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Abstract. This paper is concerned with the existence of global limit
solutions for the quasi—nonlinear functional evolution problem

z' € A(t,x)x 4+ G(t, x4, Lex),t € [0,T],
(FDE,¢)

T = ¢,
where A(t,1) and G(¢, 91, Liip2) are defined, with respect to 1, on a
subspace of the space PC([—r,0], X) of all piecewise continuous func-
tions f : [-r,0] — X. An appropriate subspace of PC([—r,t], X) is the
domain of definition of the nonlinear operators L, t € [0,T]. The op-
erators A(t, 1)z are w-dissipative and Lipschitz — like in (¢,1) which
are more general conditions than those of Karsatos—Liu. The opera-
tors G and L. are Lipschitzian mappings on their respective domains.
Moreover, we investigate the uniqueness and strong solution for such
problem.
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1. Introduction and preliminaries

Dyson-Bressan [1] have established the existence and uniqueness of inte-
gral solution for the problem (FDE,¢) with A = A(t,x;), G = G(t, zy).

The method of lines for the problem (FDE,p) with A = —A; and G =
G(t,z¢) was developed for space X with X™* uniformly convex by Kartsatos—
Parrott [5, 6].

Recently, Kartsatos—Liu [4] have developed method of line for (FDE,¢)
with m-accretive operators —A(t,v)x.

Our object is construct an approximate solution for the problem

¥ € Alt,x)x + G(t, xy, Lyx), t€[0,T],
(FDE,¢)

{12'0:¢,

where A(t,vn) and G(t,1, Lypo) are defined, with respect to 11, on a
subspace of the space PC([—r,0], X) of all piecewise continuous functions
f :[-r,0] — X. An appropriate subspace of PC([—r,t],X) is the do-
main of definition of the nonlinear operators L, t € [0,T]. The operators
(A(t,v)xr — wl) are m-dissipative in = and Lipschitz like in (¢,7). The
operators G and L; are Lipschitzian mappings on their respective domains.

In this paper, we constitutes a approximation scheme for (FDE,¢) with-
out fixed the functional term of A(¢,x;) by assumption of A(t,1) which is
more general than the condition of Kartsatos—Liu [4].

In what follows, X stands for a real Banach space with dual space X*
and normalized duality mapping J.

We recall that for z,y € X,

=+ hyl| — =]

O o a7l
= l _ = l .
<y7 .’E>+ hi%h— h ) <y7 .’E> hi%l— h

For some properties of (-, )+, we refer the reader to Kobayashi [7] and Pavel
[8].

An operator A : D(A) ¢ A — 2% is called “dissipative” if for every
x,y € D(A), there exists j € J(x—y) such that (u—wv,j) <0 for all u € Az,
v € Ay. A dissipative operator A is “m-dissipative” if R(I — AA) = X for
all A € (0,00). Also, A is said to be accretive if —A is dissipative.

We denote by PC the space of all piecewise continuous functions f :
[—7,0] — Br(0) associated with the supremum norm, where By(0) is the
ball of X with radius 7 and center 0.

We consider the following assumptions:

(A1) There exists w € R such that for each (¢,%) € [0,T] x PC, A(t,v) —wl
is m-dissipative for 0 < A < A\g = 1/max(0, w).
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(A2) There exists a continuous increasing function rg : RT™ x RT x Rt — R™
such that
(y1 = y2, o1 — w2)— <wlz1 — z2|| + ro([[vnllpes [Y2llpe, [[#2]])
[ty = t2| (1 + llyall) + [¢1 — 2l pcl
for all y; € A(t;, i), i = 1,2, (t;, ;) € [0,T] x PC.
(L1) Ly : PC(]-r,t],X) — X for every t € [0,T]. Moreover,

| Lepr — Lipall < ax(t)||11 — 2|, (L1,1)

and

[1Letp = Lso|| < ma(ll9llr)lt — s, (L1,2)

for every t,s € [0,T] and every 1,491,109 € PC([—r,T],X), where
a; : [0,7] — R* is continuous, 1 : Rt — R* is a nondecreasing
function and |[¢[|s = supge(—.q [[¥(0)]]-

(G1)

|G (t, Y1, 91) = G(E, 2, y2)|| < a2()[[[¥1 —Yallpe+[ly1 —2ll]  (GL,1)

and

||G(t7¢,y) - G(5a¢ay)|| < r2(”¢“PCa ||y||)|t - 8|, (G172)

for every t,s € [0,T1], every ¢, 11,92 € PC and every y,y1,y2 € Br(0),
where as : [0,7] — R* is continuous and 7o : R* x RT — RT is
nondecreasing in both variables.
(¢1) ¢ € PC is a given Lipschitz continuous function with Lipschitz con-
stant Cy and ¢(0) € D(A(0, ¢)).
From (A1), the resolvents J) and Yosida approximants Ay of A are de-
fined by Jyy = (I — AA)"'y and Ayy = A~1(J\ — I)y, respectively. It is
readily verified that

1. Ayy e Adyy for all y € X,
2. |z — Tyl <A = w) Hz—y| foral z,y€ X,
3. |l Ayull < (1= w) tinf{|ly| | v € Au} for all uw e D(A),
and so
li A <inf € Au} = |Aul.
i [[Ayul] < if{lly] |y € Au} = |Aul

Further properties of Jy and Ay can be found in Pavel [8]. We set C; =
maxyc(o 7] @1(t) and Oz = maxc(o 7y az(t) in (L1) and (G1).

From the Proposition 2.2 in [8], it can be seen that (A2) is equivalent to
the condition
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(A3) For all y; € A(ty,i)zi, i = 1,2, (t;,;) € [0,T] x PC, there is a
function ry as in (A2) such that for A > 0
(1= 2w)zy — 22l <[lz1 — 22 = Myr — 2|
+ Aro(lvnllpes [W2llpe, [[22]])
[t = 2 (1 + ly2l) + (191 = ¢2llpcl,

which implies
(A4)
(1= 2w)|lz —ul| <[z — Ay — ul| + A[A(s, ¥2)u|
+Aro([[¢allpe, lvzll pos [[ull)
[t = sI(L+ [A(s, 2)ul) + [191 = allpc]
for all A > 0, u € D(A(s,12)).

Also, from [1], it will be seen that (A3) is equivalent to the condition (A5)
which for z1 = x2 is condition (A2) in [3] and [4].

(A5) There exists a function 75 : Rt x RT x Rt — R* which is increasing
and continuous such that for all 1,29 € X and 0 < A < A,

| Ix(t1, Y1) w1 —JTA (L2, Y2) 22|

<

T 121 — 22l + A7o([[¥rllpe, [42llpe, l22()
[t = 2| (1 + ||Ax(t2, ¥2)x2|) + |[¥1 — ¥2| pc]-

Therefore our condition (A1) and (A2) are more general than conditions
(A1) and (A2) of Kartsatos—Liu [4].

2. Existence and convergence of the method of lines

In this section, we show the existence of a method of lines for the problem
(FDE), Theorem 1, and then we show that this method converges uniformly
to a “limit solution” of the problem (FDE,¢), Theorem 2. As the similar
process of Kartsatos—Liu [4], we have the following theorem.

Theorem 1. Assume that conditions (A1), (G1) and (L1) hold and that
¢ € PC. Assume that for every pair of piecewise continuous functions 9 €
PC, w : [-r,T] — Br(0), every = € D(A(t,v)), with ||z| > 7, t € [0,T],
and every u € A(t, 1)z there exists a functional g € J, such that

(u+ G(t,wy, Li(w)), g) < 0. (%)
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Then there exists a method of lines {Z](¢)} on Bz(0) for the problem
(FDE,¢) such that

2 (t) =
(2, te . Thin=12,...,j=12,...,n,
and
2 — 2
Il e A7 (27 ) )2+ G, (B, Lyn (22))
o, VRN Al WA B 3o NGt HAS
t), te[-r0
=i = jhy o0 [0,7),  where 2= {2\ TEln0
¢(0), te(0,T]

Proof. We know that the function Fj(t7)x is Lipschitz continuous with

Lipschitz constants Cy(14 C4) on Br(0). We also observe that the mapping

2 = (GO~ AW, () )

is Lipschitz continuous with constant h, (1 — h,w)~!. Thus, S : Br(0) — X
is Lipschitz continuous with constant Ca(1 4 C1)(1 — h,w)~'h,. We choose
n so large that Cy(1 4+ C1)(1 — hpw)™'h, < 1, say n > ng, and we show
that S maps the ball Bz(0) into itself. In fact, given x € Bz(0), let u = Sx.
Then, for some v € A(t], (2;7_1)t§z71)u, we have

1 n z5
<hn) u—v— Fj(t])z - ;Lnl = 0.

We proceed by induction. We assume that the vector z;?_l has already been
obtained and that it belongs to the ball Bz(0). We already know that this
is true for the point zj. Assuming that ||u| > 7 and picking an appropriate

g € Ju, we apply (x) to obtain

0= (04 F{t)o.9) + ()~ 1,9)
> () (hull? = 1125 ) (+4)
1

h
h

S

> (=) ([lull = 7)[ull > 0.

3
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This is a contradiction. Here we have used the fact that ||(f; (a:))t; lloo < 7.

By Banach contraction principle, S has a unique fixed point in B7(0). This
fixed point is the next point 27’ in the constraction of the method of lines. [

Boundary conditions like (k%) have already been applied to ellipic—
type problems, involving maximal monotone and m—accretive in [2] and
[3].  From the proof of Theorem 1, we deduce that 27 € By(0) N
D(A(t?, (5}'11%;,1)) foreveryn=1,2,...,j=1,2,... ,n.

20— 2"

Lemma 1. The double sequence { J

is bounded.

Proof. From (¢1) and (A4),
(1 = wha)llz1" =z

n n
)

<llat = 25 — A = Gt (2 )y, L (27))) — 20 |

+ hnl A0, 9)¢(0)| + hro([1(20)e5 |l Pes |l Pes |25 11)
[[#7 = 01(1 +[A(0, 9)¢(0)]) + [ (z5) ey — ¢l ]
=hal G, (1) Ly (Z0) || + bl A0, )6 (0))]
+ haro([|0llpos [|0llpos [|0(0)]) - [hn(l + A0, 9)¢(0)])]
<hn||G(t], (2] )iy, Len (21)) — G(t1,0,0)||
+ hal|G(Y,0,0)[| + haTro(F, 7, 7)(1 + |A(0, 6)$(0)])
<Cohnll|(21)egllPc + 1Ly (27)]]
+ hnC3 + b Tro (7,7, 7) (1 + |A(0, 9)9(0)]),
where C3 = maxepo7) [|G(t,0,0)|| and 0 denotes the zero function in
PC([-r,0],X). Thus, we have
(1 —why)[[z1" — |
< hn[Co(r + Ca) + Cs + Tro(r,7,7) (1 + | A0, 6)¢(0) )]
= [Cs5 + Tro(r, 7, 7) (1 + [A(0, 9)$(0))]n = Cohn,

where

[Le()I] < ILe(¥) — Le(0)[| + [ Le(0) |
< Cil[¢llr + [|L¢(0) = Lo(0) [ + (| Lo(0)]]
< Ci7 + Tl(O)’t — 0‘ + ”Lo(O)H = (Cy,
and C5 = Cy(F + Cy) + Cs. For j =2,3,... ,n, we get from (A3) that

(1 = wha)||z = 24|
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< lzj1 = 2ol +hall GO (27 )en, Lin (27)) = G651, (Zf-1)en_,» Len_ (Z7-1)) |

I 1251 — 2ol n n
o, 7)o (1 + 2 - TG (2 2 ) Lo (Z70))1D
n

IE e, — (Za)e llrc)
We observe that from (G1)
IGE2, ()i Ly (2)) = Gy, (F2 ) L (ZE)
< 17, C)l + Cal max | = 21| + Cohn + Call2f = 5|+ 72 (P
Here we used the fact that
1(25)er — (Z51)en_ llPc < oax. 28 = 2k-1ll + Cohn,
HLt}L(Zj - Lt§_1<2j—1)|’ < Chl|Zf — j—1”t}’_1 +71(7) hay
< Cillzf = zf4 || + r1(7) P
Therefore, we have

I =00l

J 2|| + hn[TQ(f, 04) + CQC¢ + 027“1(77)

1—wh,
(1 — why) ™ < ™
+ Tro(7,7,7)(1 + Cs + Cyp)]
+ hy, max M((b + C1Cy + 21 (F, 7, 7)).
" 1<k< ho, Y

Letting C7 = 7“2(?7, C4) + CQ(C¢ + 7 ( )) + 7“0(77, T, 77)(1 + C5 + C¢) and
p =1—hp(w+ Cy + C1Cy + 2r(7,7,7)) and assuming that n is large
enough, we have p € (0,1) and

P 1
h fggg 2k — 2511l < h 1<III€1§X 2 — 25—1 1l + Crha.

This implies

-2
p
 max |2k — 2kl < Crhn ZO = Q)h 27 — 2z |
1 ¢
< C7h +76
";p pi1

which yields, for j =2,3,...,n

1 o L
1 - S
e [lai = zeall < Crhn ;:1 50

~1 1 C7T + C,
gc7hnzw+pjc6g7;6.

s=1
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Since
o P T(w+ Cy+ C1Cy + 219 (7, 7,7)) " ., oGt OrCat2(rr )T
n
as n — 0o, we have the desired conclusion. H

The reader should keep in mind that the approximation index n is large
enough so that the proof of the Lemma 1 can go through. We set

L
O3 = sup max M
1<n<oo 1<k<n hn

The next lemma establishes a Lipschitz—like condition for the functions
zZN(t).

n

Lemma 2. Let u,(t) = z)(t), t € [-r,T], n = 1,2,.... Then there exists
a constant C7g such that

lun(t) — un(s)|| < Cro(Jt — s| + hy), forall t,se[-rT],n=1,2,....

Proof. We define the “Rothe functions” 2" (t) as follows:

¢(t)7 te [—7’, 0]7

2'(t) = (2} = 27-1)

Z;']fl + (t - t;'lfl) 3 te [tn tn]?

J—17j

forn=1,2,...,7=1,2,... ,n. It is easy to see that the sequence {z"(t)} is
Lipschitz continuous on [—r,T] with Lipschitz constant Cg = max{Cg, Cy}
and we have ||u,(t) — 2"(t)|| < Cgh,, for all ¢ € [0,T]. By the Lipschitz
continuity of z"(t), we have
[un(t) = un(s)|| < llun(t) = 2" ()] + |27 (t) = 2"(s)]| + [[2"(s) — un(s)]]
< 2Cy(|t = s| 4+ hn) = Cro(|t — s| + hn),

for t,s € [—r,T], where C19 = 2Cy. This completes the proof. O

Lemma 3. Let {z7}7_; and {y;"}]L, be as in Theorem 1. We have

i =l
B € A (5 7] + G () L (7))
where hy, = s — s | =T/n and z§ = ¢(0). Also
Ye — Yk

A € Ay, (U ey Dy + G (G e L ().
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where h,, =" =t ; =T/m and y5' = #(0). Then

hom,
Al = o]

h
v N < A g™ — ™
Yiklle] —yp'll < g ik Uz —yptq |l + T

hnhm n m = = = =n =1
+ —— {Cult] =t +ro(7, 7, 7) (27 _1)s s (yk_1)tkm,1llpc
+ (@ — i G(s§, (T )en, Lsn (7)) — G (0 ) e, L (91)))+
for 0 Spg] < n, 0 < q < k < m, where C]_]_ = (1+08+C5)T0(’F’f’f) and
ik = (11— whn)j_p(l — whm)k_q.

Proof. We choose A € (0,1) and let 0 = hphp,/(hp + hyp). Then

n m x? — x?_l no(zh Ty
Ty =Yy — UA[(T O @5 Ly 35
Yr = Yp m o (om e
B (% — G, (T e, Len (T))))]

=(1 =M =) + 55— —vkh) + (@ w)

T OAG(T, ()5, Lon (7)) — G, (G L (5))]
which implies, by (A3)
(1 —wod)(1 = N[z} — 'l + (1 —wo M)Az} — i

= (1 —wod)|z} -y’
< (=) (2f = yg") + oAG(s], (TF)sn, Lan (T5)) — G (G e Lege ()]

J

h A h n m =n
el AR bt B B W C AP e
1@ e, lpes Hyk - {7 = 611+ Cs + Cs) + 1(Z-1)sp, = GrZ 1), el

Multiplying (1 — why,)?P(1 — why, )1 = = 4; in the above inequality and
letting £ = A\/(1 — A). Then we have

(1= woN) g 2 IIfE —ui I+ —||x -}

|2} — yﬁllll%,k—l + i1 — vr 1¥i-1k

h
< m
= hy A+l hy + b,

+3ikCrolsi = 4]+ Ajkoro(r, 7, 7)||(Z j_l)s;l,l = W) lpe

1H(UC’} —yg) +EolG(s], (z)sn, Lsn (23)) — G, ("), Lege (g1)11]-

+ Yk
e
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Rearranging the above inequality,

h h
ol — | < e _m s Mmoo mys
’VJ,kH% ye'll < b + o H% Y1 |, 6—1 + hn+hm||‘rj71 Ui 19i-1.k
+4jCn10|s] — | + g poro (T, 7, P(E] )sn, — (UE e [lpe

7j—1

1
+ ’%’,k{g (@ —yg') + EolG (s}, (TF)sn, Lsn (75))

m —m —-m ~ 1 n m
= GO @ )eps L (GO + 3 (wod = Dgllzg = yill

Therefore

Yikllef =y (1 — wo)

< — 2™ =y A e M e — ™A
> hn+hm||xj yk—1‘|%,k 1+ hn+hme7’1 Yk ||7g 1.k
+ Cuols] — " [, + oro(F, 7 )l (T )sr, — W )ep, llpe

+ Akl =yt o(G(sT, (ZF)sn, Lan(T5)) — G (g Degrs Ly (1°))))e-

J

We note that (1 —wo)™ 14, < 1since 0 < 4,5 < max{l—why, 1 —why,} <
1 — wo < 1. Dividing (1 — wo) and letting A — 07 in the above inequlity,
then we obtain the desired result. O

Lemma 4. Let m and n be positive integers and let {27'}7_, {z]"}}L, be

constructed as in Theorem 1, for (FDE,¢), which described in Lemma 3.
Let un(t) = 2 (t) and u,,(t) = z'(t). Then there exist constants Cia, C5
and a positive sequence {ey, y, } With limy, o0 €p,m = 0 such that

(1 = wha Y (1 — why)H20 — 27|
< Ci5Dji+ Ej+ jhn(Ci5Djk + €nm)), (1)

for j = 0,1,...,n and k = 0,1,... ,m, where the sequences {D,;} and
{E;} are defined by

Dj,k = {(t? - tZ”)Q + hnt? + hmt}?}l/2

and

J
Ej=Cr2) [ sup |lua(t) = um(t)l| - ),

respectively.
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Proof. By Lemma 3, we have
(1= whn )’ (1 = whin)*|12} = 27|

hn ] - n m
Sm(l — why, Y (1 — wh )" 1|20 — 24|

L fm
hn + hm

hnh o _
o he 1; {Culty =t +ro(r, 7 P)[(Z-1)en, — (Z 1) llPe
n m

+ (=) = 2 GG, ()i, Lin (27) — G (2 )i, L (Z57))) +
for 1 <j<n,1<k<m. By (Gl1,1), (G1,2) and Lemma 2, we have
G L (22)) — GO () L ()

<G, () ey Len (27)) — G, (7 e, Ly (20)]
+ G, (Z" ), Lem (27) — G, (27 ) e, L (25 |
< Galll(Z7)ep = (B llpe + 1L (25) = L ()| + 727, Gt — 43|

< Oy [sup ] |un(t) — um ()| + Cro([t] — 5" + hm)
te —r,t?

+ HLt;(Z;L) - Lt;ﬂ(é,’f)”] + ro(F, 04)’75? —

(1 — why P 7HL — whm)¥||2"_y — 2

+

where

1Z)er = (Z )l pe < [[(un)er = (um)erllpe + || (wm)er — (um)egrllpe

< sup [tn(t) = wm ()]l + Cro(|t] — ] + hm).
te fr,t;?

We observe that for 0 < ¢ < t;?,
[ Len (25) — L ()| < 1 Len (25') — L (Z7)|| + (| Lo (Z5) — Lege (27)

< (Pt — ] +Clt Fupt ]Hun(t) — um(t)]]-
E—r,?

Similarly, for 0 <7 <}, we obtain

[ Len (25) = L (2| < ma(P)[EF — 85|+ C1 sup|Jun(t) — um(t)]]-
te[—nt}]
Therefore
IG(E3, (2 L (23)) = G, (e, Lep (R

<Oy sup l[tn () = wm ()] + Cro([tF — [ 4 hom) + ro(F) (|7 — £7])
te —r,t;?

+O sup [[un(t) — um (B[] + 27, Ca)[t7 — 5"
te fr,t;?
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Also, we arrive at
1(Z7_1)en, — (EL)ee [l

< ?up ] [un(t) — um ()| + Cro([t] — 8] + hn + 2hi).
te —r,t;L

Put (1 — why)? (1 — why)* = v, and a;; = |2} — z;'[|. Then, we have

(1= why ) (1 = whin)*|1 25 = 27| = vjkax (2)
h hnh

+ ro(7, 7, 7)| [sup ] un(t) = um ()| + Cro([t] — &' + hn + 2hi)]
te fr,t?

+{C| Fup ] [un(t) = um (O] + Cro([t] — 8| + hm) + r1(7)[] — 7]
te —r,t;-’

+Ch [sup ] un(t) — um(E)||] + ra(7, Ca) |t} — t?!}
te —r,t;?

< M e s L
< hn+hm%’k 105 k 1+hn+hm% 1,kQ5—1,k
Pl

ﬁ{CBDj—Lk +Crz sup |lun(t) — um ()|l + enm},

te[—nt}]

where

Ci3=Ci1 + 7’0(?, T, f)Cm + 02(010 + 1 (f)) + T’Q(f, C4)
Cia = ro(F, 7, 7) + Co(1 4+ C1),
enm = Cizhn + Cro[r (70, 7, 7) (hn + 2hpm) + Cohypy).
Here we use the fact that
185 = 6] < (& — ") — hal 4 hn = [ty = 8] + hn < Dj_1k + hn.
On the other hands, from (A4)

n

(1= wha)l|zf = O < 127 = ha(=E = G, (g Ly () = $(0)|

+ hn|A(0,9)B(0)] + hnro([[(Z2 )81 [ Pe, |2 e, [[¢(0)]])

(It = 0[(1 + [A(0, 9)9(0)]) + [ (Zi1)en , — dllpc]
<[lzi1 = @O)[| + hallG(E, (2" )en, L (Z)) || + hn| A0, ¢)p(0)]

+ hpro(7, 7, 7)[T(1 4 |A(0, ®)p(0)|) + 27]
<|[zit1 = ¢(0) ||

+ ha[Cs + [A(0, 9)p(0)[ + 7o (7, 7, 7)(T'(1 + |A(0, $)(0)]) + 27)]
=21 — ¢(0)[| + Crahn,
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where Cyy = Cs+|A(0, 9)g(0)|ro (7, 7, 7) [T (14| A(0, 6)6(0)]) +27. Applying
this inequality for ¢ = 1,2,..., 7, we have

J
12} = $(0)]| < Crahy Y (1 — why) ™
=1
< Cra(Ghn)(1 — why) ™ < C14D;o(1 — why,) ™.

Thus ajo = (1 — whn)]Hz;‘ — qb(O)H < 014Dj70 < 015Dj70, fOI‘j == 0, 1, ey N,
where C15 = max{C14, C13}. In the same way, we see that ag < Ci5Dp .
for k =0,1,... ,m. This means that (1) holds for the pairs (7,0) and (0, k).
Assume that (1) holds for the pairs (5 — 1,k) and (j,k — 1). We want to
show that (1) holds for the pairs (7, k) as well. By (2),

hn, .
Vj k@ k Sﬁ[Cmqu + Ej + jhn(Ci5Dj k-1 + enm)]

m

him .
+ o [CsDiak + Ejm + (G = Dha(Crs D1 + enm)]
ho o,
T [Cr2 sup |un(t) = um(t)[| + C15Dj—1k + €nm)

hn + hm te[fr,t?]
<Ci5Dji + Ej + jhn(Ci5Dj 1 + enm)-

Here, we used
hn hm
—  D.. 4+
I e T

Consequently, we show that (1) is true for all (j,k) with 0 < 7 < n and
0<k<m. O

Dj_ 11 < Djy.

We are now ready for the proof of the existence of a limit solution of
(FDE,¢).

By the simlar method for the proof of Theorem 2 in Kartsatos-Liu [4],
we have the following theorem.

Theorem 2. The limit u(t) = limy, o un(t) exists uniformly on [—r,T]
and u(t) is a Lipschitz continuous function on [—r, T'| with Lipschitz constant
C1o. This function u(t) is called a “limit solution” of (FDE,¢).

Proof. Let {t]}, {t]'} be two partitions of [0, T, where t] = jh,, = j(T'/n),
j =01,...,n and ;' = khy = E(T/m), k = 0,1,... ,m. Let t €

(71, t?] N (¢ 1, t7]. Then

1t — 6 < [ =t + [t — 7] < hn + .
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By Lemma 4, we have
(1= wha) (1 = whE, [1tn () = ()] = (1 = why ) (1 = whin)¥ 22 = 25

J
< Cis{(hn + hn)® + (hn + b)) T2 + C12 > sup Jun(t) = wm(t)]| o

i—1 te[-mt}]
+ T{C15[(hn 4 hin)? + (A + ") TY? + €1 }-

We define the function F, ;,, as follows:

0, for t =0,
Fo(®) =450 [un(s) = un(s)], for ¢ & (¢, 17),
nm se[—r,t}]
for some [ =1,2,... ,n.

Fix t € (0,T]. Then t € (t]" ,,t}'], for some | = 1,2,... ,n. Thus

Fom(t) = max{ sup |lun(s) —um(s)|l, sup [lun(s) —um(s)}.
s€[—r,t] s€ftt]']

If s € [t,t]'], then by Lemma 2, we get

[un(s) = um(s)[| < llun(t) = um @ + [lunls) — un(®)]| + [[um(s) — um @)

< sup |un(s) — um(s)[| + 2C10hn + Cro(hn + hin),
se[—nt]

which yields

sup |[un(s) —um(s)l| < sup |Jun(s) = um(s)| + 3C10hn + Crohm.
Se[t,t?} sE[—r,t]

Therefore, we see that

Fom(t) < sup |up(s) — um(s)|| + 3C10hn + Crohm,
se[—r,t]

for every t € [0,T7]. Hence, for t € (t]_4,t7],

J J tr
CioY sup () —tim ()| n=C1z 3 /t Fo(7)dr
=1 7t

1—1 SE[-7t}]
t t;l
2012/ me(T)dT—l—Cm/ me(T)dT
0 t

t
<Chy / Sup [Jtn() — tim(s)]|dr
0

sE[—r,T]

+ 3C10C12Thy, + C10C12T hyy, + 27Ch2hy,.
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Here, we have used the fact that

tn tn
/ " Py (r)dr = / s un(s) — um(s) dr
t t

s€[—m,t7]
o
§/ 2rdz < 27h,.
t

It follows that

(1 = why ) (1 = whin)* 10 (8) = (8]
t
<G Cia [ sp[u1a() = ()]
0

SE€[—r,T]

for every t € (¢]_q,t7] N (8 |.7"], where

Snm =C15{(hn + hn)? + (R + o) T}/
+ T{C15[(hn + him)? + (A + hi) TV + €1 }
+ 3C10C12T hyy, + C10C12T Ry, + 27C1200,.

Thus, for every t € [0,7],

t
Vi kel tn (t) = wm ()] < Onym + 012/ sup ||un(s) — um(s)||dr.
0

s€[—r,T]

Taking n, m — oo in the above inequality,

t
T T JJun®) (] <Cra [ Em sup Juns) = un(s)

n,m-— 00 0 Mm—00 s€[—r,7]
By Grownwall’s inequality, we have

lim  sup ||up(s) —um(s)|| =0.
M=00 s —rt)

This implies that u,(t) converges to a function wu(t), t € [—r, T'], uniformly
on [—r,T]. Also,

[ut) = u(s)l] < Crolt —s|,  for t,s € [-r,T],

which proves the Lipschitz continuity of the function u(t) on [—r,T| with
Lipschitz constant Ctg. O
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3. The uniqueness of limit solutions and the existence of strong
solutions

In this section, from estimating the difference u(t) — a(t), where u and
@ are limite soluions of (FDE,¢) and (FDE,@), respectively, we study the
uniqueness of limit solution and the existence of strong solution in a reflexive
Banach space X.

Theorem 3. Let ¢, ¢ satisfy (¢1). If u, @ are limit solutions of (FDE,)
and (FDE,¢), respectively, then, for 0 < s <t < T, we have

lu(t) = a(®)|| < e {[lu(s) —a(s)] +"”o(7’>fi)/ luz = iz podz .

+/ (u(z) — (), G(z,uz, Ly(u)) — G(z, Uy, Lo(1)))+dz}.

Proof. By the definition of the limit solution, there exists an h,—

approximate solution u,(t) such that, for j =1,2,... ,n
n n
Ty — i

€ A(E), (1) )2 + G(sY, (F)er, Lo (),

hy,

zy = ¢(0) and limy,—oo un (t) = u(t), where hy, = s7—s7_; and u,(t) = 273 (1).
Similarly, there exists an h,,—approximate solution ,,(¢) such that

Y — Yrq
— € At (i) e + GGt (U e s L (1))
m

y6n = ¢(O) and llmm—>oo ’I:Lm(t) = ’&(t), where hm = tz‘ — t};’n—l and ’I:Lm(t) =
gm(t). Notice that

ly + Az|| — ||yl
< =
(v, 2)+ < (Y, 2)x 3

2|y — ull

< (o) + 1z — v +

1(@})sn_, =K ) llPc
= ll(un)sr_, = (@m)e | Po
< ||(un)sl 1 ("lm)s;’,lHPC + ||(am)8§11 - (am)tZLlHPC

J
< |[(un)s»_, — (ﬁm)s;’_l |pc + ClO(|5§L — 5’| + hn + 2him),

j—1



On the convergence of the method of lines 121

From Lemma 3, we have

. hn . I .
Y,k k Smaj,kfl’)/j,kfl + majfl,k’)/jfl,k
oyl
by, + b,
+ Cigls) — 10|+ 07 + 67" + plIs} — 1))
+ Cyoro(7, 7, 7) (hpn, + 2him) },

= (1 — why ) 7P(1 — why,)*9,

{To(f, T, F)H un s (am)s?_IHPC

Jj—1

where Cg = C11 + Cioro(7, 7, 7), j
07 = (@ —a(sy), G(s}, (] )sn, Len (T])) — G(s}, dsn, Lon (1)) 5
= (un(s}) — a(s}), G(s} ( n)st, Lsn (un)) — G(s§, dsn ,sz n (@),

op =GR (U)o, Ly (UE')) — GUE', g, L (@) + Xlly;T — ()|

}

A A~ m o~ ~ 2 m ~ m
= |G(t%", ()i, Ly () — G(83", G, L (4)) || + XHyk —aty)|l
and

plt) = sup [2als) — a(r)]| + G, @, Lu(@)) — Glr iy, Ly (@)

js—r|<t A
t€1[0,7).

Notice that p(t) is a nondecreasing function on [0,7]. For p € {0,1,... ,n},
qge{0,1,... ,m},let j=p,... ,n, k=gq,... ,m. Then
5= 671 < 1(55 — ) = (= ) = Bl + |55 = 7]+ D
< Cjorg + sy =t + hn,

where D] k= {[(s? — 1) — (7 —tm)]* + (8] —sp)hn + (7" —17") B }/? and
Cng = DJ kTt D o

Let 0 € (0, T/ 2) and assume that n and m as sufficiently large so that we
have max{hy,, h,,} < 0. Then, by the proof of Lemma 2.4 of Kobayashi [7],

plsj —t;'l) < T\ |87 — '] = hnl + p(20)
p(I’ n_m
< (01 1 — 1) + p(20).
Thus
. I, . P .
Y5,k Smaj,kflﬂ)/j,kfl + majfl,k’}/jfl,k (4)
hphm

m{m(ﬂ )| (un)sp_, = (um)sr_, llpe
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T
+ (ot Bt 1 - )
+p(20) + 07 + 0" + 2C16(hn + him) }-
From (A4), we obtain,
(L —why)lzf — x| <||l2f_y — 2yl + hal[G(EF, (25 )en, Len (25)) ]
T hal A, (@) )l
+ hpro(7, T, f)“s? — Sg|(1 + Cs + Cs) + Cip + Crohn]
<llaf_y = zpll + hal Alsy, (Tp_1)sn_ )|
+ 016’5? - Sg|hn + hn0177
where C17 = Cs + C1oTro(7, 7, 7). Hence, we have
(1 = wha Y2 — 27|
Jj—p—1
< ha{(JA(sy, (Fp_1)sn )apl +Cro)(f =p) +Crr Y |sf—; — spl}
i=0

< |8} — sp|(JA(sy, (Zp)en)zp| + Ci7) + Chs|s} — ]
< Cj4Chs,

where C1s = [A(sy, (Zp)sp)2p| +Cr6+Crr+|A(sy, (2g") sy )z |, which yields

(1= why ) lJa — g < (1= wha)i Pl — a2
+ (1 — wha) " Pllap — yil| < Cis - Clg + g — yi|l,
and similarly,

(1 — whan) |2 — yi2]| < C1sCppe + 2 =yl |-

We claim that for p € {0,1,...,n} and ¢ € {0,1,...,m}, we have the
estimate

(1 = whp )7 7P(1 = whan)* U2 — gl < |2 — ¥l + C10Ck (5)
J k J
+ 6 hn + > 0 e +10(F 7)Y (un)sn | — (um)sr | pohn
i=p i=q i=p

+ jhal(67 p(T) + C10)(Cik + |5y — t5']) + p(26) + Crg(hn + hum)],

provided that j = p,...,n, k = q,... ,m, where C19 = max{2Cy¢, Cis}.
We know that (5) is true for p < j < n and k = ¢. By the same proof,
(5) holds also for j = p and ¢ < k < m. To apply induction, let us assume
that (5) holds for the pairs (j — 1,k), (j,k — 1), where p+ 1 < j < n and
g+ 1<k <m. Applying (4) and using

h hom

n
Gy < G
o B T B RS S
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we have (5). By (4),
(1 — why ) 7P(1 — whp)" |2 — 4| = aj ik

< n ~ hm ~

S aj,k—ﬂj,k—l-Fih h aj—1,kVj—1k
n m n m

ol

m{TO(f’ T, F)H(un)s;‘ 1 (Um)s ||PC

128

T A
(oot PO Oyt 15— E7D) 4 pl26) + 67 4 87 + 20 + )}

0
k—1

—llzy — gl + C19C; k- 1+Z§”h +Z§mh

i=p i=q

hn,
_h + hin

J
+ro(F, 7, T) Z ||(un)s;11 - (um)sgll lpchy
i=p
p(T)

+ ihal(Z57 + C1o) (G + 5 = B71) + p(26) + Cig (o + )]}

han = n d sm
S e LA H+clgcj1,k+§)5ihm+;ai i

+7“0 77 r,Tr ZH Un st T )S?_alchn

p(T )

+ (= Dhn[(—= + Cr9)(Cj—1,e + |5y — 13"]) + p(26) + Cro(hn + him)]}

d

hh_:Lh {TO( )”(un)s? 1 (um)s HPC

T .
(oot POy 15— D)+ p(26) + 67 + 87 + 25 + hn)}

4]

n hom,
<llzp — vyl + Cro{

c
A S .

hn,
o + o Ciminl

J k
+ D 0 A Y 0 i + 1o (7, T [ (un) s, — (um)sr |l pe

i=p i=q

p(T)

+ jhn[(—— + C19)(Cj i + ’SZ — t;n‘) + p(26) + Cr9(hpn + hm)]-

]

We have shown that (5) holds for the pair (7, k). Therefore, (5) holds for

p<j<nand ¢<k<mwithpe{0,1,... ,n}and ¢ ={0,1,...,
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Now, we prove (3). We consider points s € (s,_y,s,] N (t511,t5'] and

t € (s]_q, 871N (17", 7). Letting m — oo and n — oo in (5), we get

lu(®) = ()l <l (1= wha)? (1 = why) 1) (6)

J k
Aluts) = @)l + i S0 07k + T Y057k

i=p i=q

;
-+Tdfﬁiﬁnﬁghn§:\Kuﬁhgl—(uquJHPchn4-Tp@5H,
i=p
for every 6 € (0,7'/2). Since
j j
lim Y 67k, = Hm > Ay (un(s)) — i(s}), G(s}, (tn)sn, Lo (un))

n—00
i=p i=p

- G(sm, ﬁs?, len (ﬁ)>,\

_ / () — i(r), G tr, L (1)) — G(r, itry Lo (0))]ndr,

k k
1=q

i=q =

~ ~ 2, . m ~ (1M
= G G, Loy (W) + 1@ (87) — a(t)|] = 0,

and
J t
Jim 37w, = (e lechn = [ s =rllpcdr
i=p
letting § | 0 and then, as A | 0 in (6), we obtain the desired result. ]

Theorem 4. There exists a unique limit solution of (FDE,).

Proof. Let u, 4 are two limit solutions of (FDE,¢). From Theorem 3,
t
[u(t) — a(t)]| <e*T{ro(r, T, 77)/ lur — dr|| podT
0

t
+/ |G(7, ur, Ly (u)) = G(7, Gir, Lo (@))||d7},
0
which yields

t
u(t) —a(t)| < VT (ro(F, 7, f)+02+0102)/ (1+Cy+ C1C)||u — G| -dT.
0
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Moreover, for each ¢t € [0,7], the above inequality holds and so
t
i = ally < 22T (ro (7, 7, 7) + Cs + C1C5) / lu — @], dr.
0

Applying the Graonwall’s inequality, v = 4 on [—r,T]. This proves the
uniqueness of the limit solution for (FDE,¢). O

Lemma 5. Let u(t) be a limit solution. Then, we have the following in-
equality

Ju(t) = 2| — [lu(s) — =] S/:{W(T) —2,G(Tur, Lr(uw) +y)+ (7)
+wllu(s) — x| +0(7,8) pdr
for 0 <s<t<T,ye A(B,ug)z, B €[0,T], where
0(r,8) = ro(r, 7, [lz[)) - (1 + [lyll + Cro)l7 — BI.

Proof. Let u,(t) be an h,—approximate solution with lim,_ . u,(t) =
u(t). Then there exists v € A(t], (%] )t" )z} such that
(2] =) = (221 — @) = ha (G (L7, (2] )er, Len (27)) + 05).-

J J
Then

I = ol = o =2l (= =)~ e ()

<(z 27— T, 2] =z 1=
=hn(zj —z,G(t}, (2} )en, Len (2])) + vff) -
<h,, ( —z,0] — y)—

+ hn (2 — @,y + G}, (25 )en, Lin (Z5))) +
for any y € A(B,ug)x, B € [0,T]. By (A2), we arrive at

<Zn -,

7 —vf —y)- <wllzf =zl +ro(ll(Zn)e lpes lugllpos [1])

(12 = Bl +[lyl) + H(Z?_ﬂt;gl —ug|| pc]
and
H(gy)t?ﬂ - uﬂHPC :H(Un)t” 1 U,@Hpc

< sup un(ti_g +6) —un(8+0)
0e[—r,0]
+ sup fua(B+6) —u(B+0)
0e[—r,0)

<Choltj — Bl + 2C10hn + [[un — ull7.
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Combining this with (8), we have
125 = 2l = llzj1 — || <hpwl|2] — || + horo(7, 7, ||2]])
[It7 = BI(1 + llyll + C1ro) + 2C10hn + [|un — ul|7]
+ b (2] — 2, G(t], (2] )en, Len(2])) + y)+-

Then, we obtain

J
127 — 2l = ll2i — 2 < > hn{(ef — 2, GEF, (Z)er, Ln (31) + y)+
i=k+1

+wl|z — x| + 0L}, B) + 2ro(7, 7, ||z]]) Crohn
+ To(f, T, HxH)Hun - UHT}7
where 0(t2, ) = ro(r, ., |2 l)(1 + 1yl + Cro)|£F — . Now, let 5 € (6, 7]
]

and ¢ € (t]_y, tﬂ and let n — oo to obtain the desired result.

Theorem 5. Let X be reflexive. Then (FDE,¢) has a strong solution.

Proof. By Theorem 2, there exists a limit solution u(t) of (FDE,¢) which
is Lipschitz continuous with Lipschitz constant Cyg on [—r, T|. Thus, u(t) is
absolutely continuous on [—r,T|. Since X is reflexive, u(t) is differentiable
almost everywhere on [0,7]. Now, let u(t) be differentiable at t = ¢y, and
h > 0. Letting s = 3 =tp and t =ty + h in (7), we have

Jutto + ) —all  Ju(to) ~

to+h
< / {(u(r) — 2, G(1,ur, Ly (w) + yy +w|u(r) — x| + 0(7, o) }dT,

to
for y € A(to, ut,)x, where 0(7,to) = ro(7, 7, [|z||)(1 + [|y|| + C10)|T — to.
Dividing by h and then letting A | 0, we know that

(u(to) — =, u'(to))+ < wllu(to) — x|l + (u(to) — x, G(to, ury, Lty (w)) +y)+

Thus

(u(t) — 2, (u (to) — Gl{to, g, Liy () — wulty)) — (y — wa)) - < 0.
By the maximality of A(tp,uy,), we have

u/(tO) € A(to, uty)u(to) + G(to, ute, L ().

This means that our limit solution is actually a strong solution. ]

Remark 1. Under the condition (A2) with |t — 7| = |h(t) — h(7)|, where
h :[0,T] — X is continuous, we have the unique uniform continuous limit
solution for (FDE,¢) eventhough the estimate is complexive.
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