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Abstract. A functional equation related to a problem of linear depen-
dence of iterates is considered.

1. Introduction

The polynomial-like iterative functional equation

λ0f
0(x) + λ1f

1(x) + ...+ λnf
n(x) = F (x), x ∈ X,

where X stands for a real or complex linear space and fk denotes the k-th
iterate of the unknown function f : X → X, i.e., f0(x) = x for x ∈ X and
fk+1 = f ◦ fk (here ”◦” denotes the composition of functions) is discussed
extensively, cf. [1]−[11]. An important special case of this equation is

fn(x) = an−1f
n−1(x) + an−2f

n−2(x) + ...+ a0x, x ∈ X, (1)

where a0, . . . an−1 are real or complex numbers. This functional equation
can be interpreted as linear dependence of iterates of f . In 1974 Nabeya
[8] discussed (1) for n = 2 and X = R in detail by considering its charac-
teristic equation. However Nabeya’s idea appears to be difficult to apply in
solving equation (1) for n ≥ 3. During the 26th International Symposium
on Functional Equations held in Spain in 1988 the first author presented
the result [6] that the solutions of (1) for n = k are solutions of (1) for
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n = m, m ≥ k, if the characteristic polynomial of the lower order equa-
tion exactly divides that of the higher order one. This statement establishes
a useful relation in the class of iterative equations of type (1), but until now
the proof was not published. In this paper an elementary proof is presented.
Furthermore, based on this result some conclusions how the solutions to be
ruled by the roots of the relevant characteristic polynomials are given.

2. Characteristic equations

Following Euler’s idea for differential equations, we formally consider a
linear solution

f(x) = rx, x ∈ X,

of the equation (1) where r ∈ C is indeterminate. From (1) we have

rn − an−1r
n−1 − ...− a1r − a0 = 0. (2)

Here (2) is called the characteristic equation of equation (1), its roots are
called the characteristic roots, and the left-hand side of (2), denoted by
Pn(r), is called the characteristic polynomial of equation (1). By the well
known relations between roots and coefficients of polynomials equation (1)
is equivalent to

fn(x)− (
n∑
i=1

ri)fn−1(x) + (
n∑
i<j

rirj)fn−2(x) + ...+ (−1)nr1r2...rnx = 0
(3)

for x ∈ X, where r1, r2, ..., rn are n complex roots of the polynomial Pn. Let
Fn(r1, r2, ..., rn)f denote the function of the left-hand side of (3) and call it
n-form of (3). The n-form is uniquely determined by given r1, r2, ..., rn ∈ C.

Lemma 1. For fixed r1, r2, ..., rn+1 ∈ C, if Fn(r1, r2, ..., rn)f = 0 then

Fn+1(r1, ..., rn, rn+1)f = 0.

Proof. Since Fn(r1, r2, ..., rn)f = 0, i.e., f satisfies equation (3), we have

fn+1(x) = fn(f(x)) = (
n∑
i=1

ri)fn(x)− (
n∑
i<j

rirj)fn−1(x) + ...

+(−1)n+1r1r2...rnf(x), x ∈ X.
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Thus, for all x ∈ X, the (n+ 1)-form satisfies

Fn+1(r1, ..., rn, rn+1)f(x)

= fn+1(x)− (
n+1∑
i=1

ri)fn(x) + (
n+1∑
i<j

rirj)fn−1(x) + ...+ (−1)n+1r1r2...rn+1x

= (
n∑
i=1

ri −
n+1∑
i=1

ri)fn(x)− (
n∑
i<j

rirj −
n+1∑
i<j

rirj)fn−1(x)

+ ...+ (−1)n+1r1r2...rn+1x

= −rn+1f
n(x) + rn+1(

n∑
i=1

ri)fn−1(x)− rn+1(
n∑
i<j

rirj)fn−2(x)

+ ...+ (−1)n+1r1r2...rn+1x = −rn+1Fn(r1, r2, ..., rn)f(x) = 0.

Now we can prove the result presented in [6].

Theorem 1. Suppose that

Q(r) = rk − bk−1r
k−1 − ...− b1r − b0,

P (r) = rn − an−1r
n−1 − ...− a1r − a0,

are polynomials, where r ∈ C, k ≤ n, and that Q|P , i.e., P is exactly
divided by Q. If a function f : X→ X satisfies the functional equation

fk(x) = bk−1f
k−1(x) + bk−2f

k−2(x) + ...+ b0x, x ∈ X, (4)

then f satisfies functional equation (1), i.e.,

fn(x) = an−1f
n−1(x) + an−2f

n−2(x) + ...+ a0x, x ∈ X.

Proof. Let r1, r2, ..., rn be complex roots of P . Since Q|P we may assume
without any loss of generality that r1, ..., rk, k ≤ n, are roots of Q. From
the definition of Fk and (4) we have

Fk(r1, r2, ..., rk)f = 0.

By Lemma 1, the function f also satisfies

Fk+1(r1, ..., rk, rk+1)f = 0.

Thus, by induction, we can prove easily that

Fn(r1, r2, ..., rn)f = 0,

that is, f satisfies equation (1).
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Remark 1. Equation (1) of order n has a solution which does not satisfy
the equation (4) of order k if Q|P but Q 6= P .

In fact, if all roots r1, r2, ..., rn of P are real and only r1, r2, ..., rk, k < n,
are roots of Q, then f(x) = rix, x ∈ X, i = k+ 1, ..., n, satisfies (1) but
is not a solution of (4).

Remark 2. Let X = R and suppose that the coefficients in equation (1)
are real. If r0 is a complex root of the characteristic polynomial Pn with
imaginary part =r0 6= 0, then all solutions of the real 2-order iterative
equation

f2(x) = 2<r0f(x)− |r0|2x,
where <r0 denotes the real part of r0 and |r0| denotes the modulus of r0,
satisfy equation (1).

This assertion is a consequence of Theorem 1 and the fact that the con-
jugacy r̄0 of r0 is also a root of Pn.

3. Iterations of solutions

For convenience, let Fn−1(r1, ..., řk, ..., rn)f represent the (n− 1)-form of
(3) determined by n− 1 characteristic roots r1, ..., rk−1, rk+1, ..., rn.

Theorem 2. Suppose that the characteristic polynomial Pn in (2) has n
pairwise different roots r1, ..., rn and that f : X → X is a solution of fuc-
tional equation (1). Then for any integer m ≥ 0,

fn+m =
A11

∆
rm+1

1 g1 +
A21

∆
rm+1

2 g2 + ...+
An1

∆
rm+1
n gn, (5)

where
gk := Fn−1(r1, ..., řk, ..., rn)f, k = 1, 2, ..., n,

and ∆ and Ak1, k = 1, 2, .., n, denote respectively the determinant and
algebraic adjuncts of the matrix

A =


1−

∑
i6=1 ri

∑
i<j, 6=1 rirj ... (−1)n−1r2r3...rn

1−
∑

i6=2 ri
∑

i<j, 6=2 rirj ... (−1)n−1r1r3...rn
..... ... ...
1−

∑
i6=n ri

∑
i<j, 6=n rirj ... (−1)n−1r1r2...rn−1

 . (6)

Here
∑

i6=1 and its like denote the summations with respect to the indexes
from 1 to n with some shown restriction.
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Proof. Write equation (3) in the equivalent form

fn − (
∑
i 6=n

ri)fn−1 + (
∑

i<j,6=n
rirj)fn−2 + ...+ (−1)n−1r1r2...rn−1f

= rnf
n−1 − rn(

∑
i6=n

ri)fn−2 + ...+ (−1)n−1r1r2...rnf
0.

By the definition of gk, with k = n, we have

gn ◦ f = rngn.

Thus, for every non-negative integer m,

gn ◦ fm+1 = rm+1
n gn,

that is,

fn+m − (
∑
i 6=n

ri)fn+m−1 + ...+ (−1)n−1r1r2...rn−1f
m+1 = rm+1

n gn,

is a linear equation for fn+m, fn+m−1, ..., fm+1. Similarly, for each fixed
k, k = 1, 2, ..., n − 1, we get another linear equation. Thus we obtain a
system of n linear equations, expressed by

AF = G,

where A is a matrix defined by ( 6), F and G are transposes of the vectors
(fn+m, fn+m−1, ..., fm+1) and (rm+1

1 g1, r
m+1
2 g2, ..., r

m+1
n gn), respectively. Ap-

plying repeatedly elementary linear transformations on the rows of A we
obtain

∆ = detA =
n∏

i<j,=1

(rj − ri) 6= 0,

i.e., A is invertible. Now formula (5) is a direct consequence of Cramer’s
rule.

Corollary 1. Suppose that the polynomial Pn in (2) has n pairwise differ-
ent roots r1, ..., rn and that f : X→ X is a solution of a k-order equation of
the form (1) whose characteristic polynomial Qk exactly divides Pn. Then
fn+m is a sum of the suitable k terms which appear in (5).

Proof. Since Qk|Pn, we may assume without any loss of generality that
the first k numbers r1, r2, ..., rk are the k roots of Qk. Thus the function f
satisfies the equation Fk(r1, r2, ..., rk)f = 0. By Theorem 1,

Fn−1(r1, ..., rk, ..., ři, ..., rn)f = 0, i = k + 1, ..., n,
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that is, according to the notations in Theorem 2, gi = 0, i = k + 1, ..., n.
By Theorem 2,

fn+m =
A11

∆
rm+1

1 g1 +
A21

∆
rm+1

2 g2 + ...+
Ak1

∆
rm+1
k gk, m ≥ 0,

which completes the proof.

Remark 3. It is easy to verify that a solution f : X → X of ( 1) is one-
to-one if a0 6= 0; if moreover X = R and f is continuous then it is strictly
monotone and onto. If a0 6= 0 then, by (2), the characteristic polynomial of
equation (1) has no zero root.

Obviously, if a0 6= 0 and f is onto then equations (1) and (3) are equiva-
lent, respectively, to

f−n(x) = −a1

a0
f−(n−1)(x) + ...− an−1

a0
f−1(x) +

1
a0
x, x ∈ X, (7)

and

f−n − (
n∑
i=1

si)f−(n−1) + (
n∑
i<j

sisj)f−(n−2) + ...+ (−1)ns1s2...snf
0 = 0,

(8)

where f−k denotes the k-th iterate of f−1 and si = r−1
i , i = 1, 2, ..., n. In

fact, in this case f is invertible, maps X onto itself and satisfies (1). Usually
(7) and (8) are called the dual equations of (1) and (3), respectively. The
following result is the dual counterpart of Theorem 2.

Theorem 3. Suppose that the hypotheses of Theorem 2 hold. If f is onto
and a0 6= 0 in (1) then, for any integer m ≥ 0,

f−(n+m) =
Ã11

∆̃
sm+1

1 g̃1 +
Ã21

∆̃
sm+1

2 g̃2 + ...+
Ãn1

∆̃
sm+1
n g̃n,

where g̃i, ∆̃ and Ãi1, i = 1, 2, .., n, are just modified gi,∆ and Ai1, i =
1, 2, .., n, defined in Theorem 2 where rj is replaced by sj , j = 1, 2, ..., n,
and f is replaced by f−1.

4. Some properties of solutions

Assume that X is a normed space, a0 6= 0 and that the characteristic
polynomial of equation (1) has n pairwise different roots r1, r2, ..., rn.

Corollary 2. Let f : X→ X be a continuous solution of equation (1).
10 If |rk| < 1 for all k = 1, ..., n, then fk approaches 0 as k → +∞;
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20 If f is onto and |rk| > 1 for all k = 1, ..., n, then fk approaches 0 as
k → −∞;

30 In both cases 0 is a unique fixed point of f .

Proof. Letting m → +∞ in (5) gives 10. Similarly 20 is a consequence of
the formula in Theorem 3. To prove 30 assume that f(x0) = x0 for some
x0 6= 0. From (3),

x0 − (
n∑
i=1

ri)x0 + (
n∑
i<j

rirj)x0 + ...+ (−1)nr1r2...rnx0 = 0,

that is,
∏n
i=1(1− ri) = 0. Thus at least one of ri, i = 1, 2, ..., n, would be

equal 1. This contradicts the hypotheses in 10 and 20. Therefore f has no
non-zero fixed point.

Now the relation f(0) = 0 is an obvious consequence of the continuity of
the function f .

In the next result we assume that X = R.

Corollary 3. Suppose that f : R→ R is a strictly increasing and contin-
uous solution of equation (1). The following results are true.

10 If −1 < r1 < ... < rn−1 < 1 < rn or r1 < −1 < r2 < ... < rn < 1, and
if f(x) < x for all x > 0 and f(x) > x for all x < 0, then f satisfies

Fn−1(r1, ..., rn−1)f = 0 or Fn−1(r2, ..., rn)f = 0.

20 If < r1 < ... < rn−1 < −1 < rn or r1 < 1 < r2 < ... < rn, and if
f(x) > x for all x > 0 and f(x) < x for all x < 0, then f satisfies

Fn−1(r−1
1 , ..., r−1

n−1)f−1 = 0 or Fn−1(r−1
2 , ..., r−1

n )f−1 = 0.

Proof. By similar arguments as in the last corollary it is easy to show that,
in both cases, 0 is a unique fixed point of f in R. To prove 10 assume that
−1 < r1 < ... < rn−1 < 1 < rn and take arbitrary x > 0. Since f is
increasing, we have

x > f(x) > f2(x) > ... > fk(x)→ 0, as k → +∞, x > 0.

Similarly, for arbitrary x < 0, we have

x < f(x) < f2(x) < ... < fk(x)→ 0, as k → +∞, x > 0.

By Theorem 2, gn vanishes, i.e., Fn−1(r1, ..., rn−1)f = 0 because |ri|k →
0, i = 1, 2, ..., n − 1, and |rn|k does not as k → +∞. Similarly, applying
Theorem 3, we can prove 20.
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