JOURNAL OF APPLIED ANALYSIS Vol. 5, No. 1 (1999), pp. 1–16

OSCILLATION CRITERIA FOR A CLASS OF FUNCTIONAL PARABOLIC EQUATIONS

T. KUSANO and N. YOSHIDA

Received August 28, 1997 and, in revised form, December 4, 1997

Abstract. Oscillations of parabolic equations with functional arguments are studied, and sufficient conditions are derived for all solutions of certain boundary value problems to be oscillatory in a cylindrical domain. Our approach is to reduce the multi-dimensional problems to one-dimensional problems for functional differential inequalities.

1. Introduction

We are concerned with the oscillatory behavior of solutions of the parabolic equation with functional arguments

(1)
$$\frac{\partial}{\partial t} \left(u(x,t) + \sum_{i=1}^{\ell} h_i(t)u(x,\rho_i(t)) \right)$$
$$-a(t)\Delta u(x,t) - \sum_{i=1}^{k} b_i(t)\Delta u(x,\tau_i(t))$$
$$-c(x,t,(z_i[u](x,t))_{i=1}^M) = f(x,t), \quad (x,t) \in \Omega \equiv G \times (0,\infty),$$

1991 Mathematics Subject Classification. 35B05, 35R10.

0

Key words and phrases. Oscillation, parabolic equations, functional arguments.

ISSN 1425-6908 © Heldermann Verlag.

where G is a bounded domain of \mathbf{R}^n with piecewise smooth boundary ∂G . It is assumed that

$$z_{i}[u](x,t) = \begin{cases} u(x,\sigma_{i}(t)) & (i = 1, 2, ..., m), \\ \max_{s \in B_{i}(t)} u(x,s) & (i = m + 1, m + 2, ..., m_{1}), \\ \sum_{j=1}^{N_{i}} \int_{G} K_{ij}(x,t,y) \omega_{ij}(u(y,\sigma_{ij}(t))) dy & (i = m_{1} + 1, m_{1} + 2, ..., M), \end{cases}$$

where $B_i(t)$ $(i = m + 1, m + 2, ..., m_1)$ are closed bounded sets of $[0, \infty)$ with the property that $\lim_{t\to\infty} \min_{s\in B_i(t)} s = \infty$, $\sigma_{ij}(t) \in C([0,\infty); \mathbf{R})$ $(i = m_1 + 1, m_1 + 2, ..., M; j = 1, 2, ..., N_i)$, $\lim_{t\to\infty} \sigma_{ij}(t) = \infty$, $K_{ij}(x, t, y) \in C(\overline{\Omega} \times \overline{G}; [0,\infty))$, and $\omega_{ij}(s) \in C(\mathbf{R}; \mathbf{R})$ are odd functions such that $\omega_{ij}(s) \geq 0$ for s > 0.

We note that $z_i[u](x,t) \ge 0$ (i = 1, 2, ..., M) in $G \times [T, \infty)$ for some T > 0 if u is eventually positive in $G \times (0, \infty)$.

We assume that :

$$\begin{aligned} h_i(t) &\in C^1([0,\infty); [0,\infty)) \quad (i = 1, 2, ..., \ell); \\ a(t) &\in C([0,\infty); [0,\infty)); \\ b_i(t) &\in C([0,\infty); [0,\infty)) \quad (i = 1, 2, ..., k); \\ \rho_i(t) &\in C^1([0,\infty); \mathbf{R}), \lim_{t \to \infty} \rho_i(t) = \infty \quad (i = 1, 2, ..., \ell); \\ \tau_i(t) &\in C([0,\infty); \mathbf{R}), \lim_{t \to \infty} \tau_i(t) = \infty \quad (i = 1, 2, ..., k); \\ \sigma_i(t) &\in C([0,\infty); \mathbf{R}), \lim_{t \to \infty} \sigma_i(t) = \infty \quad (i = 1, 2, ..., m); \\ f(x,t) &\in C(\overline{\Omega}; \mathbf{R}). \end{aligned}$$

Moreover, we assume that :

$$c(x,t,(\xi_i)_{i=1}^M) \in C(\overline{\Omega} \times \mathbf{R}^M; \mathbf{R}),$$

$$c(x,t,(\xi_i)_{i=1}^M) \ge \sum_{i=1}^m p_i(t)\varphi_i(\xi_i) \quad \text{for} \quad (x,t,(\xi_i)_{i=1}^M) \in \Omega \times [0,\infty)^M,$$

$$c(x,t,(-\xi_i)_{i=1}^M) \le -\sum_{i=1}^m p_i(t)\varphi_i(\xi_i) \quad \text{for} \quad (x,t,(\xi_i)_{i=1}^M) \in \Omega \times [0,\infty)^M,$$

where $[0,\infty)^j = [0,\infty) \times [0,\infty)^{j-1}$ $(j = 1, 2, ..., M), p_i(t) \in C([0,\infty); [0,\infty)), \varphi_i(s) \in C([0,\infty); [0,\infty)), \text{ and } \varphi_i(s) \text{ are convex in } (0,\infty) \ (i = 1, 2, ..., m).$

The boundary conditions to be considered are the following :

(B₁) $u = \psi$ on $\partial G \times (0, \infty)$, (B₂) $\frac{\partial u}{\partial \nu} - \mu u = \tilde{\psi}$ on $\partial G \times (0, \infty)$,

where ψ , $\tilde{\psi} \in C(\partial G \times (0, \infty); \mathbf{R})$, $\mu \in C(\partial G \times (0, \infty); [0, \infty))$ and ν denotes the unit exterior normal vector to ∂G .

Definition 1. By a solution of the boundary value problems (1), (B_i) (i = 1, 2), we mean a function $u(x,t) \in C^2(\overline{G} \times [t_{-1},\infty); \mathbf{R}) \cap C^1(\overline{G} \times [\tilde{t}_{-1},\infty); \mathbf{R}) \cap C(\overline{G} \times [\tilde{t}_{-1},\infty); \mathbf{R})$ which satisfies (1), (B_i) (i = 1, 2), where

$$t_{-1} = \min\left\{0, \min_{1 \le i \le k} \left\{\inf_{t \ge 0} \tau_i(t)\right\}\right\},$$

$$\tilde{t}_{-1} = \min\left\{0, \min_{1 \le i \le \ell} \left\{\inf_{t \ge 0} \rho_i(t)\right\}\right\},$$

$$\hat{t}_{-1} = \min\left\{0, \min_{1 \le i \le m} \left\{\inf_{t \ge 0} \sigma_i(t)\right\}, \min_{\substack{m_1 + 1 \le i \le M \\ 1 \le j \le N_i}} \left\{\inf_{t \ge 0} \sigma_{ij}(t)\right\}\right\}.$$

Definition 2. A solution u of the boundary value problems (1), (B_i) (i = 1, 2) is said to be *oscillatory* in Ω if u has a zero in $G \times (t, \infty)$ for any t > 0.

In 1983, Bykov and Kultaev [2] have studied the oscillations of functional parabolic equations including the special case of (1). Oscillation theory for functional parabolic equations has been extensively developed in recent years by several authors; see, for example, [4–6, 8–10]. However, most of the papers except [2, 9] pertain to the parabolic equations (1) with $-c(x, t, (z_i[u](x, t))_{i=1}^M)$ replaced by $c(x, t, (z_i[u](x, t))_{i=1}^M)$. We mention in particular the paper [1] which deals with impulsive nonlinear parabolic equations.

The purpose of this paper is to derive sufficient conditions for every solution u of the boundary value problems (1), (B_i) (i = 1, 2) to be oscillatory in Ω . In Section 2 we reduce the multi-dimensional problems to onedimensional oscillation problems. Section 3 is devoted to the nonexistence of eventually positive solutions of the associated functional differential inequalities. In Section 4 we combine the results of Sections 2 and 3 to obtain various oscillation results for the functional parabolic equation (1).

2. Reduction to functional differential inequalities

In this section we show that the boundary value problems (1), (B_i) (i = 1, 2) can be reduced to one-dimensional oscillation problems.

It is known that the smallest eigenvalue λ_1 of the eigenvalue problem

$$-\Delta w = \lambda w \quad \text{in } G,$$
$$w = 0 \quad \text{on } \partial G$$

is positive and the corresponding eigenfunction $\Phi(x)$ may be chosen so that $\Phi(x) > 0$ in G (see Courant and Hilbert [3]).

We use the notation :

$$\begin{split} F(t) &= \int_{G} f(x,t) \Phi(x) dx \cdot \left(\int_{G} \Phi(x) dx \right)^{-1}, \\ \Psi(t) &= \int_{\partial G} \psi \frac{\partial \Phi}{\partial \nu}(x) dS \cdot \left(\int_{G} \Phi(x) dx \right)^{-1}, \\ \tilde{F}(t) &= \frac{1}{|G|} \int_{G} f(x,t) dx, \\ \tilde{\Psi}(t) &= \frac{1}{|G|} \int_{\partial G} \tilde{\psi} dS, \end{split}$$

where $|G| = \int_G dx$.

We define the function spaces $\mathcal{B}_{\gamma}(\Omega)$ and $\tilde{\mathcal{B}}_{\Gamma}$ by

$$\mathcal{B}_{\gamma}(\Omega) = \left\{ u(x,t) \in C^{2}(\overline{\Omega};\mathbf{R}); |u(x,t)| \leq \gamma(x,t) \text{ on } \overline{\Omega} \right\},\\ \tilde{\mathcal{B}}_{\Gamma} = \left\{ y(t) \in C^{1}([T_{y},\infty);\mathbf{R}); |y(t)| \leq \Gamma(t) \text{ on } [T_{y},\infty) \right\},$$

where T_y is a positive constant depending on y(t), $\gamma(x,t)$ is a positive continuous function on $\overline{\Omega}$, and

$$\Gamma(t) = \int_{G} \gamma(x, t) \Phi(x) dx \cdot \left(\int_{G} \Phi(x) dx \right)^{-1}.$$

Theorem 1. If the functional differential inequalities

$$(2_{\pm}) \qquad \frac{d}{dt} \left(y(t) + \sum_{i=1}^{\ell} h_i(t) y(\rho_i(t)) \right) + \lambda_1 a(t) y(t) + \lambda_1 \sum_{i=1}^{k} b_i(t) y(\tau_i(t)) - \sum_{i=1}^{m} p_i(t) \varphi_i(y(\sigma_i(t))) \ge \pm G(t)$$

have no eventually positive solutions of class $\tilde{\mathcal{B}}_{\Gamma}$, then every solution $u \in \mathcal{B}_{\gamma}(\Omega)$ of the boundary value problem (1), (B₁) is oscillatory in Ω , where

$$G(t) = F(t) - a(t)\Psi(t) - \sum_{i=1}^{k} b_i(t)\Psi(\tau_i(t)).$$

Proof. Suppose to the contrary that there exists a solution $u \in \mathcal{B}_{\gamma}(\Omega)$ of the problem (1), (B₁) which is nonoscillatory in Ω . First we assume that u > 0 in $G \times [t_0, \infty)$ for some $t_0 > 0$. The hypothesis implies that

$$c(x,t,(z_i[u](x,t))_{i=1}^M) \ge \sum_{i=1}^m p_i(t)\varphi_i(u(x,\sigma_i(t)))$$
 in $G \times [t_1,\infty)$

for some $t_1 \ge t_0$. Hence, from (1) we see that

(3)
$$\frac{\partial}{\partial t} \left(u(x,t) + \sum_{i=1}^{\ell} h_i(t)u(x,\rho_i(t)) \right)$$
$$-a(t)\Delta u(x,t) - \sum_{i=1}^{k} b_i(t)\Delta u(x,\tau_i(t))$$
$$-\sum_{i=1}^{m} p_i(t)\varphi_i(u(x,\sigma_i(t))) \ge f(x,t) \quad \text{in} \quad G \times [t_1,\infty).$$

Multiplying (3) by $\Phi(x) \cdot \left(\int_G \Phi(x) dx\right)^{-1}$ and then integrating over G yields

(4)
$$\frac{d}{dt} \left(U(t) + \sum_{i=1}^{\ell} h_i(t) U(\rho_i(t)) \right) - a(t) K_{\Phi} \int_G \Delta u(x, t) \Phi(x) dx$$
$$- \sum_{i=1}^k b_i(t) K_{\Phi} \int_G \Delta u(x, \tau_i(t)) \Phi(x) dx$$
$$- \sum_{i=1}^m p_i(t) K_{\Phi} \int_G \varphi_i(u(x, \sigma_i(t))) \Phi(x) dx$$
$$\geq F(t), \quad t \geq t_1,$$

where

$$K_{\Phi} = \left(\int_{G} \Phi(x) dx\right)^{-1},$$
$$U(t) = \int_{G} u(x, t) \Phi(x) dx \cdot \left(\int_{G} \Phi(x) dx\right)^{-1}.$$

It follows from Green's formula that

(5)
$$K_{\Phi} \int_{G} \Delta u(x,t) \Phi(x) dx$$

$$= K_{\Phi} \int_{\partial G} \left[\frac{\partial u}{\partial \nu}(x,t) \Phi(x) - u(x,t) \frac{\partial \Phi}{\partial \nu}(x) \right] dS + K_{\Phi} \int_{G} u(x,t) \Delta \Phi(x) dx$$

$$= -K_{\Phi} \int_{\partial G} \psi \frac{\partial \Phi}{\partial \nu}(x) dS - \lambda_1 K_{\Phi} \int_{G} u(x,t) \Phi(x) dx$$

$$= -\Psi(t) - \lambda_1 U(t), \quad t \ge t_1.$$

Analogously we have

.

(6)
$$K_{\Phi} \int_{G} \Delta u(x, \tau_i(t)) \Phi(x) dx = -\Psi(\tau_i(t)) - \lambda_1 U(\tau_i(t)), \quad t \ge t_2$$

for some $t_2 \ge t_1$. Applying Jensen's inequality [7, p.160], we obtain

(7)
$$K_{\Phi} \int_{G} \varphi_i(u(x, \sigma_i(t))) \Phi(x) dx \ge \varphi_i\left(U(\sigma_i(t))\right), \quad t \ge t_2.$$

Combining (4)–(7) yields

$$\frac{d}{dt}\left(U(t) + \sum_{i=1}^{\ell} h_i(t)U(\rho_i(t))\right) + \lambda_1 a(t)U(t) + \lambda_1 \sum_{i=1}^{k} b_i(t)U(\tau_i(t)) - \sum_{i=1}^{m} p_i(t)\varphi_i(U(\sigma_i(t))) \ge G(t), \quad t \ge t_2.$$

It is easy to check that

$$|U(t)| \le K_{\Phi} \int_{G} |u(x,t)| \Phi(x) dx \le K_{\Phi} \int_{G} \gamma(x,t) \Phi(x) dx = \Gamma(t),$$

and therefore $U(t) \in \tilde{\mathcal{B}}_{\Gamma}$. Hence, (2_+) has an eventually positive solution U(t) of class $\tilde{\mathcal{B}}_{\Gamma}$. This contradicts the hypothesis. If u < 0 in $G \times [t_0, \infty)$, it can be shown that

$$c(x,t,(z_i[u](x,t))_{i=1}^M) \le -\sum_{i=1}^m p_i(t)\varphi_i(-u(x,\sigma_i(t)))$$
 in $G \times [t_1,\infty)$

for some $t_1 \ge t_0$. Letting $v \equiv -u$, we obtain

$$\frac{\partial}{\partial t} \left(v(x,t) + \sum_{i=1}^{\ell} h_i(t)v(x,\rho_i(t)) \right)$$
$$-a(t)\Delta v(x,t) - \sum_{i=1}^{k} b_i(t)\Delta v(x,\tau_i(t))$$
$$-\sum_{i=1}^{m} p_i(t)\varphi_i(v(x,\sigma_i(t))) \ge -f(x,t) \quad \text{in} \quad G \times [t_1,\infty).$$

Proceeding as in the case where u > 0, we are led to a contradiction. The proof is complete.

Theorem 2. If the functional differential inequalities

$$\frac{d}{dt}\left(y(t) + \sum_{i=1}^{\ell} h_i(t)y(\rho_i(t))\right) - \sum_{i=1}^{m} p_i(t)\varphi_i(y(\sigma_i(t))) \ge \pm \tilde{G}(t)$$

 (8_{\pm})

have no eventually positive (bounded) solutions, then every (bounded) solution u of the boundary value problem (1), (B_2) is oscillatory in Ω , where

$$\tilde{G}(t) = \tilde{F}(t) + a(t)\tilde{\Psi}(t) + \sum_{i=1}^{k} b_i(t)\tilde{\Psi}(\tau_i(t)).$$

Proof. Assume on the contrary, that there exists a (bounded) solution u of the problem (1), (B₂) such that u > 0 in $G \times [t_0, \infty)$ for some $t_0 > 0$. Arguing as in the proof of Theorem 1, we observe that the inequality (3) holds for some $t_1 \ge t_0$. Dividing (3) by |G| and then integrating over G yields

$$(9) \quad \frac{d}{dt} \left(\tilde{U}(t) + \sum_{i=1}^{\ell} h_i(t) \tilde{U}(\rho_i(t)) \right) - a(t) \frac{1}{|G|} \int_G \Delta u(x, t) dx$$
$$- \sum_{i=1}^k b_i(t) \frac{1}{|G|} \int_G \Delta u(x, \tau_i(t)) dx - \sum_{i=1}^m p_i(t) \frac{1}{|G|} \int_G \varphi_i(u(x, \sigma_i(t))) dx$$
$$\geq \tilde{F}(t), \quad t \geq t_1.$$

It follows from the divergence theorem that

(10)
$$\frac{1}{|G|} \int_{G} \Delta u(x,t) dx = \frac{1}{|G|} \int_{\partial G} \frac{\partial u}{\partial \nu}(x,t) dS$$
$$= \frac{1}{|G|} \int_{\partial G} \left(\mu u(x,t) + \tilde{\psi} \right) dS$$
$$\geq \tilde{\Psi}(t), \quad t \ge t_{1}.$$

Analogously we obtain

(11)
$$\frac{1}{|G|} \int_{G} \Delta u(x, \tau_{i}(t)) dx \ge \tilde{\Psi}(\tau_{i}(t)), \quad t \ge t_{2}$$

for some $t_2 \ge t_1$. An application of Jensen's inequality shows that

(12)
$$\frac{1}{|G|} \int_{G} \varphi_i(u(x, \sigma_i(t))) dx \ge \varphi_i\left(\tilde{U}(\sigma_i(t))\right), \quad t \ge t_2.$$

Combining (9)–(12) yields

$$\frac{d}{dt}\left(\tilde{U}(t) + \sum_{i=1}^{\ell} h_i(t)\tilde{U}(\rho_i(t))\right) - \sum_{i=1}^{m} p_i(t)\varphi_i(\tilde{U}(\sigma_i(t))) \ge \tilde{G}(t), \quad t \ge t_2,$$

which means that $\tilde{U}(t)$ is an eventually positive (bounded) solution of (8_+) . This contradicts the hypothesis. The case where u < 0 can be treated similarly, and we are led to a contradiction. The proof is complete.

3. Functional differential inequalities

In this section we investigate the nonexistence of eventually positive solutions of the functional differential inequality

(13)

$$\frac{d}{dt}\left(y(t) + \sum_{i=1}^{\ell} h_i(t)y(\rho_i(t))\right) - \sum_{i=1}^{m} p_i(t)\varphi_i(y(\sigma_i(t))) \ge G(t)$$

Theorem 3. Assume that $\sum_{i=1}^{\ell} h_i(t) \leq 1$, $\rho_i(t) \leq t$ $(i = 1, 2, ..., \ell)$, and $\varphi_j(s)$ is nondecreasing on $[0, \infty)$ for some $j \in \{1, 2, ..., m\}$. The inequality (13) has no eventually positive bounded solution if there is a function $\Theta(t) \in C^1((0, \infty); \mathbf{R})$ such that $\Theta(t)$ is bounded and oscillatory at $t = \infty$, $\Theta'(t) = G(t)$, and

(14)
$$\int_{s_0}^{\infty} p_j(s)\varphi_j\left(\left[\left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(s))\right) \left[\Theta(\sigma_j(s))\right]_- + \Theta(\sigma_j(s)) - \sum_{i=1}^{\ell} h_i(\sigma_j(s))\Theta(\rho_i(\sigma_j(s)))\right]_+\right) ds = \infty$$

for some $s_0 > 0$, where

$$[\Theta(t)]_{\pm} = \max\{\pm\Theta(t), 0\}.$$

Proof. Assume on the contrary, that there exists an eventually positive bounded solution y(t) of (13) such that y(t) > 0 on $[t_0, \infty)$ for some $t_0 > 0$. Then, $y(\rho_i(t)) > 0$ $(i = 1, 2, ..., \ell)$, $y(\sigma_i(t)) > 0$ (i = 1, 2, ..., m) on $[t_1, \infty)$ for some $t_1 \ge t_0$. Letting

$$z(t) = y(t) + \sum_{i=1}^{\ell} h_i(t)y(\rho_i(t)) - \Theta(t),$$

we see that

$$z'(t) \ge \sum_{i=1}^{m} p_i(t)\varphi_i(y(\sigma_i(t))) \ge 0, \quad t \ge t_1,$$

and therefore z(t) is nondecreasing for $t \ge t_1$. Hence, we find that either z(t) > 0 or $z(t) \le 0$ on $[t_2, \infty)$ for some $t_2 \ge t_1$. If $z(t) \le 0$ on $[t_2, \infty)$, then

(15)
$$y(t) + \sum_{i=1}^{\ell} h_i(t) y(\rho_i(t)) \le \Theta(t), \quad t \ge t_2$$

The left hand side of (15) is positive, but the right hand side of (15) is oscillatory at $t = \infty$. This is a contradiction. Hence, we conclude that

z(t) > 0 on $[t_2, \infty)$. Since $z(t) + \Theta(t) > 0$ on $[t_2, \infty)$, we find that $z(t) > -\Theta(t)$ on $[t_2, \infty)$, and therefore

(16)
$$z(t) \ge [\Theta(t)]_{-}$$
 for $t \ge t_2$.

In view of the fact that $y(t) \leq z(t) + \Theta(t)$ and z(t) is nondecreasing, we obtain

$$(17) y(t) = z(t) - \sum_{i=1}^{\ell} h_i(t) y(\rho_i(t)) + \Theta(t)$$

$$\geq z(t) - \sum_{i=1}^{\ell} h_i(t) (z(\rho_i(t)) + \Theta(\rho_i(t))) + \Theta(t)$$

$$\geq \left(1 - \sum_{i=1}^{\ell} h_i(t)\right) z(t) + \Theta(t) - \sum_{i=1}^{\ell} h_i(t) \Theta(\rho_i(t)), \quad t \ge t_2.$$

Combining (16) with (17) yields

$$y(t) \ge \left(1 - \sum_{i=1}^{\ell} h_i(t)\right) [\Theta(t)]_- + \Theta(t) - \sum_{i=1}^{\ell} h_i(t)\Theta(\rho_i(t)), \quad t \ge t_2.$$

Since y(t) > 0 for $t \ge t_2$, we observe that

$$y(\sigma_j(t)) \ge \left[\left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(t))\right) \left[\Theta(\sigma_j(t))\right]_- + \Theta(\sigma_j(t)) - \sum_{i=1}^{\ell} h_i(\sigma_j(t))\Theta(\rho_i(\sigma_j(t))) \right]_+ \right]_+$$

on $[t_3, \infty)$ for some $t_3 \ge t_2$. Hence, we obtain

$$(18)z'(t) \geq \sum_{i=1}^{m} p_i(t)\varphi_i(y(\sigma_i(t)))$$

$$\geq p_j(t)\varphi_j(y(\sigma_j(t)))$$

$$\geq p_j(t)\varphi_j\left(\left[\left(1-\sum_{i=1}^{\ell} h_i(\sigma_j(t))\right)\left[\Theta(\sigma_j(t))\right]_-\right.\right.$$

$$\left.+\Theta(\sigma_j(t))-\sum_{i=1}^{\ell} h_i(\sigma_j(t))\Theta(\rho_i(\sigma_j(t)))\right]_+\right), \quad t \geq t_3.$$

Integrating (18) over $[t_3, t]$ yields

$$(19) \quad z(t) - z(t_3) \\ \geq \int_{t_3}^t p_j(s)\varphi_j \left(\left[\left(1 - \sum_{i=1}^\ell h_i(\sigma_j(s)) \right) \left[\Theta(\sigma_j(s)) \right]_- \right. \\ \left. + \Theta(\sigma_j(s)) - \sum_{i=1}^\ell h_i(\sigma_j(s)) \Theta(\rho_i(\sigma_j(s))) \right]_+ \right) ds, \quad t \ge t_3.$$

The left hand side of (19) is bounded from above, but the right hand side of (19) tends to infinity as $t \to \infty$. This is a contradiction and the proof is complete.

Next we consider the functional differential inequality

(20)
$$y'(t) - p(t)y(\sigma(t)) \ge q(t), \quad t \ge T,$$

where T is some positive number, $p(t) \in C([T, \infty); [0, \infty)), q(t) \in C([T, \infty); \mathbf{R})$ and $\sigma(t) \in C([T, \infty); \mathbf{R})$ for which $\lim_{t\to\infty} \sigma(t) = \infty, \sigma(t) \ge t$ and $\sigma(t)$ is nondecreasing on $[T, \infty)$.

Lemma 1. The inequality (20) has no eventually positive solution if there exists a sequence $\{t_n\}$ such that:

$$\lim_{n \to \infty} t_n = \infty,$$

$$\int_{t_n}^{\sigma(t_n)} p(s) ds \ge 1,$$

$$\int_{t_n}^{\sigma(t_n)} q(s) ds + \int_{t_n}^{\sigma(t_n)} p(s) \left(\int_{\sigma(t_n)}^{\sigma(s)} q(\xi) d\xi \right) ds \ge 0.$$

Proof. Suppose that there exists a solution y(t) of (20) for which y(t) > 0 on $[T_0, \infty)$ for some $T_0 > T$. Integrating (20) over $[t, \sigma(t)]$, we obtain (21)

$$y(\sigma(t)) - y(t) - \int_t^{\sigma(t)} p(s)y(\sigma(s))ds \ge \int_t^{\sigma(t)} q(s)ds, \quad t \ge T_0.$$

Since

(22)
$$y'(t) \ge q(t) \quad \text{for} \quad t \ge T_0,$$

an integration of (22) over $[\sigma(t), \sigma(s)]$ yields

$$y(\sigma(s)) - y(\sigma(t)) \ge \int_{\sigma(t)}^{\sigma(s)} q(\xi) d\xi \quad \text{for} \quad s \ge t,$$

and therefore

(23)
$$y(\sigma(s)) \ge y(\sigma(t)) + \int_{\sigma(t)}^{\sigma(s)} q(\xi) d\xi \quad \text{for} \quad s \ge t.$$

Combining (21) with (23), we obtain

$$y(\sigma(t)) - y(t) - \int_t^{\sigma(t)} p(s) \left(y(\sigma(t)) + \int_{\sigma(t)}^{\sigma(s)} q(\xi) d\xi \right) ds \ge \int_t^{\sigma(t)} q(s) ds, \ t \ge T_0,$$

or equivalently

(24)
$$-y(t) - y(\sigma(t)) \left(\int_{t}^{\sigma(t)} p(s) ds - 1 \right)$$
$$\geq \int_{t}^{\sigma(t)} q(s) ds + \int_{t}^{\sigma(t)} p(s) \left(\int_{\sigma(t)}^{\sigma(s)} q(\xi) d\xi \right) ds, \quad t \ge T_{0}.$$

It is easy to see that $t_n \ge T_0$ $(n \ge N)$ for some positive integer N. We easily see that the left hand side of (24) with $t = t_n$ $(n \ge N)$ is negative, whereas the right hand side of (24) with $t = t_n$ $(n \ge N)$ is nonnegative. This is a contradiction and the proof is complete.

Theorem 4. Assume that $\sum_{i=1}^{\ell} h_i(t) \leq 1$, $\rho_i(t) \leq t$ $(i = 1, 2, ..., \ell)$, and $\varphi_j(s) \geq \beta s$ in $(0, \infty)$ for some $\beta > 0$ and some $j \in \{1, 2, ..., m\}$. Moreover, assume that $\sigma_j(t) \geq t$ and $\sigma_j(t)$ is nondecreasing in $(0, \infty)$, and that there is a function $\Theta(t) \in C^1((0, \infty); \mathbf{R})$ such that $\Theta(t)$ is oscillatory at $t = \infty$ and $\Theta'(t) = G(t)$. The inequality (13) has no eventually positive solution if there exists a sequence $\{t_n\}$ for which

(25)
$$\lim_{n \to \infty} t_n = \infty,$$

(26)
$$\int_{t_n}^{\sigma_j(t_n)} p_j(s) \left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(s))\right) ds \ge \frac{1}{\beta},$$

(27)
$$\int_{t_n}^{\sigma_j(t_n)} Q(s) ds + \beta \int_{t_n}^{\sigma_j(t_n)} p_j(s) \left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(s))\right) \left(\int_{\sigma_j(t_n)}^{\sigma_j(s)} Q(\xi) d\xi\right) ds \ge 0,$$

where

$$Q(t) = \beta p_j(t) \left(\Theta(\sigma_j(t)) - \sum_{i=1}^{\ell} h_i(\sigma_j(t)) \Theta(\rho_i(\sigma_j(t))) \right).$$

Proof. Let y(t) be a solution of (13) such that y(t) > 0 on $[t_0, \infty)$ for some $t_0 > 0$. Proceeding as in the proof of Theorem 3, we see that (17) holds, and hence we obtain

$$(28) \quad y(\sigma_j(t)) \geq \left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(t))\right) z(\sigma_j(t)) + \Theta(\sigma_j(t)) - \sum_{i=1}^{\ell} h_i(\sigma_j(t))\Theta(\rho_i(\sigma_j(t))), \quad t \geq t_3$$

for some $t_3 \ge t_2$. Then it can be shown that

(29)
$$z'(t) \geq \sum_{i=1}^{m} p_i(t)\varphi_i(y(\sigma_i(t)))$$
$$\geq p_j(t)\varphi_j(y(\sigma_j(t)))$$
$$\geq \beta p_j(t)y(\sigma_j(t)), \quad t \geq t_3.$$

Combining (28) with (29), we observe that z(t) is a positive solution of

(30)
$$z'(t) - \beta p_j(t) \left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(t))\right) z(\sigma_j(t)) \ge Q(t)$$

for $t \ge t_3$. However, Lemma 1 implies that (30) has no eventually positive solution. This is a contradiction and the proof is complete.

4. Functional parabolic equations

Combining the results in Sections 2 and 3, we can derive various oscillation theorems for the boundary value problems (1), (B_i) (i = 1, 2).

Lemma 2. If (2_{\pm}) have eventually positive solutions $y_r(t) \in \mathcal{B}_{\Gamma}$ (r = 1, 2), respectively, then $y_r(t)$ are eventually positive solutions of the differential inequalities

(31)

$$\frac{d}{dt}\left(y(t) + \sum_{i=1}^{\ell} h_i(t)y(\rho_i(t))\right) - \sum_{i=1}^{m} p_i(t)\varphi_i(y(\sigma_i(t))) \ge G_r(t),$$

where

$$G_r(t) = (-1)^{r-1} G(t) - \lambda_1 a(t) \Gamma(t) - \lambda_1 \sum_{i=1}^k b_i(t) \Gamma(\tau_i(t)) \quad (r = 1, 2).$$

Proof. Since

$$\lambda_1 a(t) y_r(t) \le \lambda_1 a(t) \Gamma(t), \quad \lambda_1 \sum_{i=1}^k b_i(t) y_r(\tau_i(t)) \le \lambda_1 \sum_{i=1}^k b_i(t) \Gamma(\tau_i(t)),$$

we easily see that $y_r(t)$ are eventually positive solutions of (31).

Theorem 5. Assume that $\sum_{i=1}^{\ell} h_i(t) \leq 1$, $\rho_i(t) \leq t$ $(i = 1, 2, ..., \ell)$, $\varphi_j(s)$ is nondecreasing on $[0, \infty)$ for some $j \in \{1, 2, ..., m\}$. Every solution $u \in \mathcal{B}_K$ (K is a positive constant) of the boundary value problem (1), (B₁) is oscillatory in Ω if there is a function $\Theta_r(t) \in C^1((0, \infty); \mathbf{R})$ (r = 1, 2) such that $\Theta_r(t)$ is bounded and oscillatory at $t = \infty$, $\Theta'_r(t) = G_r(t)$ with $\Gamma(t) \equiv K$, and that

$$\int_{s_0}^{\infty} p_j(s)\varphi_j \left(\left[\left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(s)) \right) \left[\Theta_r(\sigma_j(s)) \right]_- + \Theta_r(\sigma_j(s)) - \sum_{i=1}^{\ell} h_i(\sigma_j(s)) \Theta_r(\rho_i(\sigma_j(s))) \right]_+ \right) ds = \infty$$

for some $s_0 > 0$.

Proof. It follows from Theorem 3 that (31) have no eventually positive bounded solutions, and hence Lemma 2 with $\gamma(x,t) = \Gamma(t) = K$ implies that (2_{\pm}) have no eventually positive solutions $y(t) \in \tilde{\mathcal{B}}_K$. The conclusion follows from Theorem 1.

Theorem 6. Assume that $\sum_{i=1}^{\ell} h_i(t) \leq 1$, $\rho_i(t) \leq t$ $(i = 1, 2, ..., \ell)$, and $\varphi_j(s) \geq \beta s$ in $(0, \infty)$ for some $\beta > 0$ and some $j \in \{1, 2, ..., m\}$. Moreover, assume that $\sigma_j(t) \geq t$ and $\sigma_j(t)$ is nondecreasing in $(0, \infty)$, and that there is a function $\Theta_r(t) \in C^1((0, \infty); \mathbf{R})$ (r = 1, 2) such that $\Theta_r(t)$ is oscillatory at $t = \infty$ and $\Theta'_r(t) = G_r(t)$. Every solution $u \in \mathcal{B}_{\gamma}(\Omega)$ of the boundary value problem (1), (B_1) is oscillatory in Ω if there exists a sequence $\{t_{r,n}\}$ (r = 1, 2) for which (25) - (27) with $t_n = t_{r,n}$ and Q(t) replaced by

$$Q_r(t) = \beta p_j(t) \left(\Theta_r(\sigma_j(t)) - \sum_{i=1}^{\ell} h_i(\sigma_j(t)) \Theta_r(\rho_i(\sigma_j(t))) \right)$$

hold.

Proof. Theorem 4 implies that (31) have no eventually positive solutions. Hence, it follows from Lemma 2 that (2_{\pm}) have no eventually positive solutions $y(t) \in \tilde{\mathcal{B}}_{\Gamma}$. The conclusion follows from Theorem 1.

Theorem 7. Assume that $\sum_{i=1}^{\ell} h_i(t) \leq 1$, $\rho_i(t) \leq t$ $(i = 1, 2, ..., \ell)$, $\varphi_j(s)$ is nondecreasing on $[0, \infty)$ for some $j \in \{1, 2, ..., m\}$. Every bounded solution u of the boundary value problem (1), (B_2) is oscillatory in Ω if there is a function $\Theta(t) \in C^1((0, \infty); \mathbf{R})$ such that $\Theta(t)$ is bounded and oscillatory at $t = \infty$, $\Theta'(t) = \tilde{G}(t)$, and that

$$\begin{split} \int_{s_0}^{\infty} p_j(s)\varphi_j \Biggl(\Biggl[\Biggl(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(s)) \Biggr) \left[\Theta(\sigma_j(s)) \right]_{\mp} \\ & \pm \Biggl(\Theta(\sigma_j(s)) - \sum_{i=1}^{\ell} h_i(\sigma_j(s)) \Theta(\rho_i(\sigma_j(s))) \Biggr) \Biggr]_{+} \Biggr) ds = \infty \end{split}$$

for some $s_0 > 0$.

Proof. Combining Theorem 2 with Theorem 3, we are led to the conclusion. \Box

Theorem 8. Assume that $\sum_{i=1}^{\ell} h_i(t) \leq 1$, $\rho_i(t) \leq t$ $(i = 1, 2, ..., \ell)$, and $\varphi_j(s) \geq \beta s$ in $(0, \infty)$ for some $\beta > 0$ and some $j \in \{1, 2, ..., m\}$. Moreover, assume that $\sigma_j(t) \geq t$ and $\sigma_j(t)$ is nondecreasing in $(0, \infty)$, and that there is a function $\Theta(t) \in C^1((0, \infty); \mathbf{R})$ such that $\Theta(t)$ is oscillatory at $t = \infty$ and $\Theta'(t) = \tilde{G}(t)$. Every solution u of the boundary value problem $(1), (B_2)$ is oscillatory in Ω if there exists a sequence $\{t_n\}$ satisfying (25), (26) and

$$\int_{t_n}^{\sigma_j(t_n)} Q(s)ds + \beta \int_{t_n}^{\sigma_j(t_n)} p_j(s) \left(1 - \sum_{i=1}^{\ell} h_i(\sigma_j(s))\right) \left(\int_{\sigma_j(t_n)}^{\sigma_j(s)} Q(\xi)d\xi\right) ds = 0.$$

Proof. The conclusion follows by combining Theorem 2 with Theorem 4. \Box

We conclude with an example which illustrates Theorem 7.

Example. We consider the problem

(32)
$$\frac{\partial}{\partial t} \left(u(x,t) + (1/2)u(x,t+\pi) \right) -u_{xx}(x,t) - u_{xx}(x,t+\pi) - u(x,t+(\pi/2)) = -(\cos x + 1)\cos t, \quad (x,t) \in (0,\pi) \times (0,\infty),$$

(33)
$$-u_x(0,t) = u_x(\pi,t) = 0, \quad t > 0$$

Here n = 1, $G = (0, \pi)$, $\Omega = (0, \pi) \times (0, \infty)$, $\ell = k = m = M = 1$, $h_1(t) = 1/2$, $\rho_1(t) = t + \pi$, a(t) = 1, $b_1(t) = 1$, $\tau_1(t) = t + \pi$, $p_1(t) = 1$, $\sigma_1(t) = t + (\pi/2), \ \varphi_1(s) = s, \ \mu \equiv 0, \ \tilde{\psi} \equiv 0 \ \text{and} \ f(x,t) = -(\cos x + 1) \cos t.$ It is easily seen that $\tilde{\Psi}(t) \equiv 0$ and

$$\tilde{G}(t) = \tilde{F}(t) = \frac{1}{\pi} \int_0^{\pi} f(x, t) dx = -\cos t.$$

Choosing $\Theta(t) = -\sin t$, we see that $\Theta(t) \in C^1((0,\infty); \mathbf{R}), \, \Theta'(t) = \tilde{G}(t), \, \Theta(t)$ is bounded and oscillatory at $t = \infty$. It is easy to check that $\Theta(\sigma_1(s)) = -\cos s, \, \Theta(\rho_1(\sigma_1(s))) = \cos s$, and that

$$\int_{s_0}^{\infty} \left[\left(1 - \frac{1}{2} \right) [-\cos s]_{\mp} \pm \left(-\cos s - \frac{1}{2} \cos s \right) \right]_{+} ds$$

= $\frac{1}{2} \int_{s_0}^{\infty} \left[[-\cos s]_{\mp} \pm (-3\cos s) \right]_{+} ds$
= $\frac{1}{2} \int_{s_0}^{\infty} [\mp 3\cos s]_{+} ds = \infty.$

Hence, it follows from Theorem 7 that every bounded solution u of the problem (32), (33) is oscillatory in $(0,\pi) \times (0,\infty)$. One such solution is $u = 2(\cos x + 1) \sin t$.

Acknowledgment. The authors would like to thank the referee for his helpful comments and suggestions.

References

- [1] Bainov, D.D. and Minchev, E.I., Forced oscillations of solutions of impulsive nonlinear parabolic equations, J. Appl. Anal. (to appear).
- [2] Bykov, Ya.V. and Kultaev, T.Ch., Oscillation of solutions of a class of parabolic equations, Izv. Akad. Nauk Kirgiz. SSR 6 (1983), 3–9 (Russian).
- [3] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol. I, Interscience, New York, 1966.
- Cui, B.T., Oscillation theorems of nonlinear parabolic equations of neutral type, Math. J. Toyama Univ. 14 (1991), 113–123.
- [5] Mishev, D.P., Oscillation of the solutions of hyperbolic differential equations of neutral type with "maxima", Godishnik Vissh. Uchebn. Zaved. Prilozhna Mat. 25 (1989), 9– 18.
- [6] Mishev, D.P. and Bainov, D.D., Oscillation of the solutions of parabolic differential equations of neutral type, Appl. Math. Comput. 28 (1988), 97–111.
- [7] Okikiolu, G.O., Aspects of the Theory of Bounded Integral Operators in L^p-spaces, Academic Press, New York, 1971.
- [8] Tanaka, S. and Yoshida, N., Oscillations of solutions to parabolic equations with deviating arguments, Tamkang J. Math. 28 (1997), 169–181.
- [9] Yoshida, N., On the oscillation of solutions to parabolic equations with functional arguments, Math. J. Toyama Univ. 18 (1995), 65–78.

[10] Yoshida, N., Forced oscillations of nonlinear parabolic equations with functional arguments, Analysis 15 (1995), 71–84.

Takaŝi KusanoNorio YoshidaDepartment of Applied MathematicsDepartment of MathematicsFaculty of ScienceFaculty of ScienceFukuoka UniversityToyama UniversityFukuoka 814–0180Toyama 930–8555JapanJapan