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SOME COMBINATORIAL PROPERTIES OF FINITE
LINE-SYSTEMS IN THE EUCLIDEAN PLANE

ALEXANDER KHARAZISHVILI

Abstract. We consider finite systems of straight lines in the Euclidean plane
R2 with some of their combinatorial characteristics. Euler’s formula is ap-
plied for obtaining results of combinatorial type for such systems. In partic-
ular, a lower estimate for the number of two-sided and three-sided domains
determined by a given finite line-system in R2 is presented and it is shown
that this estimate is precise in a certain sense.
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Let L = {li : i ∈ I} be a finite family of pairwise distinct straight lines in R2.
Evidently, this family produces the finite point-system in R2 whose elements
are common points of the above-mentioned lines. This associated point-system
is empty if and only if all lines from L = {li : i ∈ I} are parallel. In our further
consideration we shall avoid this trivial case. In other words, we shall assume
that there are at least two distinct lines from L which have a common point.

If card(I) is fixed, then the question naturally arises how many combinatorial
types of mutual positions for {li : i ∈ I} are possible. Another interesting
question: how can we describe the combinatorial type of a mutual position of
{li : i ∈ I} in terms of the associated point-system? Many analogous questions
can be posed for finite line-systems in R2. As a rule, they are simple to formulate
but quite often turn out rather difficult. Some of those questions are of certain
interest for combinatorial and discrete geometry (see [2]; cf. also [3] and [4]).

Obviously, any finite line-system L = {li : i ∈ I} yields a decomposition of
R2 into polygonal domains (some of them are necessarily unbounded). Let us
assume that card(I) is fixed and denote card(I) = m.

For our further purposes, it is also convenient to introduce the following
notation:

V (m) = the total number of vertices of the obtained polygonal domains
(equivalently, V (m) is the number of elements of the point-system produced by
a given line-system {li : i ∈ I}).

E(m) = the total number of sides (edges) of the obtained domains (note that
among the sides of some of these domains there are rays, so they are necessarily
unbounded);

F (m) = the total number of the obtained domains.
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Also, we denote by Fk(m) the number of those domains from this decompo-
sition, which have exactly k sides, where k = 2, 3, . . . . In addition, we denote
by Vk(m) the number of those vertices which belong to exactly k sides (edges),
where k = 4, 6, 8, . . . .

Clearly, each domain with exactly two sides is unbounded. Three-sided do-
mains may also be unbounded as well as bounded (in the latter case they are
triangular domains or, simply, triangles).

Theorem 1. For F2(m) and F3(m), the inequality 2m+4 ≤ 2F2(m)+F3(m)
holds true.

Proof. Starting with Euler’s formula (see, e.g., [1] or [4]), one can easily deduce
that

F (m) + V (m) = E(m) + 1.

Also, it is not difficult to check the validity of the following relations:

F (m) = F2(m) + F3(m) + F4(m) + · · · ,

V (m) = V4(m) + V6(m) + V8(m) + · · · .

2m + 4V4(m) + 6V6(m) + 8V8(m) + · · · = 2E(m),

2F2(m) + 3F3(m) + 4F4(m) + · · · = 2E(m).

Consequently, we have

2F2(m) + 3F3(m) + 4(F (m)− F2(m)− F3(m)) ≤ 2E(m),

4F (m)− 2E(m) ≤ 2F2(m) + F3(m),

whence it follows that

4(E(m) + 1− V (m))− 2E(m) = 4 + 2E(m)− 4V (m) ≤ 2F2(m) + F3(m),

(4 + 2m) + 2V6(m) + 4V8(m) + · · · ≤ 2F2(m) + F3(m).

Since 2V6(m) + 4V8(m) + · · · ≥ 0, we finally obtain 4 + 2m ≤ 2F2(m) + F3(m).
This completes the proof of the statement. ¤

Remark 1. In a certain sense, the inequality 2m + 4 ≤ 2F2(m) + F3(m) is
exact. Indeed, in Fig. 1 we have m − 1 parallel lines and one more line not
parallel to them and, hence, intersecting all of them. In that case, we obviously
have

F2(m) = 4, F3(m) = 2(m− 2), 2F2(m) + F3(m) = 2m + 4,

so the above-mentioned inequality reduces to the equality. Moreover, the argu-
ment used in the proof of Theorem 1 yields that the relation 2F2(m)+F3(m) =
2m + 4 is satisfied if and only if

F5(m) = F6(m) = · · · = 0, V6(m) = V8(m) = · · · = 0.

The same Fig. 1 shows us that, for every natural number m ≥ 2, there exist
systems in the plane containing exactly m lines, for which F2(m) = 4. Conse-
quently, the value F2(m) can be bounded from above for arbitrarily large m.
Furthermore, for any natural number m ≥ 3, it is not difficult to point out a
system consisting of m lines in the plane and such that F2(m) = 3 (see Fig. 2).
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Fig. 1 Fig. 2

On the other hand, we can formulate the following statement.

Theorem 2. The inequality F2(m) ≥ 3 is valid for any natural m ≥ 2.

Proof. The above inequality is trivial if all points associated with a line-system
L = {li : i ∈ I} are collinear. Indeed, in that case we come either to a family
of lines passing through a point or to a family of pairwise parallel lines all of
which intersect one more line not parallel to them (see again Fig. 1). In both
cases, we have F2(m) ≥ 4 > 3. Suppose now that the point-system associated
with {li : i ∈ I} is not collinear and consider its convex hull T . Evidently,
T is a convex polygon whose all vertices belong to this point-system. It can
easily be observed that each vertex of T is simultaneously a vertex of some
two-sided domain determined by {li : i ∈ I}. Also, any two distinct vertices
of T correspond to distinct two-sided domains. Since the number of vertices
of a nondegenerate convex polygon T is greater than or equal to 3, we at once
obtain the required inequality F2(m) ≥ 3. ¤

Remark 2. For an arbitrary line-system in R2 consisting of m ≥ 2 elements,
the inequality F2(m) ≤ 2m holds true. To see this fact, it suffices to observe
that, for any line from our system, there are at most four two-sided domains
which have a common ray with this line. Thus we come to the estimates

3 ≤ F2(m) ≤ 2m,

which are precise. Indeed, Fig. 2 shows that the relation F2(m) = 3 can be
valid for arbitrarily large numbers m and the relation F2(m) = 2m holds true
for any system consisting of m lines in R2 passing through a point.

Now, the relations

2F2(m) + 3(F (m)− F2(m)) ≤ 2E(m),

F2(m) ≥ 3F (m)−2E(m) = 3F (m)−2(F (m)+V (m)−1) = F (m)−2(V (m)−1),

are obviously valid, whence it follows (in view of Remark 2) that

F (m)− 2(V (m)− 1) ≤ 2m, F (m) ≤ 2(V (m)− 1) + 2m.

Moreover, it is not difficult to show that the equality F2(m) = 2m is true if and
only if all lines of our system pass through a point. At the same time, we may
write

F2(m) + F3(m) ≤ F (m) ≤ 2(V (m)− 1) + 2m,
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so we have the inequalities

2m + 4 ≤ 2F2(m) + F3(m), F2(m) + F3(m) ≤ 2(V (m)− 1) + 2m

and, as said above, both of them are precise.

Theorem 3. If a system L = {li : i ∈ I} in R2 contains exactly m straight
lines, which are not parallel to each other and do not pass through a point, then
F3(m) ≥ 2m/3. Consequently, we always have limm→∞ F3(m) = +∞.

Proof. Here we need a slightly more delicate argument. Suppose first that the
given line-system L can be represented in the form L = L′ ∪ L′′, where:

(a) L′ ∩ L′′ = ∅;
(b) all lines from L′ are parallel to each other;
(c) all lines from L′′ pass through a point x;
(d) the point x lies on the boundary of conv(∪L′).
This situation is illustrated by Fig. 3.

Fig. 3

Denoting k1 = card(L′) and k2 = card(L′′) and taking into account that
m = k1 + k2, we have

F3(m) = 2(k1 − 1) + 2(k2 − 1) = 2m− 4 ≥ 2m/3.

Suppose now the our line-system L does not admit a partition {L′,L′′} with
the above-mentioned properties. Then it can be verified that, for each line li
from L, there exist at least two distinct three-sided domains Ai and Bi lying in
the two half-planes determined by li and such that Ai ∩ li (respectively, Bi ∩ li)
is a side of Ai (respectively, a side of Bi). This circumstance readily implies the
required estimate F3(m) ≥ 2m/3. ¤

Remark 3. Having the inequality F3(m) ≥ 2m/3, we cannot assert, in gen-
eral, that there are sufficiently many triangular domains (i.e. triangles) in the
decomposition of the plane produced by L = {li : i ∈ I}. Indeed, take an
arbitrary angle in R2 and intersect its both sides by many parallel lines (each
of them is assumed not be passing through the vertex of the angle). In this
way we obtain a certain finite line-system in the plane, which yields only one
triangular domain. Notice, in this context, that if a finite line-system L in the
plane contains three distinct lines in a general position, then L produces at least
one triangular domain (which can be shown by easy induction on card(I)). The
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last circumstance is closely connected with the question of the rigidity (in the
natural sense) of a given finite line-system L in the Euclidean plane. It is not
difficult to demonstrate that L is rigid if and only if the following two relations
hold:

(i) L contains at least three distinct lines in a general position;
(ii) any line from L contains at least two points of the associated point-system.
Starting with relations (i) and (ii), one can infer that a finite line-system L

in the Euclidean plane is non-rigid if and only if at least one of the following
two assertions is true:

(1) L admits a partition {L′,L′′}, where all lines from L′ are parallel to each
other and so are all lines from L′′;

(2) L admits a partition {L′,L′′}, where all lines from L′ are parallel to each
other and all lines from L′′ pass through a point which belongs to ∪L′ (see, e.g.,
Fig. 3).

Remark 4. For any natural number m ≥ 5, one can construct a system L
consisting of m lines in R2, no three of which have a common point, and such
that no unbounded three-sided domain is generated by L. For this purpose,
it suffices to consider all those lines which carry the sides of a regular convex
polygon with m vertices.

Remark 5. Theorem 3 also enables us to prove the following statement which
generalizes a result presented in [3]. Namely, suppose that a line-system L is
given in the plane, whose elements are not parallel to each other and do not
pass through a point. Then either this line-system is infinite or there exists a
circumference tangent to exactly three lines from L. Moreover, if card(L) = m,
then there are at least 2m/3 circumferences such that each of them is tangent
to exactly three lines from L.

The statement mentioned in Remark 5 can be regarded as a certain analog
of the well-known Sylvester theorem on collinear points (see, for instance, [2],
[5]–[7]). This theorem states that if a given finite point-system P on the plane
is such that the straight line determined by any two distinct points from P
contains at least three points of P , then P itself is contained in a straight line
(i.e. P is collinear). A dual version, in the sense of projective geometry, of the
Sylvester theorem reads as follows: if a given finite line-system L on the plane
is such that no point of the plane belongs to exactly two lines from L, then
either all lines from L are parallel or all of them have a common point.

A slightly weaker form of the latter statement can be formulated in the fol-
lowing manner:

(*) Let L be a finite family of lines on the (projective) plane having the
property that no point (finite or infinite) of the plane belongs to exactly two
lines from L. Then all lines from L have a common point (finite or infinite).

A similar fact can be stated for the two-dimensional unit sphere S2 (here
the role of lines is played by diametral sections of this sphere, i.e. by its great
circumferences):
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(**) Suppose that a finite system C of great circumferences of S2 is given
such that no point of S2 belongs to exactly two circumferences from C. Then
all circumferences from C contain some pair of antipodal points of S2.

Note that (**) is implied by one purely combinatorial consequence of Euler’s
formula. Indeed, an easy argument based on Euler’s formula shows that, for
any finite system of great circumferences of S2, which do not contain a common
pair of antipodal points of S2, the inequality

3V3 + 2V4 + V5 ≥ 12

holds true, where Vk denotes the number of all those vertices of the associated
graph on S2, which belong to exactly k edges (arcs). The proof of the above-
mentioned inequality can be found, e.g., in [4]. But it is obvious that this
inequality cannot be valid for the given system C because in our situation Vk = 0
for all k ≤ 5. Therefore either C is one-element or ∩C coincides with some set
consisting of precisely two antipodal points of S2 (cf. [4]).

The assertion (*) follows from (**) if we use a standard projective trick which
enables us to replace great circumferences of S2 by straight lines in R2. We thus
conclude that the Sylvester theorem is, in fact, of purely combinatorial nature.
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