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Abstract. It is proved that every measurable, non-vanishing cocycle
defined on the product of (0,∞) and an arbitrary compact metric space
is continuous. Some other sufficient conditions for continuity of a cocycle
are also given.

Consider functions F satisfying the translation equation

F (s+ t, x) = F (t, F (s, x)) (T)

and real or complex valued solutions of the equation

G(s+ t, x) = G(s, x)G(t, F (s, x)). (G)

The two functions F and G satisfying (T) and (G), respectively, are known
as an abstract automaton (see [11]). The equation (G) occurs also (in the
additive form) in ergodic theory for changing velocity in flows (see [15]). It
plays a fundamental role in solving the problem of embeddability of linear
functional equation (see [13], [12], and [5]) and is used for a characterization
of some semigroups of operators (see [1], [7], and [17]). General solutions of
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(G) are well known [11] and there are some results concerning measurable
and continuous solutions (see [8], also [1] and [5]).

In this paper given a compact metric space X and an arbitrary function
F : (0,∞)×X → X (not necessarily solution of (T)) we are concerned with
solutions of (G) defined on (0,∞) × X which are continuous with respect
to the second variable. The main result of the present paper (see Theorem
1 below) states that such a solution of (G) non-vanishing and measurable
with respect to the first variable is continuous. The effect ”measurability
implies continuity” is well known in iteration theory and functional equa-
tions in several variables. Regarding the first field, the reader is referred
especially to the results concerning solutions of the translation equation
(T) defined on the product of (0,∞) and an arbitrary compact metric space
by M. C. Zdun for one-valued functions ([19; Theorem 1], cf. also [18; The-
orem 1.1]), and by A. Smajdor for multifunctions with compact values [14;
Theorem 1.2]. They proved that such a solution of (T) measurable with
respect to the first and continuous with respect to the second variable must
be continuous. Moreover, one can also compare similar results for Borel
measurable semigroups of continuous functions mapping paracompact fi-
nite dimensional manifold into itself [3; Theorem 4] by P. R. Chernoff and
J. E. Marsden and results in operators theory, for instance in [6; Sec. 2]
by E. Hille and R. S. Phillips, and [2; Proposition 2.4.2] by P. R. Chernoff.
A lot of functional equations for which measurable solutions are continuous
(or even smooth) can be learned from pretty general papers due to A. Járai
(see, e.g. [9]). Some results of a similar type are contained in the paper [4]
by K.-G. Grosse–Erdmann, where the continuity of the solution is deduced
from pretty weak assumptions imposed on given functions in the equation
as well as on the solution.

Proving Theorem 1 we took pattern of the argument originally used by
M. C. Zdun in his paper [18] (cf. also [19]). To present it we will need some
notions and facts concerning measurability and integrability of vector-valued
functions.

In the whole paper X denotes an arbitrary compact metric space and K
is the set of all real or complex numbers.

Let D be a set of reals and Y be a metric space. A mapping ξ : D → Y
is called (Lebesgue) measurable if ξ−1(U) is Lebesgue measurable for every
open set U ⊂ Y . A measurable mapping of D into Y is called simple if
it has only finitely many values. If Y is separable then by [16; Theorem
1.9] a mapping ξ : D → Y is measurable if and only if it is the limit of
a sequence of simple functions. The latter is equivalent to the notion of
strong measurability considered in the monograph [6], in particular for a
separable Banach space Y . Moreover, observe that if Y is a normed space
and ξ : D → Y is measurable then the function D 3 t 7→ ‖ξ(t)‖ is Lebesgue
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measurable as a composition of a measurable and a continuous functions.
Consequently, we may also argue that a mapping ξ of D into a separable
Banach space Y is, by the definition, integrable in the Bochner sense if it
is (cf. [6; Theorem 3.7.4]) measurable and the function D 3 t 7→ ‖ξ(t)‖ is
Lebesgue integrable.

Denote by C(X,K) the set of all continuous functions mapping X into K
endowed with uniform convergence metric. It follows from the compactness
of X that C(X,K) is a separable Banach space (cf. [10; §22.III]).

We start with the following auxiliary fact.

Lemma. Let D be a set of reals at let ξ : D → C(X,K) be such that the
function D 3 t 7→ ξ(t)(x) is Lebesgue measurable for every x ∈ X. Then
the mapping ξ is measurable.

Proof. According to the separability of the space C(X,K) it is sufficient to
show that the counterimage of an arbitrary open ball in C(X,K) is Lebesgue
measurable. Fix a function f0 ∈ C(X,K) and a positive number r. Let E
be a countable dense subset of X. Then, due to the density of E,

ξ−1({f ∈ C(X,K) : ‖f − f0‖ < r})
= {t ∈ D : ‖ξ(t)− f0‖ < r}
= {t ∈ D : sup{|ξ(t)(x)− f0(x)| : x ∈ X} < r}
= {t ∈ D : sup{|ξ(t)(x)− f0(x)| : x ∈ E} < r},

whence, by the countability of E and the assumption, it is a Lebesgue
measurable set.

Let us accept the following definition. Given a function F : (0,∞)×X →
X, a solution G : (0,∞)×X → K of equation (G) is called a cocycle of F (or
simply a cocycle) if for every t ∈ (0,∞) the function G(t, ·) is continuous.
A cocycle G is said to be measurable if for every x ∈ X the function G(·, x)
is Lebesgue measurable.

Theorem 1. Let G : (0,∞) × X → K be a measurable non-vanishing co-
cycle. Then the mapping (0,∞) 3 t 7→ G(t, ·) ∈ C(X,K) is continuous. In
particular, the function G is continuous.

Proof. Let F : (0,∞) × X → X be a function for which G is a cocycle.
Putting f t := F (t, ·) and gt := G(t, ·) for t ∈ (0,∞) we can rewrite equation
(G) in the form

gs+t = gs · gt ◦ f s.
In particular, for every s, t ∈ (0,∞) we have gt ◦ f s = gs+t/gs ∈ C(X,K).

It follows from the Lemma that the mapping (0,∞) 3 t 7→ gt ∈ C(X,K)
is measurable. In particular, the function (0,∞) 3 t 7→ ‖gt‖ is Lebesgue
measurable.
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Let t ∈ (0,∞). Observe that for every x ∈ X we have by (G)

gt−s ◦ fs(x) = gt(x)/gs(x) for s ∈ (0, t).

Thus, by the Lemma, the mapping (0, t) 3 s 7→ gt−s ◦ fs is measurable. In
particular, the function (0, t) 3 s 7→ ‖gt−s ◦ fs‖ is Lebesgue measurable.

Fix t0 ∈ (0,∞) and α, β ∈ R such that 0 < α < β < t0. Choose an
arbitrary real number ε such that |ε| < (t0 − β)/2. Put a := (t0 − β)/2
and b := t0 − α + (t0 − β)/2 and observe that if t ∈ [t0 − β, t0 − α] then
t, t+ ε ∈ [a, b].

For every s, t ∈ (0,∞), we have by (G)

log ||gs+t|| = log ||gs · gt ◦ f s|| ≤ log(||gs|| · ||gt ◦ f s||)
≤ log(||gs|| · ||gt||) = log ||gs||+ log ||gt||.

Thus the function (0,∞) 3 t 7→ log ||gt|| is subadditive. Therefore, since it
is also Lebesgue measurable, in view of [6; Theorem 7.4.1] it is bounded on
every compact subinterval of (0,∞), so there exists an M > 0 such that

||gt|| ≤M for t ∈ [α, β] ∪ [a, b]. (1)

Then, by (G) and (1), we have

||gt0+ε − gt0 || =
1

β − α

∫ β

α
||gt0+ε − gt0 || ds

=
1

β − α

∫ β

α
||gs · gt0+ε−s ◦ fs − gs · gt0−s ◦ fs|| ds

=
1

β − α

∫ β

α
||gs · (gt0+ε−s − gt0−s) ◦ fs|| ds

≤ 1
β − α

∫ β

α
||gs|| · ||(gt0+ε−s − gt0−s) ◦ fs|| ds

≤ M

β − α

∫ β

α
||(gt0+ε−s − gt0−s) ◦ f s|| ds

≤ M

β − α

∫ β

α
||gt0+ε−s − gt0−s|| ds

=
M

β − α

∫ t0−α

t0−β
||gt+ε − gt|| dt,

that is

||gt0+ε − gt0 || ≤
M

β − α

∫ t0−α

t0−β
||gt+ε − gt|| dt. (2)

Now define

gt :=
{
gt, t ∈ [a, b],
0, t ∈ R \ [a, b].
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Since the mapping (0,∞) 3 t 7→ gt is measurable so is the mapping (0,∞) 3
t 7→ gt. Moreover,∫ t0−α

t0−β
||gt+ε − gt|| dt =

∫ t0−α

t0−β
||gt+ε − gt|| dt ≤

∫
R
||gt+ε − gt|| dt,

that is, by (2),

||gt0+ε − gt0 || ≤
M

β − α

∫
R
||gt+ε − gt|| dt (3)

for each ε satisfying |ε| < (t0 − β)/2. Further (cf. (1)) ||gt|| = ||gt|| ≤M for
t ∈ [a, b] and ||gt||=0 otherwise and the integral

∫
R ||gt|| dt is finite, whence

we infer that the function R 3 t 7→ gt is integrable in the Bochner sense.
Using [6; Theorem 3.8.3] we obtain

lim
ε→0

∫
R
||gt+ε − gt|| dt = 0

which due to (3) shows that

lim
ε→0
||gt0+ε − gt0 || = 0.

This means that the mapping (0,∞) 3 t 7→ G(t, ·) ∈ C(X,K) is continuous
at t0.

Observe that the continuity of the mapping t 7→ G(t, ·) means that the
function G is continuous with respect to the first variable, uniformly with
respect to the second one. Hence and by continuity of G with respect to
the second variable, we may infer that G is continuous.

Proposition 1. Let Ω be a set, F : (0,∞) × Ω → Ω be a function and let
G : (0,∞)× Ω→ K be a solution of equation (G). If limt→0G(t, x) = 1 for
every x ∈ Ω then the function G(·, x) is right continuous for every x ∈ Ω.

Proof. Fix x ∈ Ω and s ∈ (0,∞). Since limt→0G(t, F (s, x)) = 1, it follows
from (G) that

|G(s+ t, x)−G(s, x)| = |G(s, x)G(t, F (s, x))−G(s, x)|
= |G(s, x)| |G(t, F (s, x))− 1|

for every t ∈ (0,∞) which converges to zero whenever t→ 0.

Theorem 1 and Proposition 1 imply the following.

Corollary 1. Let G : (0,∞)×X → K be a non-vanishing cocycle. Assume
that limt→0G(t, x) = 1 for every x ∈ X. Then the mapping (0,∞) 3 t 7→
G(t, ·) ∈ C(X,K) is continuous. In particular, the function G is continuous.
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Proof. By Proposition 1 for every x ∈ X the function G(·, x) is right con-
tinuous so Lebesgue measurable and the assertion follows from Theorem
1.

Now we will consider positive cocycles.

Theorem 2. Let G : (0,∞)×X → (0,∞) be a cocycle. Assume that either
G < 1, or G > 1. Then for each x ∈ X the function G(·, x) is strictly
decreasing in the case G < 1, strictly increasing in the case G > 1 and the
mapping (0,∞) 3 t 7→ G(t, ·) ∈ C(X,R) is continuous. In particular, the
function G is continuous.

Proof. Let F : (0,∞)×X → X be a function for which G is a cocycle and
fix an x ∈ X. We will show that the function G(·, x) is strictly monotonic.
Let s, t ∈ (0,∞) and s < t. Then, using (G), we have

G(t, x) = G(s, x)G(t− s, F (s, x)).

Thus, if G < 1 then G(t, x) < G(s, x) and, consequently, G(·, x) is strictly
decreasing, and if G > 1 then G(t, x) > G(s, x) and G(·, x) is strictly
increasing. Therefore G is a measurable cocycle and it is enough to apply
Theorem 1 to complete the proof.

Proposition 2. Let Ω be a metric space, F : (0,∞)×Ω→ Ω be a function
and let G : (0,∞) × Ω → K be a solution of equation (G), and (t0, x0) ∈
(0,∞)×Ω. Assume that limt→0 F (t, x0) = x0, the function G(·, x0) is right
continuous at t0 and the function G(t0, ·) is continuous at x0. If there exists
limt→0G(t, x0) then either

G(t0, x0) = 0,

or
lim
t→0

G(t, x0) = 1.

Proof. Assume that there exists limt→0G(t, x0) =: e(x0) and G(t0, x0) 6= 0.
According to the right continuity of G(·, x0) at t0, continuity of G(t0, ·) at
x0 and equation (G) we have

G(t0, x0) = lim
t→0+

G(t0 + t, x0) = lim
t→0

G(t, x0)G(t0, F (t, x0)) = e(x0)G(t0, x0).

Therefore, since G(t0, x0) 6= 0 we have e(x0) = 1.

Using Theorem 2 and Proposition 2 we come to the following.
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Corollary 2. Let F : (0,∞)×X → X be a function and G : (0,∞)×X →
(0,∞) be its cocycle such that either G < 1, or G > 1. Then for every x ∈ X
there exists limt→0G(t, x). If, in addition, x0 ∈ X and limt→0 F (t, x0) =
x0 then limt→0G(t, x0) = 1 and G(·, x0) is a decreasing homeomorphism
mapping (0,∞) onto (0, 1) in the case G < 1 and G(·, x0) is an increasing
homeomorphism mapping (0,∞) onto (1,∞) in the case G > 1.

Proof. Assume that G < 1. Then, by Theorem 2, G(·, x) is strictly de-
creasing and continuous for every x ∈ X. In particular, for every x ∈ X
there exists limt→0G(t, x).

Fix an x0 ∈ X and assume that limt→0 F (t, x0) = x0. Then, by virtue
of Proposition 2, limt→0G(t, x0) = 1. To complete the proof it is enough
to prove that limt→∞G(t, x0) = 0. To this aim, taking into account the
compactness of X, choose a strictly increasing sequence (sn : n ∈ N) of
positive integers such that the sequence (F (sn, x0) : n ∈ N) converges to
an x ∈ X. In particular, we have limn→∞ sn = ∞. Using equation (G) we
have

G(sn + 1, x0) = G(sn, x0)G(1, F (sn, x0)),

whence, due to the continuity of G(1, ·) at x,

lim
t→∞

G(t, x0) = lim
t→∞

G(t, x0)G(1, x).

Consequently, since 0 < G(1, x) < 1, we obtain limt→∞G(t, x0) = 0.
Now assume that G > 1. Then 1/G < 1. Moreover, 1/G is also a cocycle

of F so by the first part of the proof there exists limt→0 1/G(t, x). Hence
there exists limt→0G(t, x). In the same way we may infer that the last
statement of Corollary 2 holds.
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