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RATE OF CONVERGENCE FOR THE BÉZIER VARIANT OF
THE MKZD OPERATORS

VIJAY GUPTA AND HARUN KARSLI

Abstract. We estimate the rate of convergence of the Bézier variant of Dur-
rmeyer type Meyer–König and Zeller operators for functions with derivatives
of bounded variation defined on [0, 1].

2000 Mathematics Subject Classification: 41A25, 41A36.
Key words and phrases: Rate of convergence, approximation, MKZD
operators, bounded variation.

1. Introduction

For a function f defined on the interval [0,1], the Meyer–König and Zeller
(MKZ) operators M̃n(f, x) [13] are defined as

M̃n(f ; x) =
∞∑

k=0

mn,k (x) f

(
k

n + k

)
, (1)

where mn,k (x) =
(

n+k−1
k

)
xk(1−x)n. To approximate Lebesgue integrable func-

tions on the interval [0, 1], Guo [6] introduced the integrated MKZ operators

M̂n(f ; x) =
∞∑

k=0

m̂n,k (x)

∫

Ik

f(t) dt (2)

where Ik = [ k
n+k

, k+1
n+k+1

] and m̂n,k (x) = (n+1)
(

n+k+1
k

)
xk(1−x)n. For the rate

of convergence of some integral modifications of the MKZ operator we refer the
reader to [5], [7] and [11]. In [15], Zeng defined, for each α ≥ 1, Bézier variants
of the MKZ operators (1) and (2) by

M̃n,α(f ; x) =
∞∑

k=0

Qα
n,k(x)f

(
k

n + k

)
(3)

and

M̂n,α(f ; x) =
∞∑

k=0

(
Qα

n,k(x)∫
Ik

dt

)∫

Ik

f(t) dt , (4)

where Q
(α)
n,k (x) = (Jn,k (x))α − (Jn,k+1 (x))α and Jn,k (x) =

∞∑
j=k

mn,j (x) be the

Bézier basis functions, which were introduced by P. Bézier [1]. In particular
when α = 1, the operators (3) and (4) reduce to the operators (1) and (2),
respectively.
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Very recently for f ∈ L1[0, 1] and α ≥ 1, Gupta [8] introduced a Bézier
variant of the different Durrmeyer type MKZ operators (MKZD) by

Mn,α(f ; x) =
∞∑

k=0

Qα
n,k(x)

1∫

0

bn,k(t) f(t)dt, x ∈ [0, 1], (5)

where bn,k(t) = n

(
n + k

k

)
tk(1 − t)n−1. Gupta [8] investigated the rate of

convergence of the operators (5), for functions of bounded variation on [0, 1]
(see also [9]).

The aim of this paper is to extend the study on the operators (5) for functions
having derivatives of bounded variation on [0, 1]. Here we establish the rate of
convergence of operators Mn,α for functions with derivatives of bounded varia-
tion defined on [0, 1]. Several researchers have studied on MKZ operators and
its different variants. We also mention the work on similar type of operators due
to Bojanic and Cheng (see [2], [3]) who estimated the rate of convergence with
derivatives of bounded variation for Bernstein and Hermite–Fejer polynomials
by using different methods. Some of the important papers on this topic are due
to Bojanic and Khan [4], Pych-Taberska [14], and Gupta et al. [10], [12].

Let DBV [0, 1] denotes the class of real valued differentiable functions defined
on [0, 1], whose derivatives are of bounded variation on [0, 1], which can be
written as

f(x) = f(0) +

x∫

0

Ψ(t)dt, x ∈ [0, 1],

where Ψ ∈ BV [0, 1]. In this sense it is justified to call this class of functions
with derivatives of bounded variation and will be denoted as equivalently

DBV [0, 1] = {f : f ′ ∈ BV [0, 1]} .

The main result of this paper is the following assertion.

Theorem. Let α ≥ 1 and f be a function with derivatives of bounded vari-
ation on [0, 1]. If f ′ has a discontinuity of the first kind in x ∈ (0, 1), then for
each λ > 2 and ε > 0, there is an integer N(x, λ) such that for all n ≥ N(x, λ)
we have

|Mn,α(f ; x)− f(x)| ≤ α

α + 1
|f ′(x+)− f ′(x−)|

√
αλ(x + ε)(1− x)2

n

+
αλ(x + ε)(1− x)

n− 1

1

α + 1
|f ′(x+) + αf ′(x−)|

+
1√
n

x+ 1−x√
n∨

x− x√
n

(f ′x) +
αλ(x + ε) + x

nx

[
√

n]∑

k=1

x+ 1−x
k∨

x−x
k

(f ′x), (6)



RATE OF CONVERGENCE FOR MKZD OPERATORS 653

where

fx(t) =





f(t)− f(x+), x < t ≤ 1,

0, t = x,

f(t)− f(x−), 0 ≤ t < x

(7)

and
b∨
a

(f ′x) is the total variation of f ′x on [a, b].

2. Auxiliary Results

In this section we give certain results, which are necessary to prove our main
theorem.

Lemma 1 ([9]). For s ∈ N0 (the set of nonnegative integers), if we define

Mn,1((t− x)s; x) =
∞∑

k=0

mn,k(x)

1∫

0

bn,k(t) (t− x)sdt,

then

|Mn,1((t− x); x)| = x(1− x)

n− 1
and

Mn,1((t− x)2; x) ≤ 4x

n− 1
+

2(1− x)2

(n− 1)(n− 2)
.

In particular, given λ > 2 and ε > 0, there is an integer N(x, λ) such that for
all n ≥ N(x, λ) and x ∈ [0, 1],

|Mn,1((t− x); x)| ≤ λ(x + ε)(1− x)

n− 1
(8)

and

Mn,1((t− x)2; x) ≤ λ(x + ε)(1− x)2

n
. (9)

Remark 1 ([15]). For all n, k ∈ N , there holds Qα
n,k(x) ≤ αmn,k(x), x ∈ [0, 1].

Define

Kn,α(x, t) =
∞∑

k=0

Qα
n,k(x)bn,k(t)

and

λn,α(x, t) =

t∫

0

Kn,α(x, u)du.

Note that

λn,α(x, 1) =

1∫

0

Kn,α(x, u)du = 1. (10)
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Lemma 2 ([9]). For each λ > 2 and ε > 0, there is an integer N(x, λ) such
that, for all n ≥ N(x, λ) and x ∈ (0, 1) ,

λn,α(x, y) ≤ α
λ(x + ε)(1− x)2

n(x− y)2
, 0 ≤ y < x, (11)

1− λn,α(x, z) ≤ α
λ(x + ε)(1− x)2

n(z − x)2
, x < z ≤ 1. (12)

Remark 2. From Cauchy–Schwarz–Bunyakowsky inequality, we get from (9)

Mn,α(|t− x| ; x) ≤ (
Mn,α((t− x)2; x)

) 1
2 ≤

√
α

λ(x + ε)(1− x)2

n
. (13)

3. Proof of The Main Result

Now, we can prove the theorem.

Proof of Theorem. According to (5) and equation (10), we can write the differ-
ence between Mn,α(f ; x) and f(x) as follows:

Mn,α(f ; x)− f(x) =
∞∑

k=0

Qα
n,k(x)

1∫

0

bn,k(t) f(t)dt− f(x)

=

1∫

0

[f(t)− f(x)]Kn,α(x, t) dt. (14)

Since f(t) ∈ DBV [0, 1], we can rewrite equation (14) as

Mn,α(f ; x)− f(x) =

x∫

0

[f(t)− f(x)]Kn,α(x, t) dt +

1∫

x

[f(t)− f(x)]Kn,α(x, t) dt

= −
x∫

0

[ x∫

t

f ′(u) du

]
Kn,α(x, t) dt +

1∫

x

[ t∫

x

f ′(u) du

]
Kn,α(x, t)dt

= −I1(x) + I2(x),

where

I1(x) :=

x∫

0

[ x∫

t

f ′(u) du

]
Kn,α(x, t) dt (15)

and

I2(x) :=

1∫

x

[ t∫

x

f ′(u) du

]
Kn,α(x, t)dt. (16)
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From (7), for any f(t) ∈ DBV [0, 1], we decompose f ′(t) into four parts as

f ′(t) =
1

α + 1
(f ′(x+) + αf ′(x−)) + f ′x(t) +

(
f ′(x+)− f ′(x−)

2

)

×
(

sgn(t− x) +
α− 1

α + 1

)
+ δx(t)

(
f ′(x)− f ′(x+) + f ′(x−)

2

)
, (17)

where

δx(t) =

{
1, x = t,

0, x 6= t.
(18)

If we use (17) in (15) and (16), we have the following expressions.

I1(x) =

x∫

0

[ x∫

t

{
1

α + 1
(f ′(x+) + αf ′(x−)) + f ′x(u)

+

(
f ′(x+)− f ′(x−)

2

)(
sgn(u− x) +

α− 1

α + 1

)

+ δx(t)

(
f ′(x)− f ′(x+) + f ′(x−)

2

) }
du

]
Kn,α(x, t) dt

and

I2(x) =

1∫

x

[ t∫

x

{
1

α + 1
(f ′(x+) + αf ′(x−)) + f ′x(u)

+

(
f ′(x+)− f ′(x−)

2

)(
sgn(u− x) +

α− 1

α + 1

)

+ δx(t)

[
f ′(x)− f ′(x+) + f ′(x−)

2

] }
du

]
Kn,α(x, t) dt.

Firstly, we evaluate I1(x).

By (18), it is obvious that
t∫

x

δx(u) du = 0. We have

I1(x) =
1

α + 1
[f ′(x+) + αf ′(x−)]

x∫

0

(x− t)Kn,α(x, t) dt

+
f ′(x+)− f ′(x−)

2

x∫

0

[
−1 +

α− 1

α + 1

]
(x− t)Kn,α(x, t) dt

+

x∫

0

[ x∫

t

f ′x(u) du

]
Kn,α(x, t) dt. (19)
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Using similar method, for evaluating I2(x), we find that

I2(x) =
1

α + 1
[f ′(x+) + αf ′(x−)]

1∫

x

(t− x)Kn,α(x, t)dt

+
f ′(x+)− f ′(x−)

2

1∫

x

[
1 +

α− 1

α + 1

]
(t− x)Kn,α(x, t)dt

+

1∫

x

[ t∫

x

f ′x(u) du

]
Kn,α(x, t) dt. (20)

Since α ≥ 1, from equations (19) and (20), we obtain an estimate for the
difference between Mn,α(f ; x) and f(x) as follows;

|Mn,α(f ; x)− f(x)| ≤ 1

α + 1
|f ′(x+) + αf ′(x−)|

∣∣∣∣
1∫

0

(t− x)Kn,α(x, t)dt

∣∣∣∣

+
α

α + 1
|f ′(x+)− f ′(x−)|

∣∣∣∣
1∫

0

|t− x|Kn,α(x, t) dt

∣∣∣∣

+

∣∣∣∣−
x∫

0

[ x∫

t

f ′x(u) du

]
Kn,α(x, t) dt

∣∣∣∣

+

∣∣∣∣
1∫

x

[ t∫

x

f ′x(u) du

]
Kn,α(x, t) dt

∣∣∣∣. (21)

On the other hand, since

1∫

0

|t− x|Kn,α(x, t) dt = Mn,α(|t− x| ; x) (22)

and
1∫

0

(t− x)Kn,α(x, t) dt = Mn,α(t− x; x), (23)

then using (22) and (23) in (21), we obtain

|Mn,α(f ; x)− f(x)| ≤ 1

α + 1
|f ′(x+) + αf ′(x−)| |Mn,α(t− x; x)|

+
α

α + 1
|f ′(x+)− f ′(x−)| |Mn,α(|t− x| ; x)|

+

∣∣∣∣−
x∫

0

[ x∫

t

f ′x(u) du

]
Kn,α(x, t) dt

∣∣∣∣
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+

∣∣∣∣
1∫

x

[ t∫

x

f ′x(u) du

]
Kn,α(x, t) dt

∣∣∣∣. (24)

From the definition of λn,α(x, t), we write

x∫

0

[ x∫

t

f ′x(u) du

]
Kn,α(x, t)dt =

x∫

0

[ x∫

t

f ′x(u) du

]
∂

∂t
λn,α(x, t) dt. (25)

Using integration by parts in the right-hand side of (25), we obtain

x∫

0

[ x∫

t

f ′x(u) du

]
∂

∂t
λn,α(x, t) dt =

x∫

0

f ′x(t) λn,α(x, t) dt.

Thus ∣∣∣∣−
x∫

0

[ x∫

t

f ′x(u) du

]
Kn,α(x, t) dt

∣∣∣∣ ≤
x∫

0

|f ′x(t)| λn,α(x, t) dt

and

∣∣∣∣−
x∫

0

[ x∫

t

f ′x(u) du

]
Kn,α(x, t)dt

∣∣∣∣ ≤
x− x√

n∫

0

|f ′x(t)| λn,α(x, t) dt

+

x∫

x− x√
n

|f ′x(t)| λn,α(x, t) dt.

Since f ′x(x) = 0 and λn,α(x, t) ≤ 1,

x∫

x− x√
n

|f ′x(t)|λn,α(x, t) dt =

x∫

x− x√
n

|f ′x(t)− f ′x(x)|λn,α(x, t) dt

≤
x∫

x− x√
n

x∨
t

(f ′x) dt.

Besides from (11), we have

x− x√
n∫

0

|f ′x(t)| λn,α(x, t) dt ≤ αλ(x + ε)(1− x)2

n

x− x√
n∫

0

|f ′x(t)|
dt

(x− t)2

≤ αλ(x + ε)(1− x)2

n

x− x√
n∫

0

x∨
t

(f ′x)
dt

(x− t)2
.
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Make the change of variables t = x− x
u
, then

x− x√
n∫

0

x∨
t

(f ′x)
dt

(x− t)2
=

√
n∫

1

x∨

x− x
u

(f ′x)
( x

u2 ) du

(−x
u
)2

=
1

x

√
n∫

1

x∨

x− x
u

(f ′x) du =
1

x

[
√

n]∑

k=1

x∨

x−x
k

(f ′x)

and
x∫

x− x√
n

x∨
t

(f ′x) dt ≤
x∨

x− x√
n

(f ′x)

x∫

x− x√
n

dt =
x√
n

x∨

x− x√
n

(f ′x).

Consequently
∣∣∣∣∣∣
−

x∫

0

[ x∫

t

f ′x(u) du

]
Kn,α(x, t) dt

∣∣∣∣∣∣
≤ αλ(x + ε)(1− x)2

nx

[
√

n]∑

k=1

x∨

x−x
k

(f ′x)

+
x√
n

x∨

x− x√
n

(f ′x). (26)

By the same way, from (12) we obtain
∣∣∣∣∣∣

1∫

x

[ t∫

x

f ′x(u) du

]
Kn,α(x, t) dt

∣∣∣∣∣∣
≤ αλ(x + ε)(1− x)

n

[
√

n]∑

k=1

x+ 1−x
k∨

x

(f ′x)

+
1− x√

n

x+ 1−x√
n∨

x

(f ′x). (27)

Combining (8), (13), (26) and (27) in (24), we get (6).
Thus the proof is completed. ¤

References
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