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Abstract. Oscillations of parabolic equations with functional argu-
ments are studied, and sufficient conditions are derived for all solutions
of certain boundary value problems to be oscillatory in a cylindrical
domain. Our approach is to reduce the multi-dimensional problems to
one-dimensional problems for functional differential inequalities.

1. Introduction

We are concerned with the oscillatory behavior of solutions of the para-
bolic equation with functional arguments

∂

∂t

(
u(x, t) +

∑̀
i=1

hi(t)u(x, ρi(t))

)
(1)

−a(t)∆u(x, t)−
k∑
i=1

bi(t)∆u(x, τi(t))

−c(x, t, (zi[u](x, t))Mi=1) = f(x, t), (x, t) ∈ Ω ≡ G× (0,∞),
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where G is a bounded domain of Rn with piecewise smooth boundary ∂G.
It is assumed that

zi[u](x, t)=


u(x, σi(t)) (i = 1, 2, ...,m),
maxs∈Bi(t) u(x, s) (i = m+ 1,m+ 2, ...,m1),
Ni∑
j=1

∫
G
Kij(x, t, y)ωij(u(y, σij(t)))dy (i = m1 + 1,m1 + 2, ...,M),

where Bi(t) (i = m+1,m+2, ...,m1) are closed bounded sets of [0,∞) with
the property that limt→∞mins∈Bi(t) s = ∞, σij(t) ∈ C([0,∞); R) (i =
m1 + 1,m1 + 2, ...,M ; j = 1, 2, ..., Ni), limt→∞ σij(t) = ∞, Kij(x, t, y) ∈
C(Ω×G; [0,∞)), and ωij(s) ∈ C(R; R) are odd functions such that ωij(s) ≥
0 for s > 0.

We note that zi[u](x, t) ≥ 0 (i = 1, 2, ...,M) in G× [T,∞) for some T > 0
if u is eventually positive in G× (0,∞).

We assume that :

hi(t) ∈ C1([0,∞); [0,∞)) (i = 1, 2, ..., `);
a(t) ∈ C([0,∞); [0,∞));
bi(t) ∈ C([0,∞); [0,∞)) (i = 1, 2, ..., k);
ρi(t) ∈ C1([0,∞); R), lim

t→∞
ρi(t) =∞ (i = 1, 2, ..., `);

τi(t) ∈ C([0,∞); R), lim
t→∞

τi(t) =∞ (i = 1, 2, ..., k);

σi(t) ∈ C([0,∞); R), lim
t→∞

σi(t) =∞ (i = 1, 2, ...,m);

f(x, t) ∈ C(Ω; R).

Moreover, we assume that :

c(x, t, (ξi)Mi=1) ∈ C(Ω×RM ; R),

c(x, t, (ξi)Mi=1) ≥
m∑
i=1

pi(t)ϕi(ξi) for (x, t, (ξi)Mi=1) ∈ Ω× [0,∞)M ,

c(x, t, (−ξi)Mi=1) ≤ −
m∑
i=1

pi(t)ϕi(ξi) for (x, t, (ξi)Mi=1) ∈ Ω× [0,∞)M ,

where [0,∞)j = [0,∞)×[0,∞)j−1 (j = 1, 2, ...,M), pi(t) ∈ C([0,∞); [0,∞)),
ϕi(s) ∈ C([0,∞); [0,∞)), and ϕi(s) are convex in (0,∞) (i = 1, 2, ...,m).

The boundary conditions to be considered are the following :
(B1) u = ψ on ∂G× (0,∞),

(B2)
∂u

∂ν
− µu = ψ̃ on ∂G× (0,∞),

where ψ, ψ̃ ∈ C(∂G× (0,∞); R), µ ∈ C(∂G× (0,∞); [0,∞)) and ν denotes
the unit exterior normal vector to ∂G.
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Definition 1. By a solution of the boundary value problems (1), (Bi)
(i = 1, 2), we mean a function u(x, t) ∈ C2(G × [t−1,∞); R) ∩ C1(G ×
[t̃−1,∞); R) ∩ C(G× [t̂−1,∞); R) which satisfies (1), (Bi) (i = 1, 2), where

t−1 = min
{

0, min
1≤i≤k

{
inf
t≥0

τi(t)
}}

,

t̃−1 = min
{

0, min
1≤i≤`

{
inf
t≥0

ρi(t)
}}

,

t̂−1 = min

0, min
1≤i≤m

{
inf
t≥0

σi(t)
}
, min
m1+1≤i≤M

1≤j≤Ni

{
inf
t≥0

σij(t)
} .

Definition 2. A solution u of the boundary value problems (1), (Bi) (i =
1, 2) is said to be oscillatory in Ω if u has a zero in G× (t,∞) for any t > 0.

In 1983, Bykov and Kultaev [2] have studied the oscillations of func-
tional parabolic equations including the special case of (1). Oscillation
theory for functional parabolic equations has been extensively developed
in recent years by several authors; see, for example, [4–6, 8–10]. How-
ever, most of the papers except [2, 9] pertain to the parabolic equations (1)
with −c(x, t, (zi[u](x, t))Mi=1) replaced by c(x, t, (zi[u](x, t))Mi=1). We mention
in particular the paper [1] which deals with impulsive nonlinear parabolic
equations.

The purpose of this paper is to derive sufficient conditions for every so-
lution u of the boundary value problems (1), (Bi) (i = 1, 2) to be oscilla-
tory in Ω. In Section 2 we reduce the multi-dimensional problems to one-
dimensional oscillation problems. Section 3 is devoted to the nonexistence
of eventually positive solutions of the associated functional differential in-
equalities. In Section 4 we combine the results of Sections 2 and 3 to obtain
various oscillation results for the functional parabolic equation (1).

2. Reduction to functional differential inequalities

In this section we show that the boundary value problems (1), (Bi) (i =
1, 2) can be reduced to one-dimensional oscillation problems.

It is known that the smallest eigenvalue λ1 of the eigenvalue problem

−∆w = λw in G,

w = 0 on ∂G

is positive and the corresponding eigenfunction Φ(x) may be chosen so that
Φ(x) > 0 in G (see Courant and Hilbert [3]).



4 T. Kusano and N. Yoshida

We use the notation :

F (t) =
∫
G
f(x, t)Φ(x)dx ·

(∫
G

Φ(x)dx
)−1

,

Ψ(t) =
∫
∂G
ψ
∂Φ
∂ν

(x)dS ·
(∫

G
Φ(x)dx

)−1

,

F̃ (t) =
1
|G|

∫
G
f(x, t)dx,

Ψ̃(t) =
1
|G|

∫
∂G
ψ̃ dS,

where |G| =
∫
G dx.

We define the function spaces Bγ(Ω) and B̃Γ by

Bγ(Ω) =
{
u(x, t) ∈ C2(Ω; R); |u(x, t)| ≤ γ(x, t) on Ω

}
,

B̃Γ =
{
y(t) ∈ C1([Ty,∞); R); |y(t)| ≤ Γ(t) on [Ty,∞)

}
,

where Ty is a positive constant depending on y(t), γ(x, t) is a positive con-
tinuous function on Ω, and

Γ(t) =
∫
G
γ(x, t)Φ(x)dx ·

(∫
G

Φ(x)dx
)−1

.

Theorem 1. If the functional differential inequalities

d

dt

(
y(t) +

∑̀
i=1

hi(t)y(ρi(t))

)
+ λ1a(t)y(t)(2±)

+ λ1

k∑
i=1

bi(t)y(τi(t))−
m∑
i=1

pi(t)ϕi(y(σi(t))) ≥ ±G(t)

have no eventually positive solutions of class B̃Γ, then every solution u ∈
Bγ(Ω) of the boundary value problem (1), (B1) is oscillatory in Ω, where

G(t) = F (t)− a(t)Ψ(t)−
k∑
i=1

bi(t)Ψ(τi(t)).

Proof. Suppose to the contrary that there exists a solution u ∈ Bγ(Ω) of
the problem (1), (B1) which is nonoscillatory in Ω. First we assume that
u > 0 in G× [t0,∞) for some t0 > 0. The hypothesis implies that

c(x, t, (zi[u](x, t))Mi=1) ≥
m∑
i=1

pi(t)ϕi(u(x, σi(t))) in G× [t1,∞)
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for some t1 ≥ t0. Hence, from (1) we see that

∂

∂t

(
u(x, t) +

∑̀
i=1

hi(t)u(x, ρi(t))

)
(3)

−a(t)∆u(x, t)−
k∑
i=1

bi(t)∆u(x, τi(t))

−
m∑
i=1

pi(t)ϕi(u(x, σi(t))) ≥ f(x, t) in G× [t1,∞).

Multiplying (3) by Φ(x) ·
(∫
G Φ(x)dx

)−1 and then integrating over G yields

d

dt

(
U(t) +

∑̀
i=1

hi(t)U(ρi(t))

)
− a(t)KΦ

∫
G

∆u(x, t)Φ(x)dx(4)

−
k∑
i=1

bi(t)KΦ

∫
G

∆u(x, τi(t))Φ(x)dx

−
m∑
i=1

pi(t)KΦ

∫
G
ϕi(u(x, σi(t)))Φ(x)dx

≥ F (t), t ≥ t1,

where

KΦ =
(∫

G
Φ(x)dx

)−1

,

U(t) =
∫
G
u(x, t)Φ(x)dx ·

(∫
G

Φ(x)dx
)−1

.

It follows from Green’s formula that

KΦ

∫
G

∆u(x, t)Φ(x)dx(5)

= KΦ

∫
∂G

[
∂u

∂ν
(x, t)Φ(x)− u(x, t)

∂Φ
∂ν

(x)
]
dS +KΦ

∫
G
u(x, t)∆Φ(x)dx

= −KΦ

∫
∂G
ψ
∂Φ
∂ν

(x)dS − λ1KΦ

∫
G
u(x, t)Φ(x)dx

= −Ψ(t)− λ1U(t), t ≥ t1.

Analogously we have

KΦ

∫
G

∆u(x, τi(t))Φ(x)dx = −Ψ(τi(t))− λ1U(τi(t)), t ≥ t2(6)
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for some t2 ≥ t1. Applying Jensen’s inequality [7, p.160], we obtain

KΦ

∫
G
ϕi(u(x, σi(t)))Φ(x)dx ≥ ϕi (U(σi(t))) , t ≥ t2.(7)

Combining (4)–(7) yields

d

dt

(
U(t) +

∑̀
i=1

hi(t)U(ρi(t))

)
+ λ1a(t)U(t)

+λ1

k∑
i=1

bi(t)U(τi(t))−
m∑
i=1

pi(t)ϕi(U(σi(t))) ≥ G(t), t ≥ t2.

It is easy to check that

|U(t)| ≤ KΦ

∫
G
|u(x, t)|Φ(x)dx ≤ KΦ

∫
G
γ(x, t)Φ(x)dx = Γ(t),

and therefore U(t) ∈ B̃Γ. Hence, (2+) has an eventually positive solution
U(t) of class B̃Γ. This contradicts the hypothesis. If u < 0 in G × [t0,∞),
it can be shown that

c(x, t, (zi[u](x, t))Mi=1) ≤ −
m∑
i=1

pi(t)ϕi(−u(x, σi(t))) in G× [t1,∞)

for some t1 ≥ t0. Letting v ≡ −u, we obtain

∂

∂t

(
v(x, t) +

∑̀
i=1

hi(t)v(x, ρi(t))

)

−a(t)∆v(x, t)−
k∑
i=1

bi(t)∆v(x, τi(t))

−
m∑
i=1

pi(t)ϕi(v(x, σi(t))) ≥ −f(x, t) in G× [t1,∞).

Proceeding as in the case where u > 0, we are led to a contradiction. The
proof is complete.

Theorem 2. If the functional differential inequalities

d

dt

(
y(t) +

∑̀
i=1

hi(t)y(ρi(t))

)
−

m∑
i=1

pi(t)ϕi(y(σi(t))) ≥ ±G̃(t)

(8±)
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have no eventually positive (bounded) solutions, then every (bounded) so-
lution u of the boundary value problem (1), (B2) is oscillatory in Ω, where

G̃(t) = F̃ (t) + a(t)Ψ̃(t) +
k∑
i=1

bi(t)Ψ̃(τi(t)).

Proof. Assume on the contrary, that there exists a (bounded) solution u
of the problem (1), (B2) such that u > 0 in G × [t0,∞) for some t0 > 0.
Arguing as in the proof of Theorem 1, we observe that the inequality (3)
holds for some t1 ≥ t0. Dividing (3) by |G| and then integrating over G
yields

d

dt

(
Ũ(t) +

∑̀
i=1

hi(t)Ũ(ρi(t))

)
− a(t)

1
|G|

∫
G

∆u(x, t)dx(9)

−
k∑
i=1

bi(t)
1
|G|

∫
G

∆u(x, τi(t))dx−
m∑
i=1

pi(t)
1
|G|

∫
G
ϕi(u(x, σi(t)))dx

≥ F̃ (t), t ≥ t1.
It follows from the divergence theorem that

1
|G|

∫
G

∆u(x, t)dx =
1
|G|

∫
∂G

∂u

∂ν
(x, t)dS(10)

=
1
|G|

∫
∂G

(
µu(x, t) + ψ̃

)
dS

≥ Ψ̃(t), t ≥ t1.
Analogously we obtain

1
|G|

∫
G

∆u(x, τi(t))dx ≥ Ψ̃(τi(t)), t ≥ t2(11)

for some t2 ≥ t1. An application of Jensen’s inequality shows that
1
|G|

∫
G
ϕi(u(x, σi(t)))dx ≥ ϕi

(
Ũ(σi(t))

)
, t ≥ t2.(12)

Combining (9)–(12) yields

d

dt

(
Ũ(t) +

∑̀
i=1

hi(t)Ũ(ρi(t))

)
−

m∑
i=1

pi(t)ϕi(Ũ(σi(t))) ≥ G̃(t), t ≥ t2,

which means that Ũ(t) is an eventually positive (bounded) solution of (8+).
This contradicts the hypothesis. The case where u < 0 can be treated
similarly, and we are led to a contradiction. The proof is complete.
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3. Functional differential inequalities

In this section we investigate the nonexistence of eventually positive so-
lutions of the functional differential inequality

d

dt

(
y(t) +

∑̀
i=1

hi(t)y(ρi(t))

)
−

m∑
i=1

pi(t)ϕi(y(σi(t))) ≥ G(t).

(13)

Theorem 3. Assume that
∑`

i=1 hi(t) ≤ 1, ρi(t) ≤ t (i = 1, 2, ..., `), and
ϕj(s) is nondecreasing on [0,∞) for some j ∈ {1, 2, ...,m}. The inequality
(13) has no eventually positive bounded solution if there is a function Θ(t) ∈
C1((0,∞); R) such that Θ(t) is bounded and oscillatory at t =∞, Θ′(t) =
G(t), and

(14)
∫ ∞
s0

pj(s)ϕj

([(
1−

∑̀
i=1

hi(σj(s))

)
[Θ(σj(s))]−

+ Θ(σj(s))−
∑̀
i=1

hi(σj(s))Θ(ρi(σj(s)))

]
+

)
ds =∞

for some s0 > 0, where

[Θ(t)]± = max{±Θ(t), 0}.

Proof. Assume on the contrary, that there exists an eventually positive
bounded solution y(t) of (13) such that y(t) > 0 on [t0,∞) for some t0 > 0.
Then, y(ρi(t)) > 0 (i = 1, 2, ..., `), y(σi(t)) > 0 (i = 1, 2, ...,m) on [t1,∞)
for some t1 ≥ t0. Letting

z(t) = y(t) +
∑̀
i=1

hi(t)y(ρi(t))−Θ(t),

we see that

z′(t) ≥
m∑
i=1

pi(t)ϕi(y(σi(t))) ≥ 0, t ≥ t1,

and therefore z(t) is nondecreasing for t ≥ t1. Hence, we find that either
z(t) > 0 or z(t) ≤ 0 on [t2,∞) for some t2 ≥ t1. If z(t) ≤ 0 on [t2,∞), then

y(t) +
∑̀
i=1

hi(t)y(ρi(t)) ≤ Θ(t), t ≥ t2.(15)

The left hand side of (15) is positive, but the right hand side of (15) is
oscillatory at t = ∞. This is a contradiction. Hence, we conclude that
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z(t) > 0 on [t2,∞). Since z(t) + Θ(t) > 0 on [t2,∞), we find that z(t) >
−Θ(t) on [t2,∞), and therefore

z(t) ≥ [Θ(t)]− for t ≥ t2.(16)

In view of the fact that y(t) ≤ z(t) + Θ(t) and z(t) is nondecreasing, we
obtain

y(t) = z(t)−
∑̀
i=1

hi(t)y(ρi(t)) + Θ(t)(17)

≥ z(t)−
∑̀
i=1

hi(t) (z(ρi(t)) + Θ(ρi(t))) + Θ(t)

≥

(
1−

∑̀
i=1

hi(t)

)
z(t) + Θ(t)−

∑̀
i=1

hi(t)Θ(ρi(t)), t ≥ t2.

Combining (16) with (17) yields

y(t) ≥

(
1−

∑̀
i=1

hi(t)

)
[Θ(t)]− + Θ(t)−

∑̀
i=1

hi(t)Θ(ρi(t)), t ≥ t2.

Since y(t) > 0 for t ≥ t2, we observe that

y(σj(t)) ≥[(
1−

∑̀
i=1

hi(σj(t))

)
[Θ(σj(t))]− + Θ(σj(t))−

∑̀
i=1

hi(σj(t))Θ(ρi(σj(t)))

]
+

on [t3,∞) for some t3 ≥ t2. Hence, we obtain

z′(t) ≥
m∑
i=1

pi(t)ϕi(y(σi(t)))(18)

≥ pj(t)ϕj(y(σj(t)))

≥ pj(t)ϕj

([(
1−

∑̀
i=1

hi(σj(t))

)
[Θ(σj(t))]−

+Θ(σj(t))−
∑̀
i=1

hi(σj(t))Θ(ρi(σj(t)))

]
+

)
, t ≥ t3.
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Integrating (18) over [t3, t] yields

z(t)− z(t3)(19)

≥
∫ t

t3

pj(s)ϕj

([(
1−

∑̀
i=1

hi(σj(s))

)
[Θ(σj(s))]−

+Θ(σj(s))−
∑̀
i=1

hi(σj(s))Θ(ρi(σj(s)))

]
+

)
ds, t ≥ t3.

The left hand side of (19) is bounded from above, but the right hand side
of (19) tends to infinity as t→∞. This is a contradiction and the proof is
complete.

Next we consider the functional differential inequality

y′(t)− p(t)y(σ(t)) ≥ q(t), t ≥ T,(20)

where T is some positive number, p(t) ∈ C([T,∞); [0,∞)), q(t) ∈ C([T,∞);
R) and σ(t) ∈ C([T,∞); R) for which limt→∞ σ(t) = ∞, σ(t) ≥ t and σ(t)
is nondecreasing on [T,∞).

Lemma 1. The inequality (20) has no eventually positive solution if there
exists a sequence {tn} such that:

lim
n→∞

tn =∞,∫ σ(tn)

tn

p(s)ds ≥ 1,∫ σ(tn)

tn

q(s)ds+
∫ σ(tn)

tn

p(s)

(∫ σ(s)

σ(tn)
q(ξ)dξ

)
ds ≥ 0.

Proof. Suppose that there exists a solution y(t) of (20) for which y(t) > 0
on [T0,∞) for some T0 > T . Integrating (20) over [t, σ(t)], we obtain

y(σ(t))− y(t)−
∫ σ(t)

t
p(s)y(σ(s))ds ≥

∫ σ(t)

t
q(s)ds, t ≥ T0.

(21)

Since

y′(t) ≥ q(t) for t ≥ T0,(22)

an integration of (22) over [σ(t), σ(s)] yields

y(σ(s))− y(σ(t)) ≥
∫ σ(s)

σ(t)
q(ξ)dξ for s ≥ t,
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and therefore

y(σ(s)) ≥ y(σ(t)) +
∫ σ(s)

σ(t)
q(ξ)dξ for s ≥ t.(23)

Combining (21) with (23), we obtain

y(σ(t))−y(t)−
∫ σ(t)

t
p(s)

(
y(σ(t)) +

∫ σ(s)

σ(t)
q(ξ)dξ

)
ds ≥

∫ σ(t)

t
q(s)ds, t ≥ T0,

or equivalently

−y(t)− y(σ(t))

(∫ σ(t)

t
p(s)ds− 1

)
(24)

≥
∫ σ(t)

t
q(s)ds+

∫ σ(t)

t
p(s)

(∫ σ(s)

σ(t)
q(ξ)dξ

)
ds, t ≥ T0.

It is easy to see that tn ≥ T0 (n ≥ N) for some positive integer N . We
easily see that the left hand side of (24) with t = tn (n ≥ N) is negative,
whereas the right hand side of (24) with t = tn (n ≥ N) is nonnegative.
This is a contradiction and the proof is complete.

Theorem 4. Assume that
∑`

i=1 hi(t) ≤ 1, ρi(t) ≤ t (i = 1, 2, ..., `), and
ϕj(s) ≥ βs in (0,∞) for some β > 0 and some j ∈ {1, 2, ...,m}. Moreover,
assume that σj(t) ≥ t and σj(t) is nondecreasing in (0,∞), and that there
is a function Θ(t) ∈ C1((0,∞); R) such that Θ(t) is oscillatory at t = ∞
and Θ′(t) = G(t). The inequality (13) has no eventually positive solution if
there exists a sequence {tn} for which

lim
n→∞

tn =∞,(25)

∫ σj(tn)

tn

pj(s)

(
1−

∑̀
i=1

hi(σj(s))

)
ds ≥ 1

β
,(26)

(27)
∫ σj(tn)

tn

Q(s)ds+

β

∫ σj(tn)

tn

pj(s)

(
1−

∑̀
i=1

hi(σj(s))

)(∫ σj(s)

σj(tn)
Q(ξ)dξ

)
ds ≥ 0,

where

Q(t) = βpj(t)

(
Θ(σj(t))−

∑̀
i=1

hi(σj(t))Θ(ρi(σj(t)))

)
.
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Proof. Let y(t) be a solution of (13) such that y(t) > 0 on [t0,∞) for some
t0 > 0. Proceeding as in the proof of Theorem 3, we see that (17) holds,
and hence we obtain

y(σj(t)) ≥

(
1−

∑̀
i=1

hi(σj(t))

)
z(σj(t))(28)

+Θ(σj(t))−
∑̀
i=1

hi(σj(t))Θ(ρi(σj(t))), t ≥ t3

for some t3 ≥ t2. Then it can be shown that

z′(t) ≥
m∑
i=1

pi(t)ϕi(y(σi(t)))(29)

≥ pj(t)ϕj(y(σj(t)))
≥ βpj(t)y(σj(t)), t ≥ t3.

Combining (28) with (29), we observe that z(t) is a positive solution of

z′(t)− βpj(t)

(
1−

∑̀
i=1

hi(σj(t))

)
z(σj(t)) ≥ Q(t)(30)

for t ≥ t3. However, Lemma 1 implies that (30) has no eventually positive
solution. This is a contradiction and the proof is complete.

4. Functional parabolic equations

Combining the results in Sections 2 and 3, we can derive various oscilla-
tion theorems for the boundary value problems (1), (Bi) (i = 1, 2).

Lemma 2. If (2±) have eventually positive solutions yr(t) ∈ B̃Γ (r = 1, 2),
respectively, then yr(t) are eventually positive solutions of the differential
inequalities

d

dt

(
y(t) +

∑̀
i=1

hi(t)y(ρi(t))

)
−

m∑
i=1

pi(t)ϕi(y(σi(t))) ≥ Gr(t),

(31)

where

Gr(t) = (−1)r−1G(t)− λ1a(t)Γ(t)− λ1

k∑
i=1

bi(t)Γ(τi(t)) (r = 1, 2).
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Proof. Since

λ1a(t)yr(t) ≤ λ1a(t)Γ(t), λ1

k∑
i=1

bi(t)yr(τi(t)) ≤ λ1

k∑
i=1

bi(t)Γ(τi(t)),

we easily see that yr(t) are eventually positive solutions of (31).

Theorem 5. Assume that
∑`

i=1 hi(t) ≤ 1, ρi(t) ≤ t (i = 1, 2, ..., `), ϕj(s)
is nondecreasing on [0,∞) for some j ∈ {1, 2, ...,m}. Every solution u ∈ BK
(K is a positive constant ) of the boundary value problem (1), (B1) is
oscillatory in Ω if there is a function Θr(t) ∈ C1((0,∞); R) (r = 1, 2)
such that Θr(t) is bounded and oscillatory at t = ∞, Θ′r(t) = Gr(t) with
Γ(t) ≡ K, and that∫ ∞

s0

pj(s)ϕj

([(
1−

∑̀
i=1

hi(σj(s))

)
[Θr(σj(s))]−

+Θr(σj(s))−
∑̀
i=1

hi(σj(s))Θr(ρi(σj(s)))

]
+

)
ds =∞

for some s0 > 0.

Proof. It follows from Theorem 3 that (31) have no eventually positive
bounded solutions, and hence Lemma 2 with γ(x, t) = Γ(t) = K implies
that (2±) have no eventually positive solutions y(t) ∈ B̃K . The conclusion
follows from Theorem 1.

Theorem 6. Assume that
∑`

i=1 hi(t) ≤ 1, ρi(t) ≤ t (i = 1, 2, ..., `), and
ϕj(s) ≥ βs in (0,∞) for some β > 0 and some j ∈ {1, 2, ...,m}. Moreover,
assume that σj(t) ≥ t and σj(t) is nondecreasing in (0,∞), and that there is
a function Θr(t) ∈ C1((0,∞); R) (r = 1, 2) such that Θr(t) is oscillatory at
t =∞ and Θ′r(t) = Gr(t). Every solution u ∈ Bγ(Ω) of the boundary value
problem (1), (B1) is oscillatory in Ω if there exists a sequence {tr,n} (r =
1, 2) for which (25)− (27) with tn = tr,n and Q(t) replaced by

Qr(t) = βpj(t)

(
Θr(σj(t))−

∑̀
i=1

hi(σj(t))Θr(ρi(σj(t)))

)
hold.

Proof. Theorem 4 implies that (31) have no eventually positive solutions.
Hence, it follows from Lemma 2 that (2±) have no eventually positive solu-
tions y(t) ∈ B̃Γ. The conclusion follows from Theorem 1.
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Theorem 7. Assume that
∑`

i=1 hi(t) ≤ 1, ρi(t) ≤ t (i = 1, 2, ..., `), ϕj(s) is
nondecreasing on [0,∞) for some j ∈ {1, 2, ...,m}. Every bounded solution
u of the boundary value problem (1), (B2) is oscillatory in Ω if there is a
function Θ(t) ∈ C1((0,∞); R) such that Θ(t) is bounded and oscillatory at
t =∞, Θ′(t) = G̃(t), and that∫ ∞

s0

pj(s)ϕj

([(
1−

∑̀
i=1

hi(σj(s))

)
[Θ(σj(s))]∓

±

(
Θ(σj(s))−

∑̀
i=1

hi(σj(s))Θ(ρi(σj(s)))

)]
+

)
ds =∞

for some s0 > 0.

Proof. Combining Theorem 2 with Theorem 3, we are led to the conclusion.

Theorem 8. Assume that
∑`

i=1 hi(t) ≤ 1, ρi(t) ≤ t (i = 1, 2, ..., `), and
ϕj(s) ≥ βs in (0,∞) for some β > 0 and some j ∈ {1, 2, ...,m}. Moreover,
assume that σj(t) ≥ t and σj(t) is nondecreasing in (0,∞), and that there is
a function Θ(t) ∈ C1((0,∞); R) such that Θ(t) is oscillatory at t =∞ and
Θ′(t) = G̃(t). Every solution u of the boundary value problem (1), (B2) is
oscillatory in Ω if there exists a sequence {tn} satisfying (25), (26) and∫ σj(tn)

tn

Q(s)ds+β
∫ σj(tn)

tn

pj(s)

(
1−

∑̀
i=1

hi(σj(s))

)(∫ σj(s)

σj(tn)
Q(ξ)dξ

)
ds = 0.

Proof. The conclusion follows by combining Theorem 2 with Theorem 4.

We conclude with an example which illustrates Theorem 7.

Example. We consider the problem
∂

∂t
(u(x, t) + (1/2)u(x, t+ π))(32)

−uxx(x, t)− uxx(x, t+ π)− u(x, t+ (π/2))
= −(cosx+ 1) cos t, (x, t) ∈ (0, π)× (0,∞),

−ux(0, t) = ux(π, t) = 0, t > 0.(33)

Here n = 1, G = (0, π), Ω = (0, π) × (0,∞), ` = k = m = M = 1,
h1(t) = 1/2, ρ1(t) = t + π, a(t) = 1, b1(t) = 1, τ1(t) = t + π, p1(t) = 1,
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σ1(t) = t+ (π/2), ϕ1(s) = s, µ ≡ 0, ψ̃ ≡ 0 and f(x, t) = −(cosx+ 1) cos t.
It is easily seen that Ψ̃(t) ≡ 0 and

G̃(t) = F̃ (t) =
1
π

∫ π

0
f(x, t)dx = − cos t.

Choosing Θ(t) = − sin t, we see that Θ(t) ∈ C1((0,∞); R), Θ′(t) = G̃(t),
Θ(t) is bounded and oscillatory at t =∞. It is easy to check that Θ(σ1(s)) =
− cos s, Θ(ρ1(σ1(s))) = cos s, and that∫ ∞

s0

[(
1− 1

2

)
[− cos s]∓ ±

(
− cos s− 1

2
cos s

)]
+
ds

=
1
2

∫ ∞
s0

[
[− cos s]∓ ± (−3 cos s)

]
+ ds

=
1
2

∫ ∞
s0

[∓3 cos s]+ ds =∞.

Hence, it follows from Theorem 7 that every bounded solution u of the
problem (32), (33) is oscillatory in (0, π) × (0,∞). One such solution is
u = 2(cosx+ 1) sin t.
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