
functions will also be useful for solving such generalized Cimmino systems.
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