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Abstract. The most prominent examples of (operator-) selfdecompos-
able laws on vector spaces are (operator-) stable laws. In the past
(operator-) semistability — a natural generalisation — had been in-
tensively investigated, hence the description of the intersection of the
classes of semistable and selfdecomposable laws turned out to be a chal-
lenging problem, which was finally solved by A.  Luczak’s investigations
[17].

For probabilities on groups, in particular on simply connected nilpo-
tent Lie groups there exists meanwhile a satisfying theory of decom-
posability and semistability. Consequently it is possible to obtain a
description of the intersection of these classes of measures — under
additional commutativity assumptions — leading finally to partial ex-
tensions of the above-mentioned results for vector spaces to the group
case.
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Introduction

The investigations of the limit behaviour of normalized products of inde-
pendent group-valued random variables were quite successful during the last
decades, as long as the i.i.d. case was considered. There the possible limits
are — on nicely-behaved groups — embeddable into continuous convolution
semigroups and it turns out that e.g. for simply connected nilpotent Lie
groups the limits correspond to limit laws of operator-normalized sums on
(finite dimensional) vector spaces. In particular stable and semistable laws
and their domains of attraction are well understood now. (See e.g. [6], [7],
[18], [20] and the references mentioned there, furthermore e.g. [10] for Rd).

In the non-i.i.d. situation new problems arise due to the non-commutati-
vity of the underlying group structure, the limit behaviour has to be handled
within the theory of convolution hemigroups. Therefore the analogues of
the important class of (operator-) selfdecomposable laws are only treated in
a few publications on non-Abelian groups (see e.g. [4], [13], [14], [15], [21]).
It turned out that, in contrast to the general situation in this particular case
quite satisfactory results are available. Again for simply connected nilpotent
Lie groups the limit behaviour is similar to the vector space situation.

Our aim is to continue and to improve these investigations: It is well-
known that for R or Rd semistable laws are in general not selfdecomposable,
hence the characterization of the intersection of these classes of limit laws
was for a long time an outstanding open problem. It is solved for vector
spaces by A.  Luczak in [17]. Following these investigations our aim is to
show that semistable selfdecomposable laws on a simply connected nilpotent
Lie group correspond to (strictly) operator-semistable selfdecomposable (or
operator Lévy’s) measures on the tangent space and vice versa. A first
result in this direction is proved in [4] assuming an additional restrictive
commutativity assumption, indeed for the more general class of semistable
and strongly ρ-decomposable laws. We show that in special situations —
including the semistable selfdecomposable case — the norming operators
may be chosen in such a way that this commutativity assumption is fulfilled.
Thus we obtain the complete analogue of A.  Luczak’s characterization for
simply connected nilpotent Lie groups.

1. Preliminaries

Let G be a locally compact group, letM1(G) denote the set of probabil-
ities on G, endowed with the topology of weak convergence. The convolu-
tion structure is defined as usual by

∫
G fdµ ∗ ν :=

∫
G
∫
G f(xy) dµ(x) dν(y),

µ, ν ∈ M1(G), f ∈ C0(G). For standard notations and more informations
on probabilities on groups the reader is referred e.g. to [8].
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Definition 1.1. Let µ ∈ M1(G). We define the left decomposability
semigroup of µ as Dl(µ) := {a ∈ End(G) : µ = ν ∗ a(µ) for some ν ∈
M1(G)}. For fixed µ and a ∈ Dl(µ) the set of left cofactors is defined by
Coflµ(a) = Cofl(a) := {ν ∈M1(G) : µ = ν ∗ a(µ)}.

Analogously we define the right decomposability semigroup Dr(µ) and
Dc(µ) := Dl(µ) ∩ Dr(µ) = {a ∈ End(G) : µ = νl ∗ a(µ) = a(µ) ∗ νr for
some νl, νr ∈ M1(G)}, as well as Cofr(a). To simplify notations we shall
frequently use the abbreviation D(µ) := Dl(µ) and Cof(a) = Cofµ(a) :=
Cof lµ(a).

In this paper we are mostly concerned with commuting cofactors, i.e. we
consider the subsets C(µ) := {a : µ = ν ∗ a(µ) = a(µ) ∗ ν} ⊆ Dc(µ) and
Cofcµ(a) := Cof lµ(a) ∩ Cofrµ(a). Furthermore, let DC(µ) :=

⋂
n∈NDc(µn).

Note that obviously we have C(µ) ⊆ DC(µ) ⊆ Dc(µ).
On Abelian groups, in particular on vector spaces this distinction is su-

perfluous, but our results for non-Abelian groups will depend heavily on
this commutativity assumption.

Note that on vector spaces G = V, if µ is infinitely divisible, the zero
set of the Fourier transform is empty and hence the cofactors are uniquely
determined by ν̂ = µ̂ ·(a(µ̂))−1. This is also the case on general groups if the
(operator-valued) Fourier transforms or convolution operators are injective.
See e.g. [13] and [14] where injectivity is supposed, see also [15] for simply
connected nilpotent Lie groups.

By abuse of language we sometimes adapt the notation ν(a) for cofactors,
regardless if uniquely determined or not.

Definition 1.2. Let ρ• := (ρt)t∈R ⊆ Aut(G) be a continuous automor-
phism group with additive parametrisation, ρtρs = ρt+s. Let ρ ∈ Aut(G).
A probability µ ∈ M1(G) is called ρ-decomposable if ρ ∈ D(µ), and µ is
called ρ•-decomposable if {ρt}t≥0 ⊆ D(µ), i.e. if µ is ρt-decomposable for
all t ≥ 0.

It is important to assume in addition that ρ (resp. ρ•) contracts µ, i.e.
ρn(µ) n→∞−→ εe (resp. ρt(µ) t→∞−→ εe). In this case we call µ strongly ρ-
decomposable (resp. strongly ρ•-decomposable or selfdecomposable).
I.e. we call µ ∈ M1(G) ρ•-selfdecomposable if there exists a continuous
additive one-parameter group

ρ• = (ρt)t∈R ⊆ Aut(G) such that (ρt)t≥0 ⊆ D(µ) and ρt(µ) t→∞−→ εe.

This is in particular the case if ρk(x) k→∞−→ e (resp. ρt(x) t→∞−→ e), x ∈ G
— a condition which will be supposed mostly in the sequel:
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Throughout we use the following notation: ρ (resp. ρ•) is contracting on G
or contractive if ρk(x) k→∞−→ e (resp. ρt(x) t→∞−→ e), x ∈ G.

On vector spaces (finite or infinite dimensional) strongly ρ-decomposable
laws are called strongly operator-decomposable, see [11], [23], [24]. For the
real line such laws were first studied in [16]. Strongly ρ•-decomposable laws
on Rd are called operator-selfdecomposable, equivalently — under fullness
assumption — measures of operator Lévy class. (See e.g. [10], [17], [25]
and the literature mentioned there. For groups only a few investigations
are available: [13], [14], [15], [4]; see in particular [21], [1] for related limit
laws.)

Proposition 1.3. a) Let µ be strongly ρ-decomposable with cofactors ν(k) ∈
Cof(ρk). Then ν(k) k→∞−→ µ (for any selection of cofactors).

b) Let µ be ρ•-selfdecomposable and ν(t) ∈ Cofµ(ρt), i.e. assume µ =
ν(t) ∗ ρt(µ), t ≥ 0. Then ν(t) t→∞−→ µ.

c) Conversely, let G be aperiodic, i.e. without non-trivial compact
subgroups. Let (ρt) be a continuous group ⊆ Aut(G). Furthermore, let
t 7→ ν(t) ∈M1(G) be a continuous solution of the cocycle equation ν(t+s) =
ν(s) ∗ ρs(ν(t)).

If ν(t) t→∞−→ µ then µ is selfdecomposable with (ρt)t≥0 ⊆ D(µ) and ν(t) ∈
Cofµ(ρt). In particular, ρt(µ)→ εe, t→∞.

Analogous results are obtained for right cofactors and right decompos-
ability semigroups (resp. for DC(µ)), and for commuting cofactors and
C(µ).[[

a) and b) are obvious consequences of the factor compactness theorem
([19]) respecting the contractivity of ρ and ρ•.
c) Let s > 0, t > 0. Then ν(t+s) = ν(s)∗ρs(ν(t)), whence limt→∞ ν(t+s) =
µ = ν(s) ∗ ρs(µ) follows for any fixed s. ν(s) s→∞−→ µ implies, again by
factor compactness, that µ = µ ∗ µ′ for any accumulation point µ′ ∈
LIM(ρs(µ)s→∞), and therefore, sinceG is aperiodic, µ′ = εe follows. Whence
the second assertion.

]]
Throughout LIM will denote the set of accumulation points.

2. Semistable strongly ρ-decomposable laws on groups

Let G be a connected locally compact group. Let µ ∈M1(G) be full, i.e.
the support of µ is not contained in a proper closed connected subgroup.
Let ρ ∈ Aut(G) be contracting. Let µ be strongly ρ-decomposable (and
hence D(µ) contains the discrete contracting semigroup {ρk : k ∈ N}).
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For sake of completeness let us repeat the following

Definition. A continuous convolution semigroup (µt)t≥0 = µ• is called
(strictly) semistable w.r.t. a ∈ Aut(G) and α ∈ (0, 1) – in short: (a, α)-
semistable – if a(µt) = µαt, t ≥ 0.

It is proved in [4] that on simply connected nilpotent Lie groups G, a
semistable continuous convolution semigroup µ• is uniquely determined by a
single measure µ := µ1. Hence semistability may be considered as a property
of a single measure µ as well as of a continuous convolution semigroup µ•.

Remark. Let Inv(µ) denote the invariance group Inv(µ) := {a ∈ Aut(G) :
a(µ) = µ}. It turns out to be essential that for simply connected nilpotent
Lie groups semistable laws µ not only generate uniquely determined contin-
uous convolution semigroups µ• with µ = µ1, but moreover, the invariance
groups Inv(µt) do not depend on t > 0, cf. [4].

Let µ• be (a, α)-semistable. Then µ = µ1 is strongly a-decomposable
with commuting cofactors.

[[
Indeed, let (µt) be the embedding continuous

convolution semigroup with µ = µ1. Then µ = µ1 = µ1−α ∗ µα = µ1−α ∗
a(µ) = a(µ) ∗ µ1−α. Hence a ∈ C(µ) and µ1−α ∈ Cofcµ(a). Moreover, a is
contracting since µ is full.

]]
On the other hand, if µ is selfdecomposable with (ρt)t≥0 ⊆ D(µ) (resp.

(ρt)t≥0 ⊆ Dr(µ)) then µ is ρt-decomposable for any t ≥ 0. But even on the
real line semistable laws are in general not selfdecomposable and vice versa.
In the following we obtain a description of full (a, α)-semistable and strongly
ρ-decomposable laws in analogy to the description obtained by A.  Luczak
[17] for operator-semistable selfdecomposable laws on Rd. On groups we
have to suppose the additional restrictive commutativity assumption

aρa−1 ∈ ρ · Inv(µ). (∗)

Let ia denote the inner automorphism ρ 7→ aρa−1 induced by a on
Aut(G). Then (∗) is equivalent to ia(ρ) ∈ ρ · Inv(µ). Since ia(Inv(µ)) =
Inv(µ) this yields ian(ρk) ∈ ρk · Inv(µ) for all k, n ∈ Z. (Note that ina = ian .)
Therefore, according to the remark above we have anρkµ = ρkµαn .

We start with a result proved in [4]. To make the paper more selfcontained
we include a proof.

First we need the following

Definition 2.1. Let G be a locally compact group, let µ• = (µt)t≥0 be a
continuous convolution semigroup in M1(G). Then the generating func-
tional A is defined as

〈A, f〉 :=
d+

dt
〈µt, f〉|t=0 = lim

t↘0

1
t
(〈µt, f〉 − 〈εe, f〉)
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for test functions f ∈ E(G). (For Lie groups G the appropriate space of test
functions is just E(G) = C∞b (G).) For details see e.g. [3], [8].

By GF(G) we denote the set of generating functionals ⊆ (E(G))′. For
A ∈ GF(G) and corresponding continuous convolution semigroup µ• we use
the notation Exp(tA) := µt, t ≥ 0.

For non-Abelian groups generating functionals play the role of the second
characteristic function (logarithm of the Fourier transform) in case of vector
spaces. In fact, if G = Rd then µ̂t = et·

bA, t ≥ 0, where Â denotes the
Fourier transform of the linear functional A ∈ (C∞b )′. By the theorem of
Hille-Yosida, also in the non-Abelian situation, generating functionals A
determine uniquely the convolution semigroup µ•:

Let D(G) denote the Schwartz-Bruhat functions — in case of Lie groups
D(G) = C∞c (G) — then f 7→ A ∗ f extends uniquely to the infinitesimal
generator of the C0-contraction semigroup of convolution operators f 7→
µt ∗ f on C0(G). For details the reader is referred to [8], [3].

The action of Aut(G) on measures is canonically extended: We define
a(A) for a ∈ Aut(G), A ∈ GF(G) by

〈a(A), f〉 := 〈A, f ◦ a〉 for f ∈ E(G).

µ• is (a, α)-semistable iff the generating functional A fulfils the relation
a(A) = α ·A. We call A semistable generating functional then.

Let G denote a simply connected nilpotent Lie group. Then we have

Theorem 2.2. Let µ be a full probability law on G which is (a, α)-semi-
stable and strongly ρ-decomposable with contracting automorphism ρ ∈ Dl(µ)
(resp. ρ ∈ Dr(µ)). Let µ• denote the corresponding semistable continuous
convolution semigroup with generating functional A and put µ1 = µ.

Assume further (∗) aρa−1 ∈ ρ Inv(µ).
a) Then we obtain for k ∈ N: A = C(k)+ρk(A), where C(k) ∈ GF(G)

is an (a, α)-semistable generating functional.
b) Conversely, assume A = C(k)+ρk(A), k ∈ N, where C(k) ∈ GF(G) is

an (a, α)-semistable generating functional and ρ is contracting, then A gen-
erates an (a, α)-semistable continuous convolution semigroup
µt := Exp(tA)t≥0.

c) If (as for vector spaces) in a) the convolution semigroups generated by
ρk(A) and C(k) commute for t ≥ 0, i.e. if ρk(Exp(tA)) and Exp(tC(k))
commute, then ν(ρk) = ExpC(k) are (commuting) (a, α)-semistable cofac-
tors of ρk, k ∈ N.

d) Conversely, let µ be strongly ρ-decomposable with contracting ρ ∈ D(µ)
(resp. ∈ Dr(µ)). Assume for all k ∈ N that there exist cofactors ν(ρk) ∈
Cofµ(ρk) (resp. ∈ Cofrµ(ρk)) which are (a, α)-semistable. (Commutativity
is not assumed.) Then µ is (a, α)-semistable.
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e) Analogous results are obtained for semistable selfdecomposable laws:
In this case, if we suppose

aρta
−1 = ia(ρt) ∈ ρt Inv(µ), t > 0, (∗′)

then A = C(t) + ρt(A), t ∈ R+, with (a, α)-semistable C(t) ∈ GF(G).

Proof. a) Let ρ ∈ D(µ) = Dl(µ). We have µ = ν(ρk) ∗ ρk(µ), k ∈ N. And
on the other hand an(µ) = µαn , n ∈ Z, hence µαn = an(ν(ρk)) ∗ anρk(µ) =
(according to (∗)) an(ν(ρk)) ∗ ρkan(µ) = an(ν(ρk)) ∗ ρk(µαn). I.e. an(ν(ρk))
is a ρk-cofactor of µαn , k ∈ N, n ∈ Z.

Define An := α−n ·(µαn−εe) ∈ GF(G). Then we have An
n→∞−→ A, and the

above representation yields: An = α−n ·(an(ν(ρk))−εe)+an(ν(ρk))∗ρk(An).
a is contracting since µ is full, hence an(ν(ρk)) n→∞−→ εe. Furthermore,
ρk(An) n→∞−→ ρk(A), whence we conclude A = C(k) + ρk(A) for some func-
tional C(k) ∈ E ′(G). An, ρ

k(An) and α−n · (an(ν(ρk)) − εe) are obviously
generating functionals (of Poisson semigroups), hence the limits A, ρk(A)
and C(k) belong to GF(G).

And (a, α)-semistability of A and (∗) yield: α · A = a(A) = a(C(k)) +
aρk(A) = a(C(k)) + ρka(A) = a(C(k)) + α · ρk(A). On the other hand,
obviously α · A = α · C(k) + α · ρk(A), whence a(C(k)) = α · C(k), k ∈ N,
follows. I. e. C(k) generates an (a, α)-semistable continuous convolution
semigroup.

b) A = C(k) + ρk(A) yields C(k) → A, since ρ is contracting. Semista-
bility of A easily follows since the set of full (·, α)-semistable laws (resp. of
semistable generating functionals) is closed in M1(G) (resp. in GF(G)), as
easily verified via the convergence of types theorem ([5]).

c) is obvious.
d) Let µ = ν(ρk) ∗ ρk(µ) and assume the cofactors ν(ρk) to be (a, α)-

semistable. ρ being contracting, we conclude ν(ρk) → µ (for any choice of
the cofactors, cf. Proposition 1.3). Semistability of µ follows again by the
closedness of the set of full (·, α)-semistable laws.

e) The proof for selfdecomposable laws and for right decomposability
semigroups and cofactors is similar.

For G = Rd, A.  Luczak [17] proved for full selfdecomposable laws the
existence of contractive operator semigroups (ρt = e−tQ)t≥0 commuting
with a, hence in particular fulfilling (∗′) above. We shall prove an analogous
result in Theorem 4.9.

Remarks 2.3. a) The following slight generalisation is easily verified:
Theorem 2.2 remains true if we replace the condition

(∗) aρa−1 =: ia(ρ) ∈ ρ Inv(µ) (with ia(κ) := aκa−1, κ ∈ Aut(G)) by
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(∗∗) {ian(ρ) = anρa−n : n ∈ N} is relatively compact in Aut(G) and
(∗ ∗ ∗) Λ := LIM(ian(ρ) = anρa−n : n ∈ N) ⊆ ρ · Inv(µ).

If only the weaker condition (∗∗) is available then the assertions hold true
with ρ (resp. ρt) replaced by some σ ∈ LIM(ian(ρ))n≥1 (resp. σt ∈
LIM(ian(ρt))n≥1): Then we have

A = C(k) + σk(A) (resp. A = C(t) + σt(A)) etc.[[
As above we obtain the representation

An = α−n · (an(ν(ρk)− εe) + an(ν(ρk)) ∗ ian(ρk)(An).

Now we conclude as before: Assume ina(ρ)
n∈(n′)−→ σ. The second summands

converge to σk(A), hence the first converge too and we obtain A = C(k) +
σk(A) for any accumulation point σ ∈ Λ and some generating functional
C(k) ∈ GF(G). If (∗ ∗ ∗) holds true then σ ∈ ρ · Inv(µ), hence σ may be
replaced by ρ.

]]
b) σ (resp. σt : t ≥ 0) is contracting if ρ (resp. ρt : t ≥ 0) has this

property.[[
This is easily proved representing ρ (resp. ina(ρ)) by the differentials ρ

o

(resp. (anρa−n)
o

= a
onρ

o
a
o−n) on the tangent space V (cf. Proposition 4.1

below):
ρ is contracting iff we have Spec(a

onρ
o
a
o−n) = Spec(ρ

o
) ⊂ {α : |α| ≤ r}

for some 0 < r < 1. I.e. the spectral radius is at most r for all n. Hence
Spec(σ

o
) ⊆ {α : |α| ≤ r} for all σ ∈ Λ.

]]
This is a motivation for further investigations: We want to show that

the commutativity assumptions (∗) (resp. (∗∗) and (∗ ∗ ∗)) are no serious
restrictions: They will turn out to be natural in special situations, e.g. if
the measures under consideration are selfdecomposable (Section 4) and if
the cofactors commute. (It is not hard to find examples of selfdecomposable
laws with commuting cofactors, see e.g. [21]).

3. Symmetric ρ-decomposable laws

Here we consider a special situation: semistable strongly ρ-decomposable
laws with symmetric cofactors. Therefore we assume the following condi-
tions in this section:

(1) µ = µ̃, (2) µ = ν(ρ) ∗ ρ(µ), (3) ρ(µ) ∗ ν(ρ) = ν(ρ) ∗ ρ(µ),

(4) ν̃(ρ) = ν(ρ) and (5) ρ is contractive.
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As usual, µ̃ will denote the image of µ ∈M1(G) under the mapping x 7→ x−1

on G. (Note that (1), (2), (4) ⇒ (3) and that µ is strongly ρ-decomposable
if (2) and (5) are fulfilled.)

We start with general results for symmetric convolution semigroups on
root compact groups.

Lemma 3.1. a) Let G be a locally compact and 2-root compact group (see
e.g. [8] for a definition). Let (λn)n≥1 ⊆ M1(G). Assume
(6) λn = χn ∗ νn = νn ∗ χn, furthermore χ̃n = χn and νn = ν̃n, hence
λn = λ̃n. Assume λn → εe and assume the existence of k(n) ↗ ∞ such
that λk(n)

n → ξ ∈M1(G).
Then there exists a continuous convolution semigroup ξ• with ξ1 = ξ,

ξt = ξ̃t, with λ[k(n)t]
n → ξt, t ≥ 0, furthermore (χk(n)

n )n≥1 and (νk(n)
n )n≥1 are

relatively compact.
And for any accumulation point (κ, η) = limn∈(n′)(χ

k(n)
n , η

k(n)
n ) there exist

symmetric continuous convolution semigroups κ•, η•, such that

(κ, η) = (κ1, η1) and χ[k(n)t]
n → κt, ν

[k(n)t]
n → ηt, n ∈ (n′),

furthermore ξt = κt ∗ ηt, all t ≥ 0. And in addition (ξr, κs, ηt) commute for
all r, s, t ≥ 0.

b) Let G be a locally compact group, let λ•, χ′•, χ•, ν• be symmetric
continuous convolution semigroups such that λt = χt ∗ νt = χ′t ∗ νt, t ≥ 0,
and λ0 = εe. Then χ• ≡ χ′•.

Proof. a) 1. Let (σn)n≥1 ⊆ M1(G) be symmetric and shift compact.
Then (σn)n≥1 is relatively compact.

[[
(σ2
n = σn ∗ σ̃n)n≥1 is relatively com-

pact. Therefore the 2-root-compactness of G implies relative compactness
of (σn)n≥1.

]]
2. We have λk(n)

n → ξ, λn → εe and λ
k(n)
n = λ

2[k(n)/2]
n ∗ λε(n)

n with ε(n) ∈
{0, 1}, hence λ

ε(n)
n → εe. 2-root-compactness of G implies therefore the

existence of ξ1/2 ∈ M1(G) such that λ[k(n)/2]
n → ξ1/2. And successively we

obtain λ
[k(n)t]
n → ξt, t ∈ D+, where D denotes the dyadic numbers. And

D+ 3 t 7→ ξt is a ∗-homomorphism.
3. Observing λ[k(n)t]

n → ξt and λ[k(n)t]
n = χ

[k(n)t]
n ∗ν[k(n)t]

n (by assumption (6)),
we obtain that the sequences of factors are symmetric and shift compact.
Therefore according to step 1, we conclude that (χ[k(n)t]

n )n≥1 and (ν[k(n)t]
n )n≥1

are relatively compact for any t ∈ D+.
Fix a subsequence (n′) such that (κ1, η1) = limn∈(n′)(χ

k(n)
n , ν

k(n)
n ).

Repeating the arguments of step 2 we conclude χ
[k(n)t]
n

n∈(n′)−→ κt and
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ν
[k(n)t]
n

n∈(n′)−→ ηt for all dyadic t ≥ 0. And by continuity we have ξt =
κt ∗ ηt = ηt ∗ κt and ξt, κt, ηt are symmetric.
4. But κt = κt/2 ∗ κ̃t/2, ξt = ξt/2 ∗ ξ̃t/2 and ηt = ηt/2 ∗ η̃t/2, t ∈ D+, hence
the corresponding convolution operators on L2(G) are positive semidefinite.
Let Tt, St, Rt denote the convolution operators corresponding to ξt, κt and ηt
on L2(G). Uniqueness of positive semidefinite roots of positive semidefinite
operators finally implies that ξt, κt and ηt are uniquely determined for
t ∈ D+.

Defining Tt := T t by the spectral resolution for all t ≥ 0 we obtain an
uniquely determined extension (Tt)t≥0. And this contraction semigroup is
continuous w.r.t. the strong operator topology. Comparing the weak oper-
ator topology on the set of convolution operators and the vague topology
on the compact set {λ ∈ M+(G) : ||λ|| ≤ 1} we conclude the existence
of measures ξt such that Tt is representable as convolution operator for all
real t ≥ 0. ξ• is a vaguely continuous convolution semigroup such that
ξt ∈ M1(G) for t ∈ D+. Whence (ξt)t≥0 ⊆ M1(G) and weak continuity
easily follow.

Analogous representations exist for St and Rt. Hence we obtain exten-
sions to continuous convolution semigroups (ξt)t∈R+ , (κt)t∈R+ and (ηt)t∈R+

and we have λ[k(n)t]
n → ξt, χ

[k(n)t]
n → κt, ν

[k(n)t]
n → ηt, n ∈ (n′), for all t ≥ 0.

5. We have: Tt = StRt = RtSt, and Tt, St, Rt ≥ 0. Tt, St and Rt are
functions of T1, S1 and R1 and hence Tt, St and Rt belong to the double
commutator of T1, S1 and R1 respectively. Whence SrRt = RtSr for all
r, t ≥ 0, and the assertion follows.

b) The assumptions yield χ0 = χ′0 = εe. For symmetric continuous
convolution semigroups the convolution operators are injective (cf. [22],
Lemma 1). Whence the assertion follows.

For the next result we need a convergence of types theorem. Therefore
we assume again G to be a simply connected nilpotent Lie group (see e.g.
[5], [2]).

Proposition 3.2. Assume the properties (1)–(5) and assume in addition
that µ = µ1 is embeddable into a symmetric continuous convolution semi-
group µ• which is (a, α)-semistable. Let µ be full.

a) Then Λ := {ina(ρ) := anρa−n : n ∈ N} is relatively compact in C(µ)
and any σ ∈ LIM(Λ) is contracting and fulfils µt = κσt ∗ σ(µt), all t ≥
0, i.e. σ ∈ C(µt) and κσt ∈ Cofµt(σ), t ≥ 0. Here κσ• = (κσt )t≥0 is a
symmetric continuous (a, α)-semistable convolution semigroup. Moreover,
(µr, κσs , σ(µt)) commute for all r, s, t ≥ 0. In particular, σ ∈ C(µt), t ≥ 0.

b) If A and Bσ denote the generating functionals of µ• and κσ• respectively
then we have A = Bσ+σ(A).
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c) If LIM(Λ) is uniquely determined mod Inv(µ), i.e. if ina(ρ) · Inv(µ)
n→∞−→ σ · Inv(µ), then κσ• = κ• is uniquely determined and µt = κt ∗ σ(µt)
follows. Furthermore, we have (∗) ia(σ) ∈ σ · Inv(µ). (Note that
Inv(µ) = Inv(µt), t > 0, cf. Remark in Section 2.)

d) In particular, if ia(ρ) ∈ ρInv(µ) we may put σ = ρ and κ1 = ν(ρ).

Proof. a) Put k(n) := [α−n]. Then we have anµ[k(n)t]
1 → µt, t ≥ 0. Fur-

thermore, µ1 = ν(ρ) ∗ ρ(µ1), hence µn1 = ν(ρ)n ∗ ρ(µ1)n, n ∈ N, (according
to the commutativity assumption). Therefore Lemma 3.1 a) applies with
λn := an(µ1), χn := an(ν(ρ)) and νn := anρ(µ1).

In particular, {νk(n)
n = anρa−n(µk(n)

αn ) = ina(ρ)(µk(n)
αn )} is relatively com-

pact. Since µk(n)
αn → µ1, according to the convergence of types theorem the

sequence Λ = {ina(ρ)} is relatively compact and any limit point of {νk(n)
n }

is of the form σ(µ1) for some σ ∈ LIM(Λ).

Fix a subsequence (n′) such that (νk(n)
n , ina(ρ))

n∈(n′)−→ (σ(µ1) =: ησ1 , σ).
According to Lemma 3.1 a) there exist embedding continuous convolution
semigroups κσ• and ησ• such that µt = κσt ∗ ησt and κσs ∗ ησt = ησt ∗κσs , t, s ≥ 0.
And furthermore anρ(µ1)[k(n)t] → ησt and an(ν(ρ))[k(n)t] → κσt , n ∈ (n′), for
all t ≥ 0.

On the other hand, we have for t ≥ 0: ina(ρ)(µt) = anρa−n(µt) =
anρ(µα−nt) = anρ(µ[k(n)t]+sn(t)) = anρ(µ[k(n)t]) ∗ anρ(µsn(t)) (with sn(t) →
0); hence – since a is contracting – ina(ρ)(µt)→ ησt , and therefore by conti-
nuity, ησ• = σ(µ•).

b) follows immediately since a is contracting.
c) In particular if {ina(ρ) · Inv(µ)}n≥1 converges to σ · Inv(µ), then we

conclude that σ(µ•) — and hence by Lemma 3.1 b) also κσ• = κ• — are
uniquely determined, therefore, ia(σ)(µt) = σ(µt) = ηt, all t ≥ 0. Whence
(∗) ia(σ) ∈ σ Inv(µt).

Furthermore, anν(ρ)[k(n)t] n→∞−→ κt, and we conclude that ν(ρ) belongs to
the normal domain of semistable attraction of κ•. Therefore κ• is (a, α)-
semistable (cf. [18]).

d) If aρa−1 ∈ ρ · Inv(µt) for all t > 0, then σ ∈ ρ · Inv(µt) = ρ · Inv(µ1)
for t > 0.

It rests to show contractivity of σ: This is done almost verbatim as in
the proof of 2.3 b).

In a similar way we obtain — again for a simply connected nilpotent
Lie group — that instead of semistable laws we may consider probabilities
belonging to the domain of semistable attraction:
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Proposition 3.3. Let µ ∈ M1(G) be ρ-decomposable with contracting ρ ∈
Aut(G) and cofactor ν(ρ). Assume the properties (1)–(4). Assume the
existence of k(n)↗∞ and an ∈ Aut(G) such that an(µk(n))→ ξ ∈M1(G),
a full measure.

a) Then ξ is embeddable into a symmetric continuous convolution semi-
group ξ• with ξ1 = ξ, and we have: Λ := {ian(ρ) : n ≥ 1} is relatively
compact and for any σ ∈ LIM(Λ) there exists a symmetric continuous
convolution semigroup κσ• such that ξt = κσt ∗ σ(ξt), t ≥ 0. In addition,
(ξr, κσs , σ(ξt)), commute for r, s, t ≥ 0. In particular, σ ∈ C(ξt), t ≥ 0.

b) If in addition k(n)/k(n + 1) → α ∈ (0, 1) then ξ• is (a, α)-semistable
for some a ∈ LIM(ana−1

n+1). And if in addition ina(ρ) · Inv(ξ) n→∞−→ σ · Inv(ξ),
then κσ• = κ• is uniquely determined and furthermore κ• is (a, α)-semistable.
Moreover, we have (∗) ia(σ) ∈ σ Inv(ξt), t ≥ 0.

c) If ian(ρ) ∈ ρ Inv(ξt) then σ ∈ ρ · Inv(ξt), hence we may put σ = ρ.

Proof. Analogous to the proof of Proposition 3.2: Apply Lemma 3.1 a)
to λn := an(µ), χn := an(ν(ρ)), νn := anρ(µ). Therefore an(µ)k(n) → ξ

yields the embeddability of ξ into ξ•, an(µ)[k(n)t] → ξt, as well as relative
compactness of {anρ(µ)[k(n)t] = ian(ρ)an(µ)[k(n)t]}, {an(ν(ρ))[k(n)t]} and of
{ina(ρ)} (by the convergence of types theorem).

For any subsequence (n′) with ina(ρ)→ σψ, ψ ∈ Inv(ξ), we obtain:

ian(ρ)an(µ)[k(n)t] → σ(µt), an(ν(ρ))[k(n)t] → κσt , n ∈ (n′),

and ξt = κσt ∗ σ(µt) = σ(µt) ∗ κσt , for all t ≥ 0.
We continue as in the proof of 3.2: Contractivity of σ is proved analo-

gously to Proposition 3.2 resp. 2.3 b); If σ(µ•) is uniquely determined, then
by 3.1 b) also κσ• = κ• is uniquely determined and (∗) follows as in 3.2.

Semistability of ξ• follows observing that ξ• is full and the domain of
semistable attraction of ξ• is non-void. Hence ξ• is (a, α)-semistable for
some a ∈ LIM(ana−1

n+1) (cf. [18]). Therefore the generating functionals
A and B of ξ• and κ• fulfil the relation A = B + σ(A) and by (∗) also
α ·A = a(B) +α ·σ(A) follows. Semistability of κ• follows now analogously
to the proof of Theorem 2.2 a).

4. Semistable selfdecomposable laws

Let G be a simply connected nilpotent Lie group with Lie algebra V. We
are now motivated to study semistable selfdecomposable laws with commut-
ing cofactors. Our aim is to show that the commutativity assumption

aρt = ρta, t ≥ 0, (∗′)
is no serious restriction in this situation.
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We follow the investigations of A.  Luczak [17] for vector spaces (contin-
uing R. Shah’s investigations into selfdecomposability on groups [21], [1])
to show finally that A.  Luczak’s characterization may be applied to obtain
a description of full semistable selfdecomposable laws on simply connected
nilpotent Lie groups.

We start with preparatory facts and notations which are well known and
folklore or are proved almost verbatim as for vector spaces.

Proposition 4.1. 1. G is simply connected, hence Aut(G) is isomorphic to
Aut(V) ⊆ GL(V), the group of Lie algebra automorphisms of V; analogously
End(G) is isomorphic to E(V) := {A ∈ End(V) : A[x, y] = [Ax,Ay] for
x, y ∈ V}, the semigroup of Lie algebra endomorphisms. The isomorphism
is denoted by

a ∈ End(G)↔ a
o
∈ E(V), a

o
denoting the differential of a, defined by

exp a
o
(x) = a(exp(x)), x ∈ V.[[

For details concerning Lie groups, Lie algebras and endomorphisms the
reader is referred to [9], in particular VII, 3.3, 3.4, 4.2 and IX, 1.2. Con-
cerning the isomorphism Aut(G) ∼= Aut(V) for simply connected Lie groups
see especially [9], XII, remark on p. 134.

]]
2. Let µ ∈M1(G) be S-full (i.e. not concentrated on a coset of a proper

closed connected subgroup). Then D(µ) (as well as Dr(µ),Dc(µ) and DC(µ))
are compact semigroups in End(G) and C(µ) is a compact subset ⊆ DC(µ).
Via the exponential mapping we obtain that

D(µ)
o

:= {a
o

: a ∈ D(µ)} =: ∆(µ)

is a compact subsemigroup ⊆ E(V) ⊆ End(V).

In this way the analysis of the topological semigroup D(µ) is reduced to
the analysis of a concrete (matrix-) semigroup ∆(µ). Analogously, Dr(µ)

o
=

∆r(µ), Dc(µ)
o

= ∆c(µ) and DC(µ)
o

=: Γ(µ) are treated as subsemigroups
of End(V). For typographical reasons we shall concentrate on D(µ) and
∆(µ) in the following.[[

As in the vector space case, it is immediately seen that D,Dc,DC are
semigroups. The compactness-assertions are immediate consequences of the
convergence of types theorem, cf. e.g. [5]; see also [21], Lemma 3.

]]
3. Let A(µ) denote the maximal subgroup of D(µ) and let A

o
(µ) be the

corresponding object in ∆(µ) ⊆ E(V).
Furthermore, in analogy to vector spaces we define E(µ) := {Q ∈ End(V)

such that etQ ∈ Aut(V), t ∈ R and etQ ∈ ∆(µ) for all t ≥ 0}. Hence
Q ∈ E(µ) iff there exists a one-parameter group (ρt)t∈R ⊆ Aut(G) such that
ρ
o

t = etQ and {ρt : t ≥ 0} ⊆ D(µ)
[[

hence ρ
o

t ∈ ∆(µ)
]]
. In particular, Q
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belongs to Der(V) (∼= Der(G)), the derivations of the Lie algebra V (resp.
the Lie group G).

Furthermore, we consider the subsets E0(µ) := {Q ∈ E(µ) : etQ ∈
A
o
(µ), t ≥ 0} and E−(µ) := {Q ∈ E(µ) : (ρt)

o
= (etQ)t≥0 is contrac-

tive on V} = {Q ∈ E(µ) : (ρt)t≥0 is contractive on G}. I.e. Q ∈ E−(µ) iff
Q ∈ E(µ) and Spec(Q) ⊆ {α ∈ C : <α < 0} and Q ∈ E0(µ) iff Q ∈ E(µ)
and Spec(Q) ⊆ {α ∈ C : <α = 0}.

[[
Cf. [17]

]]
The following elementary observations are folklore:
4. Let A,An, Qn, Sn be linear operators on a vector space V = Rd. Let

r(·) denote the spectral radius. Then
a) If An → A then r(A) ≤ lim inf r(An).
b) Hence, if Qk ∈ E−(µ) fulfilling the relation Spec(Qk) ⊆ {< α ≤ −ε}

for some ε > 0 and Qk → Q then Spec(Q) fulfils the same relation, in
particular, Q ∈ E−(µ).

5. Mean ergodic theorem for finite dimensional vector spaces W: Let
T ∈ End(W) and x ∈ W be such that the orbit {Tn(x) : n ≥ 0} is bounded
in W.

a) Then the C − 1-means T (n)(x) := (1/n)
∑n

1 T
k(x) converge to a fix-

point y = T (y).
b) Furthermore, for any accumulation point w = limj≥1 T

nj (x) of the
orbit we have T (n)(w) = (1/n)

∑n
1 T

k(w) → y. In particular, y ∈
co(LIM{Tn(x) : n ≥ 0}). (Note that T (n) are convex combinations of
T k.)[[

See e.g. [12], Chapter 2, 1.3 and 2.1: W is finite dimensional, hence w.l.o.g.
we may assume T to be powerbounded on W and hence {||T (n)|| : n ≥ 1}
to be bounded. Then we have a decomposition W = F⊕N, where F is the
fixpoint space of T — therefore T (n)|F = id |F — and T (n)→ 0 on N. Now
the assertion follows immediately observing that T (n)Tnj (x) n→∞−→ Tnj (y) =
y for all j and hence T (n)(w)→ y.

]]
6. Let µn, µ be S-full measures with µn → µ. Then

⋃
n D(µn) is relatively

compact with LIM(
⋃
n≥1 D(µn)) ⊆ D(µ). In fact, if µn = γn∗bn(µn), n ∈ N,

then {bn} and {γn} are relatively compact and for any accumulation point
(b, γ) we have µ = γ ∗ b(µ).[[

Immediate consequence of the convergence of types theorem for endomor-
phisms [5]: By factor compactness (cf. [19]) there exists {xn} ⊆ G such
that {γn ∗εxn} and {εx−1

n
∗bn(µn)} are relatively compact. The convergence

of types theorem yields relative compactness of {(bn, xn)} in End(G) × G.
Hence in particular {xn} is relatively compact and therefore {bn(µn)} and
{γn} are relatively compact. Whence the assertion.

]]
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Analogous results hold true for Dr(µ),Dc(µ),DC(µ) and C(µ).
7. E(µ) and E−(µ) are convex cones in End(V),E0(µ) is a linear sub-

space; E(µ) is closed in End(V). Furthermore,

Qi ∈ E(µ)\E0(µ), i = 1, 2⇒ Q1 +Q2 ∈ E(µ)\E0(µ).[[
Almost verbatim as [17], Lemma 2 and Corollary 3.

]]
8. Applying 6 we obtain: Let µj → µ, a S-full measure, and let Qj ∈

E(µj) such that Qj → Q ∈ End(V). Then Q ∈ E(µ).[[
Let (a(j)

t )t≥0 ⊆ D(µj) be defined by (a(j)
t )

o
= etQj , j ≥ 1, t ≥ 0. Then

by assumption at := limj≥0 a
(j)
t exists with a

o

t = etQ, t ≥ 0, and belongs to

D(µ) according to step 6. Hence Q ∈ E(µ) as asserted.
]]

Proposition 4.2. Let µ ∈ M1(G) be full and (a, α)-semistable, let µ• de-
note the semistable convolution semigroup with µ1 = µ. Furthermore as-
sume that (ρt)t∈R is contracting and (ρt)t≥0 ⊆ DC(µ), i.e. µn = ν(t, n) ∗
ρt(µn) = ρt(µn) ∗ ν ′(t, n), t ≥ 0, n ∈ N.

Then there exists a group (σt)t∈R, with σ
o

t = etQ, Q ∈ E(µs)\E0(µs),
such that

(σt)t≥0 ⊆ DC(µs), for all s ≥ 0, and (∗′) aσt = σta for all t ≥ 0.

Proof. 1. Put k(n) = [α−n]. Then for s ≥ 0 we have an(µ[k(n)s])→ µs and
we obtain

an(µ[k(n)s]) = an(ν([(n)s], t)) ∗ anρt(µ[k(n)s])

= an(ν([k(n)s], t)) ∗ anρta−n(anµ[k(n)s]),

and an analogous decomposition for right cofactors since ρt ∈ DC(µ).
Hence immediately ina(ρt) ⊆ DC(µαn[k(n)s]) for all n. According to 4.1

step 6, {anρta−n}n≥0 and {anν([k(n)s], t)}n≥0 are relatively compact for any
s, t > 0. And for all accumulation points (b(t), γ(s, t)) ∈ End(G)×M1(G)
we have µs = γ(s, t) ∗ b(t)(µs) = b(t)(µs) ∗ γ′(s, t). Hence b(t) ∈ DC(µs).
(Indeed, one can choose b(t) in such a way that (b(t))t≥0 is a continuous
semigroup belonging to DC(µs).)

Let ρ
o

t =: Rt = etQ, Q ∈ E−(µ) and put D := a
o
. Then (anρta−n)

o
=:

R
(n)
t = etD

nQD−n =: exp t inD(Q). Put Sn := inD(Q) and Qn := (1/n)∑n
1 i

k
D(Q), let s > 0.

2. Sn = inD(Q) ∈ E−(µαn[k(n)s]) for all n, and for any accumulation point
S of (Sn) we have S ∈ E(µs)\E0(µs). (In fact, S ∈ E−(µs).)
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We have µαn[k(n)s] = an(µ[k(n)s]) = an(ν([k(n)s], t)∗(anρta−n)an(µ[k(n)s]) =

an(ν([k(n)s], t) ∗ exp tSn(µαn[k(n)s]), for all n and s, t ≥ 0. Assume Sn
n∈(n′)−→

S for some subsequence (n′). The second assertion follows since SpecSn =
SpecQ, observing 4.1, step 8.

]]
3. {Sn}n∈N is bounded.[[
Put e.g. s = 1. Assume ‖Snj‖ → ∞. Put cj := ‖Snj‖−1. Then Snj :=

cj · Snj ∈ E−(µαnj k(nj)) (since Snj ∈ E−(µαnj k(nj)) according to 1), and
we have ‖Snj‖ = 1. Furthermore, µαnj k(nj) → µ1 = µ. According to

4.1, step 6 and step 1 the sequence {etSnj } is relatively compact and all
its accumulation points belong to ∆(µ) for all t ≥ 0. Now Spec(Snj ) =
cj · Spec(Q) hence Spec(S) = {0} for any accumulation point S of {Snj}.
But S ∈ E(µ) (4.1 step 8) and hence {etS} ⊆ A

o
, the maximal subgroup of

∆(µ). A
o

being compact and Spec(S) = {0} yields S = 0, a contradiction
as ‖S‖ = lim ‖Snj‖ = 1.

]]
4. Now {Sn = iDn(Q) = DnQD−n}n≥1 is bounded. Then the mean

ergodic theorem (4.1, step 5) applied to W := End(V) and T := iD yields:

1
n

n∑
1

Sn → Q̃ ∈ E(V) for some Q̃ ∈ End(V)

such that iD(Q̃) = DQ̃D−1 = Q̃.

And furthermore, Q̃ ∈ co(LIM(Sn)n≥1) ⊆ co(E(µs)) (by step 2). Note
that LIM(Sn)n≥1 being compact in a finite dimensional vector space yields
co(LIM(Sn)n≥1) = co(LIM(Sn)n≥1). Hence we obtain Q̃ ∈ E(µs) (4.1, step
8), and we have Q̃ ∈ E(µs)\E0(µs) according to 4.1 step 7. (Cf. the proof of
Lemma 14 in [17].) Whence (σt) ⊆ D(µs) — if (σt) is defined by σ

o

t = et
eQ,

t ≥ 0.
Replacing D(µs) = Dl(µs) by Dr(µs) we obtain analogously (σt) ⊆ Dr(µs),

and therefore (σt) ⊆ Dc(µs) follows. Whence obviously (σt)t>0 ⊆ DC(µs),
s > 0.

Remarks. a) If ρ• belongs to the decomposability semigroup with com-
muting cofactors, i.e. (ρt)t≥0 ⊆ C(µ) we obtain for all n ∈ N and t ≥ 0
that ρt ∈ C(µn), µn = ν(n, t) ∗ ρt(µn) with (commuting) cofactors ν(n, t) ∈
M1(G). In fact, we can choose ν(n, t) = ν(1, t)n in this case.

b) Note that in 4.2 it is shown that σt belongs to Dl(µs) ∩ Dr(µs), but
even if we assume ρ• ⊆ C(µ) it can not be proved that σt ∈ C(µs). This
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is due to the fact that Q̃ is a limit of convex-combinations of {inD(Q)}, and
hence σt belongs to the closed semigroup generated by C(µs).

In analogy to vector spaces we define for a simply connected nilpotent
Lie group

Definition 4.3. Let µ ∈M1(G). µ possesses independent marginals if G is
representable as semidirect product G = G1×G2 of closed subgroups where
G1 is normal in G, such that µ = µ1 ⊗ µ2 with probabilities µi supported
by Gi.

In particular, let πi denote the canonical projections G→ Gi, then π1, π2
are independent random variables on the probability space (G,B(G), µ).
But in contrast to vector spaces, since G is not supposed to be Abelian, a
priori we do not assume G to be a direct product, hence π1 will in general not
be a homomorphism. (In fact, here we will always be led to direct splitting
G = G1×G2, hence all projections πi will turn out to be homomorphisms.)

Proposition 4.4. a) (Cf. [21], Theorem 5) Let µ be S-full and selfdecom-
posable with contractive ρ• ⊆ D(µ). Then µ is class L, i.e. there exist
sequences (µn)n∈N ⊆ M1(G) and (bn)n∈N such that {bnµk}1≤k≤n is infini-
tesimal and the row products converge to µ. Moreover, bnb−1

n+1 → id. {bn}
is called a norming sequence.

b) By construction, bn = ρα(n) for some sequence α(n) → ∞, hence if
ρ• ⊆ DC(µ) then {bn} ⊆ DC(µ). A norming sequence {bn} ⊆ DC(µ) is
called a strong norming sequence.

Proposition 4.5. a) (Cf. [21], Theorem 1, (iii), [10], 3.3.3) Let G, µ be
as above and let (bn) be a norming sequence. Assume the existence of a
non-trivial idempotent ε ∈ D(µ). Then Dε(µ) := {b ∈ D(µ) : εbε = b}
contains a one-parameter semigroup (ρt)t≥0 with ρ0 = ε and an idempotent
δ ∈ Dε(µ), δ 6= ε, a limit point of {(ρt) : t → ∞} and thus commuting with
ρt for all t.

b) In fact, as the proof (cf. [10], 3.3.3) shows, if {bn} and ε belong to
Dc(µ) (resp. DC(µ)) then ρ• and δ belong to the same semigroup. (See also
[21], Remark 1.)

Proposition 4.6. a) If End(G) contains an idempotent ε then G splits
semidirectly, G = G1×G2 with G2 = ε(G) and G1 = ker ε.

b) If ε = ε2 ∈ D(µ) then µ splits, µ = ε(µ) ⊗ µ(ε) for some µ(ε) ∈
M1(G2), i.e. µ is decomposed into independent marginals.

c) Moreover, if ε ∈ Dc(µ) then G1 and G2 are direct factors, G = G1×G2.
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a) Cf. [21], Lemma 4. b) Cf. the discussion in [21] before Theorem 2.

c) Cf. [21] Lemma 7.
]]

In particular, 4.6 applies in the situation of 4.5.
In the above-mentioned investigation [21] the author obtains (in The-

orem 2) for S-full class L measures (hence with some norming sequence
(bn) ⊆ D(µ)) a splitting G = G1 · · ·Gk, µ = µ1 ⊗ · · · ⊗ µk with closed sub-
groups Gi and selfdecomposable µi ∈ M1(Gi), 1 ≤ i ≤ k. The additional
assumption (bn) ⊆ DC(µ) leads to a slightly stronger result. First we prove:

Proposition 4.7. Let µ be S-full and class L with strong norming sequence
(bn) ⊆ DC(µ). Assume ε = ε2 ∈ DC(µ). Then ε(µ) is selfdecomposable in
M1(ε(G)), i.e. there exists a contracting semigroup σ• ⊆ DC(ε(µ)).

Proof. (Cf. [21], proof of Theorem 2). According to 4.6 c) we obtain a
direct splitting G = G∗ × G′1, µ = µ∗ ⊗ λ1 with λ1 = ε(µ),G′1 = ε(G). It
rests to prove selfdecomposability of λ1.

In view of 4.4 and 4.5 there exists a semigroup σ(1)
• ⊆ DC(µ) with σ(1)

0 = ε

and an idempotent ε(1) 6= ε such that ε(1) is the unit of the compact group
A(1) := LIM(σ(1)

t : t→∞). Hence in particular we have ε(1)ε = εε(1) = ε(1)

and ε(1)σ
(1)
• = σ

(1)
• ε(1). Therefore σ(1)

• ⊆ DC(ε(µ)) follows.
If ε(1) is trivial, i.e. ε(1)(x) ≡ e then σ

(1)
• is contracting. (Cf. the proof

of Theorem 2 in [21].) If ε(1) is non-trivial then we proceed as follows:
Let G1 := ε(ker(ε(1))), G′2 := ε(1)(G). According to 4.6 we obtain a direct
splitting G′1 = G1 × G′2, ε(µ) = µ1 ⊗ λ2, λ2 = ε(1)(µ) = ε(1)(λ1) with µ1
supported on G1. And as the proof of Theorem 2 in [21] shows, there exist
at ∈ G′2 such that (iatσ

(1)
t |G1) ⊆ D(ε(1)(µ)) is contractive, iat denoting the

inner automorphism x 7→ atxa
−1
t . Since the above splitting is direct iat |G1

is trivial, whence iatσ
(1)
t |G1 = σ

(1)
t |G1 =: ρ(1)

t . Thus µ1 is selfdecomposable
in M1(G1) with contracting ρ(1)

• ⊆ DC(µ1).
Repeating the above construction with ε replaced by ε(1), we get ε(2),G′3 =

ε(2)(G), G2 = ε(1)(ker ε(2)) and ρ
(2)
• .

Now if ε(2) is non-trivial then again repeating the above construction
successively we get ε(i), G′i+1 = ε(i)(G), Gi = ε(i−1)(ker ε(i)) and contracting
ρ

(i)
• in DC(µi), where G′i = Gi × G′i+1, λi = ε(i−1)(µ) = µi ∗ λi+1 and
ε(µ) = λ1 = µ1 ∗ µ2 ∗ · · · ∗ λi+1. Now observing that dim(ε(i)(G)) is strictly
decreasing we obtain finally a trivial idempotent ε(k), hence a contracting
semigroup σ

(k)
• |G′k ⊆ DC(λk). Then put G′k =: Gk, σ(k)

• |Gk =: ρ(k)
• and

λk =: µk.
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Since the splitting is direct,

ε(G) = G1 × · · · ×Gk 3 (x1, . . . xk) 7→ (σ(1)
• x1, . . . σ

(k)
• xk)

defines a semigroup of automorphisms ρ• ⊆ Aut(ε(G)) which is obviously
contracting and we have ρ• ⊆ DC(ε(µ)).

Corollary 4.8. Let µ be S-full and let (bn) be a strong norming sequence in
DC(µ). Then µ is selfdecomposable and there exists a contracting semigroup
ρ• ⊆ DC(µ).[[

The proof follows directly from Proposition 4.7, if we replace ε by the
identity automorphism, hence ε(µ) = µ is selfdecomposable.

]]
We are ready to prove the main result of this section: Combining the

ideas of the proof of 4.7 ([21], Theorem 2) and of [17], Theorem 15, we
obtain:

Theorem 4.9. Let µ ∈ M1(G) be full and (a, α)-semistable, let again µ•
denote the semistable convolution semigroup with µ1 = µ. Assume further-
more that (ρt)t∈R is contracting and (ρt)t≥0 ⊆ DC(µ), i.e.

µn = ν(t, n) ∗ ρt(µn) = ρt(µn) ∗ ν ′(t, n), t ≥ 0, n ∈ N.
Then there exists a contractive one-parameter semigroup (σt)t∈R+ ⊆ DC(µs)
for all s ≥ 0, such that (∗′) aσt = σta for all t ≥ 0.

Proof. 1. In view of 4.2 there exists Q1 ∈ E(µs)\E0(µs), for s ≥ 0,
commuting with a

o
, i.e. Q1 generates a one-parameter semigroup (σt) ⊆

DC(µs), s ≥ 0, commuting with a
o
. If (σt)t≥0 is contractive the proof is

done.
Else we repeat more or less the proof of 4.7:
2. If (σt)t≥0 is not contractive then the set of accumulation points C :=

LIM{σt : t → ∞} is a compact group, let ε denote the unit element of C.
Since Q1 6∈ E0(µ) we have ε 6= id. Hence Proposition 4.6 applies and yields
a direct splitting G = G1 ×G2, furthermore µ = λ1 ⊗ λ2 with λi ∈M1(Gi)
and by construction σt|G1 is contractive. Gi are a-invariant since σ• is
commuting with a. Let πi denote the projections to Gi, then ε = π2,
G1 = ker ε and λi = πi(µ). Also, aε = εa and hence a(Gi) = Gi for each i.

The second part of the proof of 4.7 (resp. [21], Theorem 2) yields that
the first factor λ1 is selfdecomposable on G1: There exists a contractive
semigroup (σ(1)

• )t≥0 ⊆ DC(λ1), where σ(1)
• := σ•|G1 , commuting with a|G1 .

3. In particular, if µ is supposed to have no independent marginals we
are led to step 1, the proof is done.
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4. Concerning λ2 we conclude by 4.7 that λ2 = ε(µ) is selfdecomposable,
i.e. there exists a contracting semigroup ρ(1)

• ⊆ DC(λ2). Also, since aε = εa,
λ2 is (a|G2 , α)-semistable.

5. Now applying the previous steps 1 to 4 to G2, λ2, a|G2 and ρ
(1)
• and

repeating this construction we obtain finally decompositions G = G1×· · ·×
Gn, µ = λ1 ⊗ · · · ⊗ λn, λi ∈ M1(Gi) selfdecomposable with contractive
σ

(i)
• |Gi ⊆ DC(λi) ⊆ Aut(Gi) which commute with a|Gi for all i. As above,

since the factors Gi are direct, x = (x1, . . . xn) 7→ (σ(1)
• (x1), . . . , σ(n)

• (xn))
defines a one-parameter semigroup (σ•) ⊆ Aut(G), which is contracting and
commuting with a by construction and belongs to DC(µ).

Since for each t, aσt = σta, as in step 1 of the proof of Proposition 4.2 we
obtain σt ∈ DC(µαn[k(n)s]) for each n ∈ N and s ≥ 0, where k(n) = [α−n].
Hence σt ∈ DC(µs) for all s, t ≥ 0 follows.

In view of [21], Theorem 4, we obtain for class L-laws

Corollary 4.10. Let µ ∈ M1(G) be full and (a, α)-semistable. Further-
more, assume that there exist (µn)n∈N ⊆ M1(G) and (bn)n∈N ⊆ Aut(G)
such that

(†) µ = limn≥1 bn(µ1 ∗ · · · ∗ µn)
(††) µn ∗ µk = µk ∗ µn, all n, k ∈ N and

(†††) the array {bn(µk) : 1 ≤ k ≤ n} is infinitesimal.
Then there exists a contracting group (σt)t∈R ⊆ Aut(G) such that
(σt)t≥0 ⊆ DC(µs), s ≥ 0, and (∗′) aσt = σta, t ≥ 0.[[

In [21], Theorem 4 it is shown that under the assumptions (†), (††), (†††)
there exists a contracting group (ρt)t∈R such that (ρt)t≥0 ⊆ DC(µ), whence
by 4.4 a strong norming sequence exists and hence 4.8 and 4.9 apply.

]]
And by [21], Theorem 5 we obtain a partial converse result:

Corollary 4.11. Let µ be S-full, (a, α)-semistable and selfdecomposable
with contractive semigroup (ρ•) ⊆ C(µ). Then there exists a norming se-
quence (bn) ⊆ Aut(G), a sequence (µk) ⊆ M1(G) such that (†), (††), (†††)
hold.[[

The semistable law µ is embeddable into a convolution semigroup µ•
(uniquely defined, cf. [4]). According to [15] the convolution operators
corresponding to embeddable laws µt are injective, t ≥ 0. Whence [21],
Theorem 5 yields the existence of a commutative triangular system {bnµk}.

]]
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