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A MODIFIED QUASI-REVERSIBILITY METHOD FOR A
CLASS OF ILL-POSED CAUCHY PROBLEMS
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Abstract. The goal of this paper is to present some extensions of the method
of quasi-reversibility applied to an ill-posed Cauchy problem associated with
an unbounded linear operator in a Hilbert space. The key point to our proof
is the use of a new perturbation to construct a family of regularizing operators
for the considered problem. We show the convergence of this method, and
we estimate the convergence rate under a priori regularity assumptions on
the problem data.
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1. Introduction and Motivation

Throughout this paper H denotes a complex Hilbert space endowed with the
inner product (. , .) and the norm ‖.‖, L(H) stands for the Banach algebra of
bounded linear operators on H.

Let A be a linear unbounded operator with dense domain D(A). Assume that
A is self-adjoint, positive definite in H. We consider the abstract final value
problem

u′(t) + Au(t) = 0, 0 < t < T, u(T ) = f, (FV P )

where f is a given function in H.
Such problems are not well-posed in the Hadamard sense [15]; the solution

(if it exists) does not depend continuously on the data.
Physically, problems of this nature arise in different contexts. Beyond their

interest in connection with standard diffusion problems (then A is usually the
Laplace operator −∆), they also appear, for instance, in some deconvolution
problems, such as deblurring processes [6](A is often a fractional power of −∆),
in hydrology [16, 36] and also in many other practical applications of mathe-
matical physics and engineering sciences.

Since the semigroup S(t) = e−tA is not time-inverted, to obtain a well-posed
problem, we would like to find an operator Sα(t), α > 0, “close to” S(t) in some
sense for which the final value problem (FV P ) is well-posed.

In the mathematical literature various methods have been proposed for solv-
ing backward Cauchy problems. We can notably mention the method of quasi-
solution of Tikhonov [37], the method of quasi-reversibility of Lattès and Lions

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



628 N. BOUSSETILA AND F. REBBANI

[23], the method of logarithmic convexity [1, 7, 21, 25, 30], the iterative proce-
dures of Kozlov and Maz’ya [5, 22], the quasi boundary value method [8, 11, 20],
the C-regularized semigroups theory [3, 26, 27, 33].

In the method of quasi-reversibility, the main idea consists in replacing A in
(FV P ) by Aα = gα(A). In the original method [23] Lattès and Lions proposed
gα(A) = A−αA2, and in the Gajewski and Zaccharias quasi-reversibility method
[12, 14, 19, 34], gα(A) = A(I + αA)−1, to obtain a well-posed problem in
the backward direction. Then, using the information from the solution of the
perturbed problem, another well-posed problem is constructed, and its solution
sometimes can be taken to be an approximate solution of the original ill-posed
problem (FV P ).

Difficulties may arise when using the method of quasi-reversibility discussed
above. an essential difficulty is that the operator coefficient is replaced by an
operator of second order, which makes the numerical implementation rather
difficult; in addition, the error (e(α)) introduced by a small changes in the

final value f is of order e
1
α . For these reasons, we propose a modified quasi-

reversibility based on the perturbation

Aα = gα(A) = − 1

pT
log

(
α + e−pTA

)
, α > 0, p ≥ 1.

An advantage of this new perturbation lies in the fact that it is bounded (Aα ∈
L(H)), which gives the well-posedness in the forward and backward direction
for the perturbed problem, while another advantage is that this perturbation
provides the best possible approximate solution, while the amplification factor
of the error resulting from the approximated problem is better as compared with
other results. We note that our approach generalizes many results obtained by
other methods.

2. Preliminaries and Basic Results

In this section, we give the notation and functional is needed in the sequel.
If B ∈ L(H), we denote by N (B) the kernel of B and by R(B) the range

of B. We denote by {Eλ, λ ≥ γ > 0} the spectral resolution of the identity

associated to A, and by S(t) = e−tA =
∞∫
γ

e−tλ dEλ ∈ L(H), t ≥ 0, the C0-

semigroup generated by −A. Some basic properties of S(t) are listed in the
following theorem:

Theorem 2.1 (see [32], Ch. 2, Theorem 6.13, p. 74). For the family of
operators S(t), the following properties are valid:

(1) ‖S(t)‖ ≤ 1, ∀t ≥ 0;
(2) the function t 7−→ S(t), t > 0, is analytic;
(3) for every real r ≥ 0 and t > 0, the operator S(t) ∈ L(H,D(Ar));
(4) for every integer k ≥ 0 and t > 0, ‖S(k)(t)‖ = ‖AkS(t)‖ ≤ c(k)t−k;
(5) for every x ∈ D(Ar), r ≥ 0 we have S(t)Arx = ArS(t)x.
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Theorem 2.2. For every t > 0, the operator S(t) is self-adjoint and one-to-

one with dense range (S(t) = S(t)∗, N (S(t)) = {0} and R(S(t)) = H).

Proof. A is self-adjoint and since S(t)∗ = (e−tA)∗ = e−tA∗ = e−tA, we have
S(t)∗ = S(t). Let h ∈ N (S(t0)), t0 > 0, then S(t0)h = 0, which implies
that S(t)S(t0)h = S(t + t0)h = 0, t ≥ 0. Using analyticity, we obtain that
S(t)h = 0, t ≥ 0. Strong continuity at 0 now gives h = 0. This shows that
N (S(t0)) = {0}. By

R(S(t0)) = N (S(t0))
⊥ = {0}⊥ = H

we conclude that R(S(t0)) is dense in H. ¤
For more details, we refer the reader to a general version of Theorem 2.2 in

the case of analytic semigroups in Banach spaces (Lemma 2.2, [9]).

Remark 2.1. If we replace A by B=pA in Theorem 2.2, we obtainN (S(pt)) =

{0} and R(S(pt)) = H, p > 0, t > 0.

Remark 2.2 (Smoothing effect and irreversibility). By Theorems 2.1 and 2.2,
we observe that the solution of the direct Cauchy problem:

u′(t) + Au(t) = 0, 0 < t ≤ T, u(0) = u0,

has the following smoothing effect: admitting the initial value u(0) to belong
only to H, for all t > 0 we obtain

R(S(t)) ⊂ C∞(A)
def
= ∩∞n=1D(An)

(a space more regular than H, see [13]). It follows that for the final value
problem (FV P ) to have a solution, we should have u(T ) ∈ C(A) ⊆ R(S(T )),
where C(A) is an admissible class for which the FV P is solvable. This shows
that this problem is irreversible in the sense

S(T − t) : H →R(S(T − t)) ⊂ C∞(A) ( H, 0 ≤ t < T,

and R(S(T−t)) 6= R(S(T − t)); in other words, S(T−t)−1 = S(t−T ) /∈ L(H).

For notational convenience and simplicity, we set

Cθ(A) = {φ ∈ H : ‖φ‖2
θ =

+∞∫

γ

e2Tθλ d‖Eλφ‖2 < +∞}, θ ≥ 0.

Evidently,
Cθ2(A) ⊆ Cθ1(A), θ2 ≥ θ1.

We also need the following technical lemma.

Lemma 2.1. For x ≥ 0 and τ ∈ [0, 1], we have

(1 + x)τ − 1 ≤ τx(1 + x)τ (1 + τx)−1.

The proof is justified by a simple differential calculus (see [24], p. 101.)

Remark 2.3. The operational calculus for self-adjoint operators and Lemma
2.1 plays the key role in our analysis and calculations.
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3. The Approximate Problem

In this section, we give a constructive method based on the quasi-reversibility
approach to construct a stable approximate solution to the ill-posed problem
(FV P ).
Description of the method:
Step 1. Let vα be a solution of the following perturbed problem

v′α(t) + Aαvα(t) = 0, 0 ≤ t < T, vα(T ) = f, (FV P )α

where the operator A is replaced by Aα.

Step 2. We use the initial value

vα(0) = ϕα

in the problem

u′α(t) + Auα(t) = 0, 0 < t ≤ T, uα(0) = ϕα. (IV P )α

Step 3. Finally, we show that

Φα(f) = ‖uα(T )− f‖ −→ 0 as α −→ 0.

4. Analysis of the Method and Main Results

4.1. Analysis of Aα and its consequences. We begin our study by giving
some qualitative properties of Aα.

For 0 < α ≤ α∗ = 1− e−γT , p ≥ 1, we define

Aα = gα(A) := − 1

pT
log

(
α + e−pTA

)
=

∞∫

γ

− 1

pT
log

(
α + e−pTλ

)
dEλ.

For more details concerning the logarithm of operators and its spectral proper-
ties see, e.g., [4, 17, 29].

Proposition 4.1. We have

(1) Aα ∈ L(H) and ‖Aα‖ ≤ 1

pT
log

(
1

α

)
;

(2) Aα = A∗
α ≥ 0 and AαAθv = AθAαv, v ∈ D(Aθ), θ ≥ 0;

(3) ∀v ∈ D(A), lim
α−→0

‖Aαv − Av‖ = 0;

(4) ∀v ∈ H, Sα(t)v = e−tAαv −→ S(t)v as α −→ 0.

Proof. 1. The boundedness of the operator Aα follows immediately from the
properties of gα(λ), λ ≥ γ. Indeed, by the choice of α we have

α + e−pTγ ≤ α + e−Tγ ≤ 1,

which implies that

gα = gα(γ) = − 1

pT
log

(
α + e−pTγ

)
≥ 0
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and

gα = lim
λ−→+∞

gα(λ) = − 1

pT
log(α) > 0.

Observing that g′α(λ) > 0, we have gα ↗ and sup
λ≥γ

gα(λ) = gα. By using a

spectral representation of Aα and the preceding remarks, we obtain the desired
result.

2. Via the H-functional calculus (see [10]) and the self-adjointness of A we
establish (2).

3. Let v ∈ D(A), we have

Aαv = − 1

pT
log

(
α + e−pTA

)
A−1Av.

Let us denote

Bα = − 1

pT
log

(
α + e−pTA

)
A−1 =

+∞∫

γ

Mα(λ) dEλ,

where Mα(λ) = − 1
pT

log
(
α + e−pTλ

)
λ−1. By the definition of α, we observe

that Mα(λ) ≥ 0 for all λ ≥ γ and

Mα(λ) = 1− 1

pT
log

(
1 + αepTλ

)
λ−1 ≥ 0

which implies that Mα(λ) ≤ 1 for all λ ≥ γ. Consequently, the operator Bα is
uniformly bounded, i.e., ‖Bα‖ ≤ 1, ∀ 0 < α ≤ 1− e−γT .

Let v = e−pTAh, h ∈ H, we have

‖(Bα − I)v‖2 =

+∞∫

γ

( 1

pT
log(1 + αepTλ)λ−1

)2

e−2pTλ d‖Eλh‖2. (a)

Since log(1 + x) ≤ x, x ≥ 0, then the quantity (a) can be estimated as follows

‖(Bα − I)v‖2 ≤
(

α

pγT

)2

‖h‖2 −→ 0, as α −→ 0,

from which it follows that Bαv −→ v in H as α −→ 0, ∀v ∈ R(S(pT )).
But R(S(pT )) is dense in H and Bα is uniformly bounded on H, hence, by
continuity,

∀ v ∈ H, Bαv −→ v, as α −→ 0.

In particular, for v ∈ D(A) we obtain

Aαv = BαAv −→ Av, as α −→ 0.

4. Since Aα ∈ L(H), we can define

Sα(t) = e−tAα =
(
α + e−pTA

) t
pT

=
+∞∑
n=0

(−t)n

n!
An

α, t ∈ R.
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It is obvious to see that ‖Sα(t)‖ ≤ 1, t ≥ 0. Thus Sα(t), t ≥ 0 is a strongly

continuous semigroup of contraction on H. Also,
d

dt
Sα(t) = −Aα(t)Sα(t) and

Sα(t)− Sβ(t) =

t∫

0

d

dτ

(
Sβ(t− τ)Sα(τ)

)
dτ

=

t∫

0

(
Sβ(t− τ)Sα(τ)(Aβ − Aα)

)
dτ.

Then ∀t ≥ 0, 0 < α, β ≤ 1− e−γT , h ∈ D(A), we have

‖Sα(t)h− Sβ(t)h‖ ≤ t‖Aβh− Aαh‖,
which shows that {Sα(t)h} is a Cauchy sequence in H, uniformly in t ∈ [0, T ]
(by virtue of (3) in Proposition 4.1).

To complete the proof of (4), observe that Sα(t) is a contraction and D(A) is
dense in H, so the limit

Sα(t)h −→ S̃(t)h as α −→ 0, t ≥ 0,

extends to all h ∈ H, and holds uniformly in t ∈ [0, T ]. It is clear that S̃(t) ∈
L(H) is a strongly continuous semigroup of contraction on H.

Let h ∈ D(A), t > 0, then

‖S(t)h− Sα(t)h‖ =

∥∥∥∥∥∥

t∫

0

d

dτ

(
S(τ)Sα(t− τ)h

)
dτ

∥∥∥∥∥∥

≤
t∫

0

‖Sα(t− τ)(A− Aα)S(τ)h‖ dτ

≤
t∫

0

‖(A− Aα)S(τ)h‖ dτ.

Now we use

‖AαS(τ)h‖ = ‖BαAS(τ)h‖ ≤ ‖S(τ)Ah‖
to get

‖(Aα − A)S(τ)h‖ =≤ 2‖S(τ)Ah‖.
Since ‖S(τ)Ah‖ is continuous, by the dominated convergence theorem we have

lim
α−→0

‖S(t)h− Sα(t)h‖ ≤
t∫

0

lim
α−→0

‖(A− Aα)S(τ)h‖ dτ = 0,

which implies that Sα(t) −→ S(t) = S̃(t) on D(A) as α −→ 0. According to the

density of D(A) in H we conclude that Sα(t) −→ S(t) = S̃(t) on H as α −→ 0.
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We note here that by a direct calculation with the help of Lemma 2.1 we can
show

∀h ∈ H, Sα(t)h −→ S(t)h as α −→ 0.

Indeed, let v = e−ptAh, h ∈ H, we have

‖Sα(t)v − S(t)v‖2 =

+∞∫

γ

( (
α + e−pTλ

) t
pT − e−tλ

)2

e−2pTλ d‖Eλh‖2.

By virtue of Lemma 2.1 and α + e−pTλ ≤ 1, the function

Mα(λ) =
(
α + e−pTλ

) t
pT − e−tλ = e−tλ

( (
1 + αepTλ

) t
pT − 1

)

can be estimated as follows:

Mα(λ) ≤
t

pT
αepTλ

(
α + e−pTλ

) t
pT

(
1 + t

pT
αepTλ

) ≤ α

p
epTλ.

From this we derive

‖Sα(t)v − S(t)v‖2 =

+∞∫

γ

Mα(λ)2e−2pTλ d‖Eλh‖2≤
(

α

p

)2

‖h‖2 −→ 0 as α −→ 0.

According to the density of R(S(pT )) in H and ‖Sα(t)‖ ≤ 1, t ≥ 0, we conclude
that

∀h ∈ H, Sα(t)h −→ S(t)h as α −→ 0.

The proof of Proposition 4.1 is complete. ¤

4.2. Convergence results. Now we are ready to state and prove the main
results of this paper.

It is useful to know exactly the admissible set for which the problem (FV P )
has a solution. The following lemma answers this question.

Lemma 4.1 (see [8], Lemma 1). The problem (FV P ) has a solution if and
only if f ∈ C1(A), and its unique solution is represented by

u(t) = e(T−t)Af. (1)

By using the semi-groups theory and the properties of Sα(t) we have the
following theorems.

Theorem 4.1. For all f ∈ H, the function

vα = e(T−t)Aαf =
(
α + e−pTA

)− (T−t)
pT

f (2)

is a unique solution of the problem (FV P )α and it depends continuously on f .
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To show the continuous dependence of vα on f , we note that

‖vα(t)‖ =

∥∥∥∥∥
(
α + e−pTA

)− (T−t)
pT

f

∥∥∥∥∥

≤
(

1

α

)T−t
pT

‖f‖ ≤
(

1

α

) 1
p

‖f‖ = e(α)‖f‖. (3)

From (2) we construct

ϕα = vα(0) =
(
α + e−pTA

)− 1
p
f.

Theorem 4.2. The problem (IV P )α is well-posed, and its solution is repre-
sented by

uα(t) = S(t)ϕα = e−tA
(
α + e−pTA

)− 1
p
f. (4)

Theorem 4.3. For all f ∈ H ‖uα(T )− f‖ −→ 0 as α −→ 0.

Proof. We compute

‖uα(T )− f‖2 =

+∞∫

γ

Hα(λ)2 d‖Eλf‖2, (5)

where

Hα(λ) =

(
(α + e−pTλ)

1
p − e−Tλ

)

(
α + e−pTλ

) 1
p

=
e−Tλ

(
(αepTλ + 1)

1
p − 1

)

(
α + e−pTλ

) 1
p

.

If we put x = αepTλ, τ = 1
p
, then by virtue of Lemma 2.1, the function Hα(λ)

can be estimated as
Hα(λ) ≤ α

α + pe−pTλ
. (6)

From (6) it follows

‖uα(T )− f‖2 ≤
+∞∫

γ

{
α

α + pe−pTλ

}2

d‖Eλf‖2. (7)

Fix ε > 0, and choose N so that
+∞∫
N

d‖Eλf‖2 < ε
2
. Thus

‖uα(T )− f‖2 ≤
N∫

γ

{
α

α + pe−pTλ

}2

d‖Eλf‖2

+

+∞∫

N

{
α

α + pe−pTλ

}2

d‖Eλf‖2, (8)
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which gives

|uα(T )− f‖2 ≤
(

α

p

)2

e2pTN‖f‖2 +
ε

2
. (9)

So, by taking α such that
(

α
p

)2

e2pTN‖f‖2 < ε
2
, we end the proof. ¤

Remark 4.1. Here we do not have a convergence rate.

Theorem 4.4. If f ∈ Cθ(A), p ≥ 1, 0 < θ < 1, then ‖uα(T )− f‖ converges

to zero with order α
θ
p .

Proof. We compute

‖uα(T )−f‖2 =

+∞∫

γ

{
Hα(λ)

eθTλ

}2

e2θTλ d‖Eλf‖2 ≤
+∞∫

γ

Gα(λ)2e2θTλ d‖Eλf‖2, (10)

where
Gα(λ) =

α(
α + pe−pTλ

)
eθTλ

> 0.

Differentiation with respect to λ yields

G′
α(λ) =

αTeθTλ
(
p(p− θ)e−pTλ − θα

)

(
(α + pe−pTλ)eθTλ

)2 .

Thus G′
α(λ) = 0 if λ = λ∗ =

1

pT
log

(
p(p− θ)

θα

)
. Since G′

α(λ) > 0 if λ < λ∗,

G′
α(λ) < 0 if λ > λ∗ and lim

λ→+∞
Gα(λ) = 0, we have that λ∗ is the critical value

at which Gα achieves its maximum. Thus we have the inequality

Gα(λ) ≤ Gα(λ∗) = c(p, θ)α
θ
p , (11)

where c(p, θ) =

(
1

p

) p+θ
p

(p− θ)
p−θ

p θ
θ
p ≤ 1.

Combining (10) and (11), we arrive at

‖uα(T )− f‖ ≤ c(p, θ)α
θ
p‖f‖θ. (12)

Noting that in the case 1 ≤ p ≤ θ, we have the estimate

‖uα(T )− f‖ ≤ α‖f‖θ. (13)

Theorem 4.5. For all f ∈ H, the problem (FV P ) has a solution u if and
only if the sequence ϕα = uα(0) converges in H. Furthermore, we then have
uα(t) converges to u(t), as α tends to zero uniformly in t.

Proof. Assume that lim
α→0

ϕα = ϕ0 exists. Let w(t) = S(t)ϕ0. We compute

‖w(t)− uα(t)‖ = ‖S(t)ϕ0 − S(t)ϕα‖ = ‖S(t)(ϕ0 − ϕα)‖
≤ ‖ϕ0 − ϕα‖.



636 N. BOUSSETILA AND F. REBBANI

This implies

sup
0≤t≤T

‖w(t)− uα(t)‖ ≤ ‖ϕ0 − ϕα‖ −→ 0, as α −→ 0.

Since lim
α−→0

uα(T ) = f and lim
α−→0

uα(T ) = w(T ), we infer that w(T ) = f . Thus,

w(t) = S(t)ϕ0 solves the problem (FV P ) and satisfies the condition w(T ) = f .
Now let us assume that u(t) is a solution of (FV P ). From Lemma 4.1 we

have u(0) = S(−T )f ∈ H, i.e., ‖u(0)‖2 = ‖f‖2
1 =

+∞∫
γ

e2Tλ d‖Eλf‖2 < ∞. Let

N > 0 and ε > 0 such that
+∞∫
N

e2Tλ d‖Eλf‖2 <
ε

2
.

We compute

‖uα(0)− u(0)‖2 =

+∞∫

γ

F 2
α(λ) d‖Eλf‖2,

where

Fα(λ) = eTλ −
(
α + e−pTλ

)− 1
p
.

By simple calculations with the help of Lemma 2.1, Fα(λ) can be estimated as

Fα(λ) ≤
( αepTλ

p + αepTλ

)
eTλ = Kα(λ)eTλ.

Then

‖uα(0)− u(0)‖2 ≤
+∞∫

γ

K2
α(λ)e2Tλ d‖Eλf‖2 ≤ I1 + I2,

where

I1 =

N∫

γ

K2
α(λ)e2Tλ d‖Eλf‖2 ≤

(
α

p

)2

e2(p+1)TN‖f‖2,

I2 =

+∞∫

N

K2
α(λ)e2Tλ d‖Eλf‖2 <

ε

2
.

Now if we choose α such that
(

α
p

)2

e2(p+1)TN‖f‖2 < ε
2
, then we have

‖uα(0)− u(0)‖2 < ε.

This shows that

uα(0) −→ u(0) as α −→ 0. ¤

Theorem 4.6. If f ∈ C1+θ(A), p ≥ 1, 0 < θ < 1, then ‖uα(0) − u(0)‖
converges to zero with order α

θ
p .
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Proof. By similar calculations to those used in Theorems 4.4 and 4.5, we have

‖uα(0)− u(0)‖2 ≤
+∞∫

γ

Kα(λ)2e−2θTλe2(1+θ)Tλ d‖Eλf‖2

≤
+∞∫

γ

Gα(λ)2e2(1+θ)Tλ d‖Eλf‖2

≤ (G∞
α )2 ‖f‖2

1+θ,

with G∞
α = sup

λ≥γ
Gα(λ) ≤ c(p, θ)α

θ
p (see estimate (11)). ¤

From Theorems 4.5–4.6 we obtain

Corollary 4.1. If f ∈ C1+θ(A), θ > 0, then ‖uα(t)− u(t)‖ converges to zero

with order α
θ
p uniformly in t.

We end this paper by constructing a family of regularizing operators for
(FV P ).

Definition 4.1. A family {Rα(t), α > 0, t ∈ [0, T ]} ⊂ L(H) is called a
family of regularizing operators for the problem (FV P ) if for each solution u(t),
0 ≤ t ≤ T of the (FV P ) with final element f , and for any δ > 0, there exists
α(δ) > 0, such that

α(δ) −→ 0, δ −→ 0, (R1)

‖Rα(δ)(t)fδ − u(t)‖ −→ 0, δ −→ 0, (R2)

for each t ∈ [0, T ] provided that fδ satisfies ‖fδ − f‖ ≤ δ.

Define Rα(t) = e−tA
(
α + e−pTA

)− 1
p
, t ≥ 0, α > 0; it is clear that Rα(t) ∈

L(H).
In the following we will show that Rα(t) is a family of regularizing operators

for the (FV P ).

Theorem 4.7. Assuming that f ∈ C1(A), then (R2) holds.

Proof. We have

Hα(t) = ‖Rα(t)fδ − u(t)‖ ≤ ‖Rα(t)(fδ − f)‖+ ‖Rα(t)f − u(t)‖
= ∆1(t) + ∆2(t), (14)

where

∆1(t) = ‖Rα(t)(fδ − f)‖ ≤
(

1

α

) 1
p

δ, (15)

and
∆2(t) = ‖Rα(t)f − u(t)‖. (16)

Choose α =
√

δ, then α(δ) −→ 0, δ −→ 0, and

∆1(t) ≤ δ
2p−1
2p −→ 0 as δ −→ 0. (17)
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Now, by virtue of Theorem 4.5 we have

∆2(t) = ‖uα(t)− u(t)‖ −→ 0 as δ −→ 0, (18)

uniformly in t. Combining (17) and (18) we obtain

sup
0≤t≤T

‖Rα(t)fδ − f‖ −→ 0 as δ −→ 0. (19)

This shows that Rα(t) is a family of regularizing operators for the (FV P ). ¤
We proceed with the same technique used to establish the preceding results.

We show that
∆2(t) ≤ C(p, t, T )α

t
pT ‖f‖1, t > 0, (20)

with
C(p, t, T ) = p−

pT+t
pT (pT − t)

pT−t
pT t

t
pT T−1 ≤ 1.

Example 4.1. We give an example to clarify our study. As an example we
consider the following backward heat equation:

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= 0, x ∈ (0, π), t ∈ (0, T ),

u(0, t) = u(π, t) = 0, t ∈ (0, T ),

u(x, T ) = ϕ(x), x ∈ [0, π].

(BHE)

Here u(x, t) represents the temperature at time t at a point x of a thin metal
wire of length π.

The problem (BHE) can be formulated in the abstract form as follows

u′(t) + Au(t) = 0, 0 < t < T, u(T ) = ϕ,

where the linear operator

A : D(A) ⊂ H = L2(0, π) −→ L2(0, π)

is defined by

A := − ∂2

∂x2

with
D(A) := H2(0, π) ∩H1

0 (0, π).

It is easy to show that the operator A is self-adjoint and positive with discrete
spectrum (σ(A) = {λn}n≥1). We denote by {en}n≥1 the orthonormal eigenbasis
in H, associated to the eigenvalues {λn}n≥1 such that:

Aen = λnen, λn = n2, en(x) =

√
2

π
sin(nx), n = 1, 2, · · ·

(en, em) =

π∫

0

en(x)em(x) dx =
2

π

π∫

0

sin(nx) sin(mx) dx =

{
1, n = m,
0, n 6= m.

∀f ∈ L2(0, π), f(x) =
∑
n≥1

cn(f)en(x) =
∑
n≥1

2

π

π∫

0

f(y) sin(ny) dy sin(nx).
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By the functional calculus for the self-adjoint operator we have

g(A) =

∫

σ(A)

g(λ)dEλ =
∑
n≥1

g(λn)Pλn , Pλn(ξ) = cn(ξ)en,

for each Borel-measurable function g : σ(A) −→ C.
In particular, for gα we obtain the perturbation

Aα = gα(A) =
∑
n≥1

− 1

pT
log

(
α + e−pTλn

)
Pλn

and the associated semigroup

Sα(t) = e−tAα =
∑
n≥1

(
α + e−pTλn

) t
pT

Pλn .

In this case, the approximate solution uα(x, t) takes the form

uα(x, t) = Rα(t)f(x) =
2

π

∑
n≥1

e−tn2
(
α + e−pTn2

)−1
p

π∫

0

f(y) sin(ny) dy sin(nx).

Concluding remarks and generalization.
1. From (3) we observe that the error factor e(α) introduced by small changes

in the final value f is of order
(

1
α

) 1
p , p ≥ 1.

2. In the case p = 1 the representation of uα(.) coincides with that obtained

in the method developed in [8], with the same error factor e(α) of order
1

α
.

3. In [11] (resp. [14, 23]) the error factor e(α) is of order 1
α(1+log(T/α))

(resp.

e
1
α ).

Observing that for p > 1,
(

1
α

) 1
p < e

1
α ,

(
1
α

) 1
p < 1

α(1+log(T/α))
for α > 0.

This shows that our approach has a nice regularizing effect and gives a better
approximation as compared with the methods developed in [8, 11, 14, 23].

Let us consider

ut(t) + Au(t) = 0, 0 < t < T, u(0) = f, (CP )1

ut(t) + Au(t) = 0, 0 < t < T, u(T ) = f, (CP )2

where A is a self-adjoint, linear unbounded operator in H and changes the sign
with 0 ∈ ρ(A) (A−1 exists and A−1 ∈ L(H)).

The spectral theory of self-adjoint operators enables us to write

h =

∫

R
dEλh =

∫

R−

dEλh +

∫

R+

dEλh = h− + h+, h ∈ H,

i.e., the Hilbert space H decomposes into the direct sum H = H− ⊕H+, and

A =

∫

R
λ dEλ =

∫

R−

λ dEλ +

∫

R+

λ dEλ = A− + A+.
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It is well known that the problem (CP )1 (resp. (CP )2) is incorrectly posed
in the sense of Hadamard. In order to regularize this problem, we propose the
following family of operators:

Rα(t) = e(T−t)A−
(
αepTA− + (1− α)

)− 1
p

+ e−tA+

(
α + (1− α)e−pTA+

)− 1
p

= R−
α (t) + R+

α (t), 0 < α < 1, p ≥ 1.

We conclude our study with the following lemma (fundamental lemma).

Lemma 4.2. If f = f− + f+ ∈ H, then (CP )1 (resp. (CP )2) has a solution
if and only if∫

R−

e−2Tλ d‖Eλf−‖2 < +∞ (resp.

∫

R+

e2Tλ d‖Eλf+‖2 < +∞).

Proof. If
∫
R−

e−2Tλ d‖Eλf−‖2 < +∞, we define u(t) = e−tA−f− + e−tA+f+. It is

not difficult to verify that u(t) satisfies (CP )1. Conversely, let u(t) be a solution
to (CP )1. Then u(T ) = h = h− + h+ = e−TA−f− + e−TA+f+ ∈ H. This implies
that h− = e−TA−f− ∈ H, i.e., ‖h−‖2 =

∫
R−

e−2Tλ d‖Eλf−‖2 < +∞. In a similar

way we show the second part of the lemma . ¤
We define uα(t) = Rα(t)f . With the same methodology used to establish the

results of convergence in the case where A is positive, we show that

uα(T ) −→ f as α −→ 0, (21)

uα(0) −→ f as α −→ 1, (22)

and Rα(t) is a family of regularizing operators for (CP )1 (resp. (CP )2).
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