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POSITIVE SOLUTIONS FOR NEUTRAL DIFFERENCE
EQUATIONS WITH CONTINUOUS ARGUMENTS

XIANYI LI

Abstract. Some “sharp” conditions are established for a kind of linear neu-
tral difference equations with continuous arguments not to possess eventually
positive solutions. The existence and asymptotic behavior are obtained for
positive solutions of the kind of equations. The results for linear cases are
further extended to nonlinear ones. A comparison principle, which is a nec-
essary and sufficient condition, for linear equations not to possess eventually
positive solutions is also presented.

2000 Mathematics Subject Classification: 39A10.
Key words and phrases: Neutral difference equation, existence, nonexis-
tence, asymptotic behavior, comparison principle, positive solution, continu-
ous argument.

1. Introduction

Investigations of oscillation and nonoscillation for neutral difference equations
have been in rapid progress in the past few years. Various applications have been
found, see, e.g., [1–3] and the references cited therein. As to the study of the
qualitative properties of difference equations, most of the literatures deals with
the case where variables are discrete, see the monographs [1, 7] and the papers
[10–15]. There are only a few papers, where the case of continuous variables
is considered [4, 5, 6]. Even less is known about the study of the oscillation
and nonoscillation of linear, especially of nonlinear, neutral difference equations
with continuous arguments.

In this paper we consider the following linear neutral difference equation with
continuous arguments

∇τ (y(t)− p(t)y(t− τ)) + q(t)y(t− στ) = 0, (1)

a more general linear neutral difference equation

∇τ (y(t)− p(t)y(t− τ)) +
m∑

i=1

qi(t)y(t− σiτ) = 0, (2)

and the nonlinear neutral difference equation

∇τ (y(t)− p(t)y(t− τ)) + q(t)
m∏

i=1

|y(t− σiτ)|αi sign y(t− σiτ) = 0, (3)

where ∇τ is a backward difference operator defined by ∇τy(t) = y(t)−y(t− τ),
p(t) ∈ C([t0, ∞), R+ = [0, ∞)), q(t), qi(t) ∈ C([t0, ∞), (0, ∞)), σ, σi, τ ∈
ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de
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N = {0, 1, 2, . . . } are constants and σ, σi > τ > 0, i = 1, 2, . . . , m, αi ≥ 0 and
m∑

i=1

αi = 1.

On account of y(t) being a solution of equation (1) (or (2), (3)), −y(t) is also
a solution of equation (1) (or (2), (3)). So, if there exists an eventually positive
solution of equation (1) (or (2), (3)), then there also exists an eventually negative
solution of equation (1) (or (2), (3)), i.e., there exist two nonoscillatory solutions
of equation (1) (or (2), (3)), and if there does not exist an eventually positive
solution of equation (1) (or (2), (3)), then there does not exist an eventually
negative solution of equation (1) (or (2), (3)), either. That is to say then, all
solutions of equation (1) (or (2), (3)) are oscillatory. Therefore, the study for
oscillation and nonoscillation of equation (1) (or (2), (3)) is equivalent to that
for the existence and nonexistence of eventually positive solutions of equation
(1) (or (2), (3)).

When considering the oscillation of equation (1) (or (2) or (3)) with discrete
arguments, namely, t ∈ N , 0 ≤ p(t) ≤ 1 is generally required in most known
papers, e.g., [3]. In this paper, we get rid of the restriction and permit the
interval for p to take values in a very wide range.

To the best of our knowledge, for p(t) 6= 0 no results have so far been obtained
for the oscillation and nonoscillation of equation (1), especially for equations (2)
and (3), which is the main reason why we study in this paper the existence and
nonexistence of positive solutions for the above three equations. Furthermore,
our results are “sharp” in the sense that when the coefficients in the equations
are constants, the sufficient conditions become the necessary and sufficient ones.

Equation (2) can be regarded as a discrete analogue of the neutral differential
equation

d

dt
[y(t)− p(t)y(t− τ)] +

m∑
i=1

qi(t)y(t− σi) = 0,

for which, see the papers by Y. Zhou [8], J. Sun and J. Wang [9].
For simplicity, put

T = max{σ1, . . . , σm}τ and σ∗ = min{σ1, . . . , σm}.
Define the condition (H) as follows.

(H) Either the function p(t) has arbitrarily large zeros or there exists a suf-
ficiently large s0 ≥ t0 such that p(s) > 0 for s ≥ s0 and, moreover, for
any k ∈ N and s ≥ s0

∞∑

k=0

[ k∏
i=0

p(s + iτ)

]−1

= ∞.

By a solution y(t) of equation (1), we mean a continuous function y ∈ C([t0−
στ, ∞), R) which satisfies equation (1) for t ≥ t0. Solutions of equations (2)
and (3) can be analogously defined.

As it is customary, a solution y(t) of equation (1) (or (2), (3)) is said to be
oscillatory if it is neither eventually positive nor eventually negative. Otherwise,
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a solution is called nonoscillatory. Equation (1) (or (2), (3)) is called oscillatory
if every solution of it oscillates.

The arrangement of this paper is as follows. In Section 2 we state a useful
lemma . In Section 3, we first deal in detail with the nonexistence of positive
solutions of equation (1); then, we apply the idea to equations (2) and (3) to
obtain a series of interesting results; finally, we consider the cases where the
coefficients in Eqs (1) and (2) are constants, which manifests that our results
are “sharp”. The existence and asymptotic behavior of positive solutions of
equation (2) is considered in Section 4. A comparison principle for the nonex-
istence of positive solutions of equation (2) is derived in Section 5, which is a
necessary and sufficient condition.

2. Lemma

Before stating our main results we need the following lemma which is very
useful in proving our results.

Lemma 1. Suppose that the condition (H) holds. Let y(t) be an eventually
positive solution of equation (1) (or (2), (3)). Set

x(t) = y(t)− p(t)y(t− τ). (4)

Then eventually

∇τx(t) < 0, x(t) > 0. (5)

Proof. Assume that y(t) is an eventually positive solution of equation (1). (The
proof for the case where y(t) is an eventually positive solution of equation (2)
or equation (3) is similar and will be omitted.) Then there exists t1 ≥ t0 such
that y(t) > 0, y(t − τ) > 0, y(t − στ) > 0 for t ≥ t1. From (4) and equation
(1) we know that

∇τx(t) = −q(t)y(t− στ) < 0 for t ≥ t1. (6)

Therefore if (5) does not hold eventually, then there exists a sufficiently large
t2 ≥ max{s0, t1} such that x(t2) < 0. Put c = −x(t2). Then it follows from
(6) that

−c = x(t2) > x(t2 + τ) > x(t2 + 2τ) > x(t2 + 3τ) > · · · ,

i.e., x(t2 + kτ) ≤ −c for any k ∈ N. If for some k ∈ N, p(t2 + kτ) = 0, then
y(t2 + kτ) = x(t2 + kτ) ≤ −c < 0. A contradiction. So, for any k ∈ N , we have
p(t2 + kτ) > 0. Accordingly,

y(t2 + kτ) = x(t2 + kτ) + p(t2 + kτ)y(t2 + (k − 1)τ)

≤ p(t2 + kτ)y(t2 + (k − 1)τ)− c

≤ p(t2 + kτ)p(t2 + (k − 1)τ) · · · p(t2 + τ)y(t2)− c[1 + p(t2 + kτ)

+ p(t2 + kτ)p(t2 + (k − 1)τ) + · · ·
+ p(t2 + kτ)p(t2 + (k − 1)τ) · · · p(t2 + 2τ)]
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=

[ k∏
i=1

p(t2 + iτ)

]{
y(t2)− c

k∑
i=1

i∏
j=1

[p(t2 + jτ)]−1

}
,

which, together with the hypothesis (H), implies that y(t2 + kτ) < 0 for k suf-
ficiently large. This is also a contradiction. Hence, the proof of the proposition
is complete. ¤

3. Nonexistence of Positive Solutions

Our main results in this section are as follows.

Theorem 1. Assume that the condition (H) holds. Furthermore,

inf
t≥t0, λ>0

{
p(t− στ)q(t)

q(t− τ)
(1 + λ) +

1

λ
q(t)(1 + λ)σ

}
> 1. (7)

Then there do not exist eventually positive solutions of equation (1).

Proof. Suppose the opposite that there exists an eventually positive solution y(t)
of equation (1). Then there exists a t1 ≥ t0 such that y(t) > 0, y(t − τ) > 0,
y(t − στ) > 0, for t ≥ t1. Let x(t) be defined as (4). It is clear from Lemma
1 that there exists a sufficiently large t2 ≥ max{s0, t1} such that (5) holds for
t ≥ t2. Set

u(t) =
−∇τx(t)

x(t)
, t ≥ t2. (8)

Then

u(t) > 0,
x(t− τ)

x(t)
= 1 + u(t), t ≥ t2, (9)

and for any n1, n2 ∈ N with n2 > n1 and t ≥ t2 + n2τ ,

x(t− n2τ)

x(t− n1τ)
=

n2−1∏

k=n1

x(t− (k + 1)τ)

x(t− kτ)
=

n2−1∏

k=n1

[1 + u(t− kτ)]. (10)

So, by equations (1), (4), (8), (9) and (10) we have, for t ≥ t3 = t2 + (σ + 1)τ ,

u(t) =
q(t)

x(t)
y(t− στ) =

q(t)

x(t)
[x(t− στ) + p(t− στ)y(t− τ − στ)]

= q(t)
x(t− στ)

x(t)
+

q(t)p(t− στ)

q(t− τ)

q(t− τ)y(t− τ − στ)

x(t− τ)

x(t− τ)

x(t)

= q(t)
σ−1∏

k=0

[1 + u(t− kτ)] +
q(t)p(t− στ)

q(t− τ)
u(t− τ)[1 + u(t)]. (11)

We now show that lim inf
t→∞

u(t) > 0. Otherwise, there exists a sequence {ξn} ⊂ N

such that ξn → ∞, u(ξn) → 0 as n → ∞ and u(ξn) = min{u(t) : t0 ≤ t ≤ ξn}.
It follows from (11) that

u(ξn) ≥ q(ξn)
σ−1∏

k=0

[1 + u(ξn)] +
q(ξn)p(ξn − στ)

q(ξn − τ)
u(ξn)[1 + u(ξn)]
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=
p(ξn − στ)q(ξn)

q(ξn − τ)
u(ξn)[1 + u(ξn)] + q(ξn)[1 + u(ξn)]σ

and so

p(ξn − στ)q(ξn)

q(ξn − τ)
[1 + u(ξn)] +

1

u(ξn)
q(ξn)[1 + u(ξn)]σ ≤ 1.

This contradicts (7). Therefore a = lim inf
t→∞

u(t) > 0. In view of condition (7)

we find that there exists a positive number β such that

inf
t≥t0, λ>0

{
p(t− στ)q(t)

q(t− τ)
(1 + λ) +

1

λ
q(t)(1 + λ)σ

}
> β > 1. (12)

Also, for a sufficiently large t4 > t3, u(t) > a
β

for t ≥ t4. Then by (11) we see

that

u(t) ≥ p(t− στ)q(t)

q(t− τ)

a

β

(
1 +

a

β

)
+ q(t)

(
1 +

a

β

)σ

(13)

for t ≥ t5 = t4 + (σ − 1)τ . One can further derive

inf
t≥t5

{
p(t− στ)q(t)

q(t− τ)

(
1 +

a

β

)
+

1
a
β

q(t)

(
1 +

a

β

)σ}
≤ β,

which is contrary to (12). Hence the proof is complete. ¤
Theorem 1 readily implies

Corollary 1. If condition (7) in Theorem 1 is replaced by

lim inf
t→∞

{
p(t− στ)q(t)

q(t− τ)
+ q(t)

}
> 1,

then there exist no eventually positive solutions of equation (1).

Next, we will apply the idea in Theorem 1 to equations (2) and (3).

Theorem 2. Suppose that the condition (H) holds and there exists a function
h ∈ C([t0, ∞), R+) such that

h(t) ≤ p(t− σiτ)qi(t)

qi(t− τ)
, t ≥ t0, i = 1, 2, . . . , m,

and

inf
t≥t0, λ>0

{
1

λ

m∑
i=1

qi(t)(1 + λ)σi + h(t)(1 + λ)

}
> 1. (14)

Then there exist no eventually positive solutions of equation (2).

Proof. We only need to notice that (11) now takes the form

u(t) =
1

x(t)

m∑
i=1

qi(t)y(t− σiτ)

=
1

x(t)

m∑
i=1

qi(t)[x(t− σiτ) + p(t− σiτ)y(t− σiτ − τ)]
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=
1

x(t)

[ m∑
i=1

qi(t)x(t− σiτ) +
m∑

i=1

qi(t)p(t− σiτ)

qi(t− τ)
qi(t− τ)y(t− τ − σiτ)

]

≥
m∑

i=1

qi(t)
x(t− σiτ)

x(t)
+ h(t)

−∇τx(t− τ)

x(t− τ)

x(t− τ)

x(t)

=
m∑

i=1

qi(t)

σi−1∏

k=0

[1 + u(t− kτ)] + h(t)u(t− τ)[1 + u(t)].

The rest of the proof is similar to that of Theorem 1 and therefore is omitted. ¤

By Theorem 2 it is clear that the result below is true.

Corollary 2. Let condition (14) in Theorem 2 be replaced by

lim inf
t→∞

{ m∑
i=1

qi(t) + h(t)

}
> 1.

Then there exist no eventually positive solutions of equation (2).

Theorem 3. Suppose that the condition (H) holds. Then

inf
t≥t0, λ>0

{
1

λ
q(t)

[ m∏
i=1

((1+λ)σi)αi

]
+

q(t)

q(t− τ)

[ m∏
i=1

pαi(t−σiτ)

]
(1+λ)

}
> 1 (15)

implies that there exist no eventually positive solutions of equation (3).

Proof. We only need to note that (11) now takes the form

u(t) =
q(t)

x(t)

m∏
i=1

yαi(t− σiτ) =
q(t)

x(t)

m∏
i=1

[
x(t− σiτ) + p(t− σiτ)y(t− σiτ − τ)

]αi

≥ q(t)

x(t)

[ m∏
i=1

xαi(t− σiτ) +
m∏

i=1

pαi(t− σiτ)
m∏

i=1

yαi(t− τ − σiτ)

]

= q(t)
m∏

i=1

( σi−1∏

k=0

[1 + u(t− kτ)]

)αi

+
q(t)

q(t− τ)

[ m∏
i=1

pαi(t− σiτ)

]
u(t− τ)[1 + u(t)].

The rest of the proof is similar to that of Theorem 1 and thus is omitted. ¤

In view of Theorem 3, the following conclusion holds.

Corollary 3. Assume that condition (15) in Theorem 3 is replaced by

lim inf
t→∞

{
q(t) +

q(t)

q(t− τ)

[ m∏
i=1

pαi(t− σiτ)

]}
> 1.

Then there exist no eventually positive solutions of equation (3).
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We are now in a position to investigate the oscillation of the special case of
equation (1), i.e., the following linear neutral difference equation with constant
coefficients

∇τ (y(t)− py(t− τ)) + qy(t− στ) = 0, (1∗)

where 0 ≤ p ≤ 1 and q > 0. Obviously, p satisfies the previous condition (H).
We have the following result.

Theorem 4. The necessary and sufficient condition for equation (1∗) not to
possess eventually positive solutions is

pλ(1 + λ) + q(1 + λ)σ − λ > 0, λ > 0. (16)

Proof. The sufficiency can be directly derived from Theorem 1. So, it suffices
to prove the necessity. Assume that there exist no eventually positive solutions
of equation (1∗), whereas there is a λ0 ∈ (0, ∞) such that

pλ0(1 + λ0) + q(1 + λ0)
σ − λ0 ≤ 0. (17)

Set

F (λ) = pλ(1 + λ) + q(1 + λ)σ − λ, λ > 0. (18)

Then F (λ0) ≤ 0. Also, lim
λ→∞

F (λ) = ∞. Hence there exists λ1 satisfying

λ0 ≤ λ1 < ∞ such that F (λ1) = 0. Set y(t) = (1 + λ1)
−t/τ , t ≥ t0, which is an

eventually positive solution of equation (1∗). A contradiction. ¤

Similarly, according to equation (2), we study the following neutral difference
equation

∇τ (y(t)− py(t− τ)) + q

m∑
i=1

y(t− σiτ) = 0 (2∗)

where the assumptions for p, q are the same as in equation (1∗). We obtain a
conclusion similar to Theorem 4 that reads as follows.

Theorem 5. The necessary and sufficient condition for equation (2∗) not to
possess eventually positive solutions is

pλ(1 + λ) + q

m∑
i=1

(1 + λ)σi − λ > 0, λ > 0. (19)

Proof. The proof is similar to that of Theorem 4 and thus is omitted. ¤

Remark 1. Theorems 4 and 5 imply that the conditions in Theorem 1 and
Theorem 2 are the “sharp” ones.

4. Existence of Positive Solutions

In this section we will state some results for the existence and asymptotic
behavior for positive solutions of equation (2). The main results are as follows.



706 XIANYI LI

Theorem 6. Suppose that lim sup
t→∞

m∑
i=1

qi(t) < ∞. If the difference inequality

p(t)y(t− τ) +
∞∑

k=1

m∑
i=1

qi(t + kτ)y(t− σiτ + kτ) ≤ y(t), t ≥ t0 (20)

has a continuous positive solution Y (t) ∈ C([t0−T + τ, ∞), (0, ∞)) satisfying
lim
t→∞

Y (t) = 0, then equation (2) has a positive solution x(t) ∈ C([t0 − T +

τ, ∞), (0, ∞)) satisfying 0 < x(t) ≤ Y (t) for t ≥ t0 − T + τ .

Proof. Choose T ∗ > t0 − T + τ sufficiently large such that Y (T ∗) =
mint0−T+τ≤t≤T ∗ Y (t) and Y (t) > Y (T ∗) for t ∈ [t0 − T + τ, T ∗). Define a
function set by

Ω = {ω(t) ∈ C([t0 − T + τ, ∞), [0, ∞)) : 0 ≤ ω(t) ≤ Y (t), t ≥ t0 − T + τ}
and an operator on Ω as follows

(Sω)(t) =

{
p(t)ω(t− τ) +

∑∞
k=1

∑m
i=1 qi(t + kτ)ω(t− σiτ + kτ), t ≥ T ∗,

(Sω)(T ∗) + Y (t)− Y (T ∗), t0 − T + τ ≤ t < T ∗.

From (20) it is easy to see that SΩ ⊂ Ω. Clearly, S is a monotonically non-
decreasing operator. That is , for any given ω1, ω2 ∈ Ω, ω1 < ω2 implies
Sω1 ≤ Sω2. Now define a function sequence {xn(t)} on Ω as follows:

x0 = Y, xn = Sxn−1, n = 1, 2, . . . .

Then
0 ≤ xn(t) ≤ xn−1(t) ≤ · · · ≤ x0(t) ≤ Y (t), t ≥ t0 − T + τ.

So, the limit lim
n→∞

xn(t) exists. Denote lim
n→∞

xn(t) = x(t). Then it is obvious

that 0 ≤ x(t) ≤ Y (t) for t ≥ t0 − T + τ . According to Lebesgue’ Dominated
Convergence Theorem, x(t) satisfies the equation

p(t)x(t− τ) +
∞∑

k=1

m∑
i=1

qi(t + kτ)x(t− σi + kτ) = x(t), t ≥ T ∗. (21)

We now verify x(t) to be a positive solution of equation (2). From lim
t→∞

Y (t) =

0 and 0 ≤ x(t) ≤ Y (t) one can see that

lim
t→∞

x(t) = 0. (22)

It follows from (21) that

∇τ (x(t)− p(t)x(t− τ)) = ∇τ

( ∞∑

k=1

m∑
i=1

qi(t + kτ)x(t− σiτ + kτ)

)

=
∞∑

k=1

m∑
i=1

qi(t + kτ)x(t− σiτ + kτ)

−
∞∑

k=1

m∑
i=1

qi(t + (k − 1)τ)x(t− σiτ + (k − 1)τ)
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=
∞∑

k=1

[ m∑
i=1

qi(t + kτ)x(t− σiτ + kτ)

−
m∑

i=1

qi(t + (k − 1)τ)x(t− σiτ + (k − 1)τ)

]
. (23)

On the other hand, we have

0 ≤
m∑

i=1

qi(t + kτ)x(t− σiτ + kτ) ≤ max
1≤i≤m

x(t− σiτ + kτ)
m∑

i=1

qi(t + kτ). (24)

Then by the assumption lim sup
t→∞

m∑
i=1

qi(t) < ∞ and (22), it is easily seen from

(24) that

lim
k→∞

m∑
i=1

qi(t + kτ)x(t− σiτ + kτ) = 0, (25)

which implies

∞∑

k=1

[ m∑
i=1

qi(t + kτ)x(t− σiτ + kτ)−
m∑

i=1

qi(t + (k− 1)τ)x(t− σiτ + (k− 1)τ)

]

= −
m∑

i=1

qi(t)x(t− σiτ). (26)

As a consequence of (23) and (26), one can see that x(t) is a solution of equa-
tion (2).

Next, it suffices to show that x(t) > 0 as t ≥ t0 − T + τ . It is evident that
x(t) > 0 for t0 − T + τ ≤ t < T ∗. Let t∗ = inf{t ≥ T ∗ : x(t) = 0}. Namely,
x(t) > 0 for t ∈ [T ∗, t∗) and x(t∗) = 0. Whereas, by (21),

x(t∗) = p(t∗)x(t∗ − τ) +
∞∑

k=1

m∑
i=1

qi(t
∗ + kτ)x(t∗ − σiτ + kτ)

≥
m∑

i=1

qi(t
∗ + τ)x(t∗ − σiτ + τ) > 0.

This is a contradiction and the proof is finished. ¤

For nonoscillatory solutions of equation (1) we further have the following
asymptotic result.

Theorem 7. Assume that the following two conditions hold:
(a) p = lim sup

t→∞
p(t) < 1,

(b)
∞∑

k=1

m∑
i=1

qi(t + kτ) = ∞ for any fixed t ≥ t0.

Then any nonoscillatory solution y(t) of equation (2) tends to 0 as t →∞.
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Proof. Let y(t) be an eventually positive solution of equation (2). That is, there
exists t1 ≥ t0 such that y(t) > 0, y(t − σiτ) > 0, i = 1, 2, . . . ,m, t ≥ t1. Let
x(t) be defined by (4). Then (5) eventually holds. Indeed, from equation (2)

we know that ∇τx(t) = −
m∑

i=1

qi(t)y(t − σiτ) < 0 for t ≥ t1. Therefore If (5)

does not hold eventually, then there exists t2 ≥ t1 such that x(t2) < 0. Denote
c = −x(t2). Then it is easy to see that

−c = x(t2) > x(t2 + τ) > x(t2 + 2τ) > x(t2 + 3τ) > · · · ,

i.e., x(t2 + kτ) ≤ −c for any k ∈ N.
By the definition of superior limit, there exists k0 ∈ N such that for t ≥

t2 + k0τ we have p(t) ≤ p + (1− p)/2 = (1 + p)/2 < 1. Set bk = t2 + k0τ + kτ ,
k ∈ N and P = (1 + p)/2. Then

y(bk) = x(bk) + p(bk)y(bk−1) ≤ p(bk)y(bk−1)− c ≤ Py(bk−1)− c

≤ P ky(t0)− c(1 + P + P 2 + · · ·+ P k−1) = P ky(t0)− c 1−P k

1−P
,

which implies that y(bk) < 0 for k sufficiently large. This is a contradiction.
Accordingly, for any fixed t, the limit lim

k→∞
x(t + kτ) exists. It follows that by

equation (2) and (4)

∇τx(t) +
m∑

i=1

pi(t)y(t− σiτ) = 0. (27)

Replacing t in (27) by t + kτ and then summing (27) from k ≥ t2 to ∞, one

can easily see that the series
∞∑

k≥t2

m∑
i=1

pi(t + kτ)y(t− σiτ + kτ) converges. Then,

in view of (b), we obtain lim
k→∞

inf y(t + kτ) = 0. Again, 0 < x(t) ≤ y(t). So

lim
t→∞

x(t) = 0.

To show lim
t→∞

y(t) = 0, it suffices to prove lim sup
t→∞

y(t) = 0. Consider two

possible cases.
Case (i). y(t) is unbounded, i.e., lim sup

t→∞
y(t) = ∞. Then there exists a

sequence of points {tn} such that tn ≥ t1, n = 1, 2, . . . , tn →∞, y(tn) →∞ as
n →∞ and y(tn) = max

t1≤t≤tn
{y(t)}, n = 1, 2, . . . . From (4) we have

x(tn) = y(tn)− p(tn)y(tn − τ) ≥ [1− lim sup
t→∞

p(t)]y(tn) →∞,

which is a contradiction.
Case (ii). y(t) is bounded, i.e., lim sup

t→∞
y(t) = d < ∞. Thus there exists a

sequence of points {un} such that un ≥ t1, n = 1, 2, . . . , un →∞, y(un) → d as
n →∞ and y(un) = max

t1≤t≤un

{y(t)}, n = 1, 2, . . . . It suffices to show that d = 0.

If d > 0, it is clear that (4) implies

x(un) = y(un)− p(un)y(un − τ) ≥ [1− lim sup
t→∞

p(t)]y(un)



POSITIVE SOLUTIONS FOR NEUTRAL DIFFERENCE EQUATIONS 709

and so 0 ≥ [1− lim sup
t→∞

p(t)]d > 0, which is also a contradiction. ¤

5. Comparison Principle for Nonexistence of Positive Solution

In this section we present a comparison principle, which is a necessary and
sufficient condition for equation (2) not to possess positive solutions.

Theorem 8. Suppose that the conditions of Theorem 7 are true. Then the
necessary and sufficient condition for equation (2) not to possess positive solu-
tions is that the difference inequality

∇τ (y(t)− p(t)y(t− τ)) +
m∑

i=1

qi(t)y(t− σiτ) ≤ 0 (28)

have no positive solutions.

Proof. The sufficiency is obvious. Now let us prove the necessity. Assume the
opposite that inequality (28) has a positive solution y(t) ∈ C([t0−T,∞), (0,∞)),
and let x(t) be defined as (4), i.e., x(t) = y(t)−p(t)y(t−τ), then, similarly to the
proof of Theorem 7, we have lim

t→∞
y(t) = 0, x(t) > 0, ∇τx(t) ≤ 0, lim

t→∞
x(t) = 0

and that the series
∞∑ m∑

i=1

pi(t + kτ)y(t − σi + kτ) converges. Noting equality

(4), replacing t in (28) by t + kτ and then summing (28) from k = 1 to ∞, we
obtain

−x(t) +
∞∑

k=1

m∑
i=1

qi(t + kτ)y(t− σi + kτ) ≤ 0,

or, equivalently,

p(t)y(t− τ) +
∞∑

k=1

m∑
i=1

qi(t + kτ)y(t− σi + kτ) ≤ y(t). (29)

According to Theorem 6, that inequality (29) has a positive solution y(t) satis-
fying lim

t→∞
y(t) = 0 implies that equation (2) has a positive solution. A contra-

diction. We complete thereby the proof. ¤
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