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OSCILLATION CRITERIA FOR A CLASS OF
FUNCTIONAL PARABOLIC EQUATIONS
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Abstract. Oscillations of parabolic equations with functional argu-
ments are studied, and sufficient conditions are derived for all solutions
of certain boundary value problems to be oscillatory in a cylindrical
domain. Our approach is to reduce the multi-dimensional problems to
one-dimensional problems for functional differential inequalities.

1. Introduction

We are concerned with the oscillatory behavior of solutions of the para-
bolic equation with functional arguments

L
DR (u(x,o + Zhi(t)u(w,m(t))>
i=1
k

—a(t)Au(z,t) = Y bi(t)Au(z, (t))

=1
—c(x,t, (zl[u](:c,t))f\il) = f(z,t), (z,t) e Q=G x(0,00),
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where G is a bounded domain of R™ with piecewise smooth boundary 9G.
It is assumed that

u(x,oi(t)) (1=1,2,....,m),
maxseB ) u(z, s) (t=m+1,m+2..,m),

zi[u](z
Z/ Kij(z,t, y)wij(u(y, o (0)dy (i = my +1,mq +2,..., M),

where B;(t) (i = m+1,m+2,...,mp) are closed bounded sets of [0, c0) with
the property that lim; .. mingep, ) s = oo, 0i;(t) € C([0,00);R) (i =
mi+1my+2,....M; j = 1727--~7Ni)7 lims o0 O'Z'j(t) = 00, Kij(x,t,y) S
C(O%G;0,00)), and w;j(s) € C(R;R) are odd functions such that w;;(s) >
0 for s > 0.
We note that z;[u|(x,t) >0 (i =1,2,..., M) in G x [T, 00) for some T > 0
if u is eventually positive in G x (0, c0).
We assume that :
hi(t) € C1([0,00);]0,00)) (i =1,2,...,£);
a(t) € C([0,00); [0, 00));
bi(t) € C((0,00):[0,00)) (i = 1,2,.... b);
pi(t) € C1([0,0); R), tlim pi(t) =00 (i=1,2,...,0);
7i(t) € C([0,00); R), tlim Ti(t) =00 (i=1,2,...,k);
o;i(t) € C([0,00); R), tlim oty =00 (1=1,2,....,m);

f(x,t) € C(QR).
Moreover, we assume that :

c(z,t, (&)i,) € C(Q x RY;R),

m

c(z,t, (&)1, ZZ Hpi(&) for (a,t, (&)M)) € Q x [0,00),

( gz = 1 sz Pi fz for ($7t7 (§z>f\i1) €O x [0,00)M,

where [0, 00)/ = [0, oo)><[0,oo)3*1 (1=1,2,..., M), pi(t) € C([0,00);[0,00)),
vi(s) € C(]0,00);[0,00)), and ¢;(s) are convex in (0,00) (i = 1,2,...,m).

The boundary conditions to be considered are the following :

(Bi) u=1v% on 9IG x (0,00),
(Ba) a—:j—,u,u:@ on 9G x (0,00),
where 1, ¥ € C(G x (0,00); R), € C(dG x (0,0);[0,00)) and v denotes

the unit exterior normal vector to 0G.
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Definition 1. By a solution of the boundary value problems (1), (B;)
(i = 1,2), we mean a function u(z,t) € C*(G x [t_1,00); R) N CH(G x
[t_1,00); R) N C(G x [t_1,00); R) which satisfies (1), (B;) (i = 1,2), where

t_1 = min {O, min {inf Tz(t)}} )
1<i<k | t>0
i’i — . . . f . t
1 min {0, oin, {gopz( )}} :

.1 = min< 0, min {info;(t)p, min inf 0;;(t)
1<i<m | ¢>0 mi+1<i<M | >0
1<j<N,

Definition 2. A solution u of the boundary value problems (1), (B;) (i =
1,2) is said to be oscillatory in €2 if u has a zero in G x (¢, 00) for any ¢ > 0.

In 1983, Bykov and Kultaev [2] have studied the oscillations of func-
tional parabolic equations including the special case of (1). Oscillation
theory for functional parabolic equations has been extensively developed
in recent years by several authors; see, for example, [4-6, 8-10]. How-
ever, most of the papers except [2, 9] pertain to the parabolic equations (1)
with —c(z, t, (z:[u](z,t))M,) replaced by c(x, t, (2i[u](x,t))M,). We mention
in particular the paper [1] which deals with impulsive nonlinear parabolic
equations.

The purpose of this paper is to derive sufficient conditions for every so-
lution u of the boundary value problems (1), (B;) (i = 1,2) to be oscilla-
tory in 2. In Section 2 we reduce the multi-dimensional problems to one-
dimensional oscillation problems. Section 3 is devoted to the nonexistence
of eventually positive solutions of the associated functional differential in-
equalities. In Section 4 we combine the results of Sections 2 and 3 to obtain
various oscillation results for the functional parabolic equation (1).

2. Reduction to functional differential inequalities

In this section we show that the boundary value problems (1), (B;) (i =
1,2) can be reduced to one-dimensional oscillation problems.
It is known that the smallest eigenvalue \; of the eigenvalue problem

—Aw = M in G,
w = 0 on J0G

is positive and the corresponding eigenfunction ®(z) may be chosen so that
®(z) > 0in G (see Courant and Hilbert [3]).



4 T. Kusano and N. Yoshida

We use the notation :

where |G| = [, dz.
We define the function spaces B,(Q) and Br by

B, () = {u(x,t) € C*(R); [u(x, t)| <~(z,t) on Q},
Br = {y(t) € CY ([T, 00); R); [y(t)] < T(t) on [T, 00)},

where T}, is a positive constant depending on y(t), v(z,t) is a positive con-
tinuous function on 2, and

F(t)—/ny(x,t)@(:r)dx- </G<I)(x)dx>_l.

Theorem 1. If the functional differential inequalities
(24) ( +Zh >+A1a()()

+ M Z bi(t)y(ri() = > pit)pily(o(1))) = £G(1)
i=1 =1

have no eventually positive solutions of class Br, then every solution u €
B+(£2) of the boundary value problem (1), (Bi) is oscillatory in €, where

k
G(t) = F(t) — a(t)U(t) = > bi(t)¥(ri(t
=1

Proof. Suppose to the contrary that there exists a solution u € B, (Q) of
the problem (1), (B;) which is nonoscillatory in Q. First we assume that
u>01in G X [tg, 00) for some ty > 0. The hypothesis implies that

el t, (zifu] (2, )M, >2p1 i(u(z,oi(t))) in G X [t;,00)
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for some t; > tg. Hence, from (1) we see that

(3) ( a:t+2h u(x, pi(t )

k

—a(t)Au(z, t) = Y bi(t)Au(z, 7(t))

i=1

_sz )oi(u(z,03(t)) > f(z,t) in G x [t1,00).

Multiplying (3) (z) ( fG ) and then integrating over G yields
d l

= <U<t>+zhi<t>v<m<t>>> — at)Ko / Au(z, 1)@ (x)da
dt i=1 G

k
—Zbi(t)Kq) / A, (1)) B (x)dar

—Zpl Ko | ilute. ()P

ZF() tztlv

Ko — </G<I>(x)dx>_1,
U(t):/Gu(a:,t)q)(x)da:- (/ch(x)dx>_1.

It follows from Green’s formula that

K@/G’Au(a:,t)@( )d

_ Kq;/ [gZ(a; b (x )—u(m,t)g(f(x)] dS+Kq>/Gu(ac,t)A<I>(:c)dw

where

= —Ks aGwC{)V(:c)dS—)chb/GU(l”t)‘I)(x)dI
= W) - NU®), t>h.

Analogously we have

(6) Kg /G Au(z, 7;(t))®(z)de = =U(r(t)) — MU(7:(t)), t>to
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for some ty > t;. Applying Jensen’s inequality [7, p.160], we obtain
M K [ alul@o)e@de > o Ue0). 2t

Combining (4)—(7) yields

¢
% (U(t) + Z hi(t)U(pi(t))> + Aa(t)U ()

=1
k m
+A1 sz'(t)U(Ti(t)) - sz'(t)%(U(Ui(t))) > G(t), t>to.
=1 =1
It is easy to check that
U @) < Ko /G (1) ®(2)dz < Ko /Gv(@ D(x)da = T(1),

and therefore U(t) € Br. Hence, (2.) has an eventually positive solution
U(t) of class Br. This contradicts the hypothesis. If u < 0 in G X [tg, 0),
it can be shown that

o, t, (zlu](z,0)Ly) < =Y pit)pi(—ule, oi(t))) in G x[t,00)
i=1

for some t; > tg. Letting v = —u, we obtain

5 ¢
o (v(az, t) + ; hi(t)v(z, Pi(t»)
k

—a(t)Av(x,t) = > bi(t) Av(z, 74(t))
=1

= pilt)pi(v(z,0i(t)) = —f(x,t) in G x [t1,00).

=1

Proceeding as in the case where u > 0, we are led to a contradiction. The
proof is complete. O

Theorem 2. If the functional differential inequalities

(8+)

0 m
s <y<t> 5 mmy(m(t») = niOeily(on) = 26
=1

=1
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have no eventually positive (bounded) solutions, then every (bounded) so-
lution u of the boundary value problem (1 ) (Bs) is oscillatory in 2, where

G(t) = F(t) + a( +Zb () (r(t

Proof. Assume on the contrary, that there exists a (bounded) solution u
of the problem (1), (Bz) such that v > 0 in G X [tp, 00) for some tg > 0.
Arguing as in the proof of Theorem 1, we observe that the inequality (3)
holds for some t; > ty. Dividing (3) by |G| and then integrating over G
yields

¢
©) jt(t?(w > mOU( -<>>> ~ () [ Auw s

k
1
= hi(t) /Au z,7i(t pi(t)/ oi(u(z, 03(t)))dz
=1 ‘G| -1 |G| G
F(t), t>t.
It follows from the divergence theorem that
1 1 ou
(10 /Au:r,t de = —(z,t)dS
b 1@ Y T G o ™Y
1 -
= — pu(x,t)+1)dS
G s (120 +7)
> U(t), t>ty.
Analogously we obtain
1 -
(11) / Au(z, mi(t)de > B(r(t)), >t
Gl Ja
for some ty > t1. An application of Jensen’s inequality shows that
1 .
12 [ eten®)is 2 e (Te), e
Gl Ja

Combining (9)—(12) yields

¢ m
4 (0<t> Y hi<t>0’<pi<t>>) =3 nieU(@) = G1), > b,
=1 =1

which means that U (t) is an eventually positive (bounded) solution of (8,).
This contradicts the hypothesis. The case where ©u < 0 can be treated
similarly, and we are led to a contradiction. The proof is complete. O
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3. Functional differential inequalities

In this section we investigate the nonexistence of eventually positive so-
lutions of the functional differential inequality

(13)

l m
% <y(t) +) hi(t)y(pi(t))) = pit)piy(oi(t))) > G(1).
=1

=1

Theorem 3. Assume that Zle hi(t) < 1, pi(t) <t (i = 1,2,...,¢), and
©;(s) is nondecreasing on [0, 00) for some j € {1,2,...,m}. The inequality
(13) has no eventually positive bounded solution if there is a function O(t) €
C1((0,00); R) such that O(t) is bounded and oscillatory at t = co, ©'(t) =
G(t), and

o ¢
(14) / pj(S)@j<[<1—Zhi(Uj(S))> ©(05(5))]
=1

S0

l
+0(05(s)) = ) hi(Uj(S))@(pi(Uj(S)))] >d8 =0
+

=1
for some sy > 0, where

[O(t)]+ = max{+0O(t), 0}.

Proof. Assume on the contrary, that there exists an eventually positive
bounded solution y(t) of (13) such that y(¢) > 0 on [tg, c0) for some to > 0.
Then, y(pi(t)) >0 (i = 1,2,...,0), y(oi(t)) > 0 (i = 1,2,...,m) on [t1,00)
for some t1 > ty. Letting

we see that .
Z(t) > Zpi(t)%(y(@(t))) >0, t>t,
i=1

and therefore z(t) is nondecreasing for ¢t > t;. Hence, we find that either
z(t) > 0 or z(t) < 0 on [te,00) for some ty > t1. If z(t) < 0 on [t2, 00), then

J4
(15) y(t)+ Y hi(®y(pi(t) < O(), t>to.
=1

The left hand side of (15) is positive, but the right hand side of (15) is
oscillatory at ¢ = oo. This is a contradiction. Hence, we conclude that
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z(t) > 0 on [t2,00). Since z(t) + O(t) > 0 on [t2,00), we find that z(t) >
—O(t) on [te,00), and therefore

(16) A1) > [O()]_ for t>to.

In view of the fact that y(¢) < z(t) + ©(t) and z(t) is nondecreasing, we
obtain

¢
A7) y(t) = 2(t) = > hi(t)y(pi(t)) + O(t)

=1
l

> z(t) = ) hi(t) (2(pi(t)) + O (pi(1))) + O(1)
=1
¢ ¢

> (1 - Zhi(t)) 2(t) +O(t) = Y hi(H)O(pi(t)), t > to.
=1 =1

Combining (16) with (17) yields

y(o;(t) =
14 14
[(1 - Zhi(vj(t))> [©(a;()]_ +O(0j(t)) = D hi(o(£)O(pil0(1)))
i=1 i=1 +

on [t3,00) for some t3 > to. Hence, we obtain

(18)2'(t) = Zpi(t)%(y(oi(t)))

> pi(t)e;(y(o;

([(1_zh o) i

A\
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Integrating (18) over [t3,t] yields
(19)  2(t) — =(t3)

> /t:pj(8)¢j<

¢

+0(a;(s) = ) hi(aj(s))@(pi(aj(s)))] )ds, t > ts.
i=1 +

The left hand side of (19) is bounded from above, but the right hand side

of (19) tends to infinity as ¢ — oco. This is a contradiction and the proof is

complete. O

Next we consider the functional differential inequality
(20) y'(t) —p()ylo(t) > q(t), t=T,

where T is some positive number, p(t) € C ([T, 00); [0, 00)), ¢(t) € C([T, c0);
R) and o(t) € C([T,00);R) for which lim; .o o(t) = o0, o(t) >t and o(t)
is nondecreasing on [T, 00).

Lemma 1. The inequality (20) has no eventually positive solution if there
exists a sequence {t, } such that:

lim ¢, = oo,
n—oo

o(tn)
/ p(s)ds > 1,
tn

o(tn) o(tn) o(s)
/tn a(s)ds + / p(s) ( / . q(ﬁ)d§> ds > 0.

Proof. Suppose that there exists a solution y(t) of (20) for which y(¢) > 0
on [Ty, 00) for some Ty > T'. Integrating (20) over [¢,0(t)], we obtain

(1)
o t) - - | " p(ewlo(s))ds > / " syas. 1>

Since

(22) y'(t) > qt) for t>Tp,

an integration of (22) over [o(t), o(s)] yields

y(o(s)) — y(o(t)) > / G(©)de for s>,
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and therefore
o(s)

(23) o) = u(o®) + [ GIIEY

Combining (21) with (23), we obtain

o(t) o(s) o(t)
y(o (1) —y(t)- / p(s) <y<o<t>>+ / ) q<s>d§) ds > / a(s)ds, 1> Th,

or equivalently

o(t)
(24) —y(t) —y(o(t) (/t p(s)ds — 1)

o(t) a(t) o(s)
> /t q(s)ds —|—/t p(s) (/U(t) q(§)d§> ds, t>T,.

It is easy to see that ¢, > Ty (n > N) for some positive integer N. We
easily see that the left hand side of (24) with t = ¢, (n > N) is negative,
whereas the right hand side of (24) with ¢t = ¢, (n > N) is nonnegative.
This is a contradiction and the proof is complete. ]

@j(s) > fBs in (0,00) for some 8 > 0 and some j € {1,2,...,m}. Moreover,
assume that o;(t) > t and o;(t) is nondecreasing in (0, 00), and that there
is a function ©(t) € C*((0,00); R) such that ©(t) is oscillatory at t = oo
and ©’(t) = G(t). The inequality (13) has no eventually positive solution if
there exists a sequence {t,} for which

Theorem 4. Assume that S, hi(t) < 1, pi(t) < ¢ (i = 1,2,...,£), and

(25) nhi& t, = 0,
aj(tn) ¢ 1
(26) /t p;(s) (1 - ;hi(aj(s))> ds > 5

where
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Proof. Let y(t) be a solution of (13) such that y(¢) > 0 on [tg, o) for some
to > 0. Proceeding as in the proof of Theorem 3, we see that (17) holds,
and hence we obtain

l
(28) y(o;(t)) = (1—Zhi(0j(t))> 2(a;(1))
i=1

14

i=1
for some t3 > t9. Then it can be shown that

Zpi<t)90i(y(0i(t>))

> pi(t)pi(y(a;(t)))
> PBpi)y(o;t), t=ts.
Combining (28) with (29), we observe that z(t) is a positive solution of

(29) (1)

v

¢
(30) 2(t) — Bp;(t) (1 - hi(Uj(t))> 2(0j(t)) = Q(t)
=1

for t > t3. However, Lemma 1 implies that (30) has no eventually positive
solution. This is a contradiction and the proof is complete. ]

4. Functional parabolic equations

Combining the results in Sections 2 and 3, we can derive various oscilla-
tion theorems for the boundary value problems (1), (B;) (i = 1,2).

Lemma 2. If (21) have eventually positive solutions y,(t) € Br (r = 1,2),
respectively, then y,(t) are eventually positive solutions of the differential
inequalities
(31)

d J4 m
— (y(t) +> hi(t)y(m(ﬁ))> =Y pit)pi(y(oi(t)) = Gr(t),

dt =1 i=1
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Proof. Since
k k
Aa(t)y,(t) < Ma®T (), A by (ri(t) < X Y bi(OT(7(t),
=1 1=1

we easily see that y,(¢) are eventually positive solutions of (31). O

Theorem 5. Assume that Zle hi(t) <1, pi(t) <t (i =1,2,...,0), ¢j(s)
is nondecreasing on [0, 00) for some j € {1,2,...,m}. Every solution u € Bk
(K is a positive constant ) of the boundary value problem (1), (B;) is
oscillatory in Q if there is a function ©,(t) € C'((0,00);R) (r = 1,2)
such that ©,(t) is bounded and oscillatory at t = oo, ©L(t) = G,(t) with
I'(t) = K, and that

0 1
/ pi(s)p; ( Kl - hi(oj(s))> [©r(a(s))]_
S0 i=1

1
+0,(0(s) = Y hi(gj(s))@r(Pi(Uj(S)))] )ds =0
+

i=1
for some sy > 0.

Proof. It follows from Theorem 3 that (31) have no eventually positive
bounded solutions, and hence Lemma 2 with v(x,t) = I'(t) = K implies
that (24) have no eventually positive solutions y(t) € Bg. The conclusion
follows from Theorem 1. O

Theorem 6. Assume that Zle hi(t) <1, pi(t) <t (i=1,2,..4), and
@j(s) > Bsin (0,00) for some 5 > 0 and some j € {1,2,...,m}. Moreover,
assume that o;(t) > t and o;(t) is nondecreasing in (0, c0), and that there is
a function ©,(¢) € C1((0,00); R) (r = 1,2) such that ©,(t) is oscillatory at
t = 0o and ©).(t) = G,(t). Every solution u € B(£2) of the boundary value
problem (1), (By) is oscillatory in €2 if there exists a sequence {¢,,} (r =
1,2) for which (25) — (27) with ¢, = t,,, and Q(t) replaced by

¢
Qr(t) = Bp;(t) <@r(0j(t)) - hi(O’j(t))Gr(Pi(Uj(f)))>
i=1
hold.
Proof. Theorem 4 implies that (31) have no eventually positive solutions.

Hence, it follows from Lemma 2 that (24) have no eventually positive solu-
tions y(t) € Br. The conclusion follows from Theorem 1. O
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Theorem 7. Assume that Zle hi(t) <1, pi(t) <t (i=1,2,....0), pj(s) is
nondecreasing on [0, 00) for some j € {1,2,...,m}. Every bounded solution
u of the boundary value problem (1), (Bz) is oscillatory in 2 if there is a
function O(t) € C1((0, 0); R) such that O(t) is bounded and oscillatory at
t = oo, ©(t) = G(t), and that

0o L
| e ( [(1 3 hi<aj<s>>> CILIOHE

V4
= (@(aj<s>> - Zhi(aj(S))G(m(Uj(S)))” )ds — o0
i -

for some sg > 0.

Proof. Combining Theorem 2 with Theorem 3, we are led to the conclusion.
O

Theorem 8. Assume that Zle hi(t) <1, pi(t) <t (i=1,2,..,¢), and
@;(s) > Bsin (0,00) for some 3 > 0 and some j € {1,2,...,m}. Moreover,
assume that o;(t) > t and o;(¢) is nondecreasing in (0, 00), and that there is
a function O(t) € C*((0,00); R) such that ©(t) is oscillatory at t = oo and
©/(t) = G(t). Every solution u of the boundary value problem (1), (By) is
oscillatory in € if there exists a sequence {t, } satisfying (25), (26) and

a;(tn) 7 (tn) ¢ a;(s)
/ Q(s)ds+p p;(s) <1 - Z hi(oj(s))> (/ Q(f)df) ds = 0.
tn i=1 °

tn j(tn)

Proof. The conclusion follows by combining Theorem 2 with Theorem 4.

O
We conclude with an example which illustrates Theorem 7.
Example. We consider the problem
0

(32) 5 (W@, t) + (1/2)u(z, t + 7))

U (2, 1) — Uge (2, t + ) — u(z, t + (7/2))

= —(cosx 4+ 1)cost, (z,t)€ (0,m) x (0,00),
(33) —ug(0,t) = ug(m,t) =0, t>0.
Here n = 1, G = (0,7), @ = (0,7) x (0,00), £ = k = m = M = 1,
hl(t) = 1/27 Pl(t) = t+7T7 a(t) = 17 bl(t) = 17 Tl(t) = t+7’[’7 pl(t) = 17
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o1(t) =t +(7/2), p1(s) = s, p =0, ¢ =0 and f(z,t) = —(cosz + 1) cost.
It is easily seen that ¥(t) =

0 and
Glt) = Bt =~ /ﬁ (@, t)dz = — cost.
T Jo

Choosing O(t) = —sint, we see that ©(t) € C'((0,00);R), O/(t) = G(t),
O(t) is bounded and oscillatory at t = oo. It is easy to check that ©(o1(s)) =
—cos s, O(p1(01(s))) = cos s, and that

/S:O [(1 - ;) [—coss] £ (—coss — ;coss)Lds

= ;/:o [~ cos 8]+ £ (—3cos s)]+ ds

0

1 o0
= 2/50 [F3coss], ds = oc.

Hence, it follows from Theorem 7 that every bounded solution u of the

problem (32), (33) is oscillatory in (0,7) x (0,00). One such solution is
u = 2(cosx + 1)sint.

Acknowledgment. The authors would like to thank the referee for his
helpful comments and suggestions.
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