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Abstract. Each statistic, which is pairwise sufficient and (in a natural
sense) countably complete, is a minimal pairwise sufficient statistic. The
Basu theorem for pairwise suffcient statistic is also obtained.

1. Introduction

The notions of sufficiency and pairwise sufficiency are one of the funda-
mental concepts in mathematical statistics. Important contributions to this
theory are due to P. R. Halmos and L. J. Savage [8], R. R. Bahadur [1],
D. L. Burkholder [5], R. A. Fisher [6] and L. Le Cam [10]. Sufficiency can
be characterized by a factorization criterion, and by means of this criterion
a minimal sufficient subfield can be constructed ([2], [3], [7]).

H. Heyer and S. Yamada [9] provide a construction of common conditional
probabilities given a pairwise sufficient σ-field under the hypothesis that the
underlying statistical experiment is majorized in the sense of E. Siebert [12].
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In the paper we show relations between pairwise sufficiency and other
important properties of statistics such as minimal pairwise sufficiency, com-
pletness, independence and ancillarity.

2. Preliminaries

Throughout the paper we are dealing with classical statistical experiments
of the form E := (X,A,P) where P denotes a parametrized family {Pθ :
θ ∈ Θ} of probability measures Pθ on the measurable space (X,A). For any
sub-σ-field B of A we consider the subexperiment E(B) = (X,B,P|B) of E
with the corresponding family P|B = {Pθ|B : θ ∈ Θ} of restrictions of Pθ to
B.

We introduce the notion of sufficency and pairwise sufficiency, following
Heyer and Yamada [9].

A sub-σ-field B of A is called sufficient for E (or for P) if for each A ∈ A
there exists a common conditional probability E(1A|B) of A given B in the
sense that∫

B
E(1A|B)dPθ = Pθ(A ∩B) for all B ∈ B and all θ ∈ Θ.

A statistic T : (X,A) → (R, Borel(R)) is sufficient for P if the sub-σ-field
σ(T ) generated by the statistic T is sufficient.

Next we give two formulations of pairwise sufficiency of a sub-σ-field
which are clearly equivalent by an elementary reasoning.

Definition 2.1. A sub-σ-field B of A is called pairwise sufficient for P if B
is sufficient for all two-element subsets P0 ⊂ P.

Equivalently, B is pairwise sufficient for P if, for each countable set Θ0 ⊂
Θ, there exists a common conditional probability E(1A|B), A ∈ A, given B
in the sense that∫

B
E(1A|B)dPθ = Pθ(A ∩B) for all B ∈ B and all θ ∈ Θ0.

Similarly, a statistic T is pairwise sufficient for P if the corresponding sub-
σ-field σ(T ) is pairwise sufficient.

Now we exhibit a statistic which is, for a suitable set of measures, pairwise
sufficient but not sufficient. It is a simplification of the example of Halmos
and Savage [8].
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Example 2.2. Let X = ([0, 1] × {0, 1}), {Pθ : θ ∈ Θ} = {δx0 : x0 ∈
[0, 1] × {0}} ∪ {λ[0,1]×{1}} where {δx0 : x0 ∈ [0, 1] × {0}} is a family of
Dirac measures and λ[0,1]×{1} is the one-dimensional Lebesgue measure. The
statistic S, defined by S(x, y) = x, is pairwise sufficient but not sufficient.

Now we give definitions of some other “pairwise” notions. As a gener-
alization of a classical definition of the minimal statistic we propose the
following

Definition 2.3. A sub-σ-field B of A is called minimal pairwise sufficient
if B is pairwise sufficient and

(∀ C ⊂ A, C−pairwise sufficient) (∀ B ∈ B) (∀ Θ0 ⊂ Θ, Θ0−countable)

(∃ C ∈ C) (∀ θ ∈ Θ0) Pθ(B4C) = 0.

Similarly, the statistic T is minimal pairwise sufficient if it generates the
minimal pairwise sufficient σ-field.

Definition 2.4. As usual, we say that a family of distributions {pθ : θ ∈ Θ}
on (R, Borel(R)) is complete if for any Borel function χ : R → R the
condition ∫

R
χdpθ = 0 for all θ ∈ Θ

implies
pθ({χ 6= 0}) = 0 for θ ∈ Θ.

The statistic T : (X,A)→ (R, Borel(R)) is said to be complete if the family
of its distributions pθ = Pθ(T−1(·)), θ ∈ Θ is a complete family.

We also propose the following notion of countable completness.

Definition 2.5. The statistic T is said to be countably complete if there
exists a countable set Θ0 ⊂ Θ such that {Pθ(T−1(·)); θ ∈ Θ1} is a complete
family for all countable Θ1,Θ0 ⊂ Θ1 ⊂ Θ.

Now we give an example of a family of distributions {pθ : θ ∈ Θ} which
is complete but not countably complete.

Example 2.6. Let X = [0, 1] and let {pθ = (1/2)λ[0,1] +(1/2)δθ, θ ∈ [0, 1]}
be a family of distributions.

We first show that this family is complete. Let f denote a Borel function.
Assume that ∫

X
fdpθ = 0 for all θ ∈ [0, 1],
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then
1
2

∫
X
fdλ+

1
2
f(θ) = 0

and consequently,

pθ({f 6= 0}) = 0 for θ ∈ [0, 1].

According to the definition, the family {pθ : θ ∈ [0, 1]} is complete.
Next we suppose that {pθ : θ ∈ Θ} is a countably complete family. In

particular, for some countable family Θ0 = {θ1, θ2, ... }, the condition∫
fdpθi = 0 for all i ≥ 1

implies that there exists a set A such that

f |A = 0 and pθi(A) = 1 for θi ∈ Θ0.

But properties of the function

g(x) =

{
1 if x ∈ {θ1, θ2, ... },
−1 if x /∈ {θ1, θ2, ... } and x ∈ [0, 1],

contradict our assumption. The family of distributions {pθ : θ ∈ [0, 1]} is
not countably complete.

In the notation of Schervish [11] we have

Definition 2.7. The statistic T is said to be ancillary if its distribution in
Pθ does not depend on θ for θ ∈ Θ.

For the sake of completeness we prove the following elementary lemmas
for a fixed subset Θ0 ⊂ Θ.

Lemma 2.8. Let C ⊂ A be σ-field. Assume that for B ∈ A there exists a
C-measurable function f : X → [0, 1] such that f − Eθ(1B|C) = 0 Pθ−a.e.
for θ ∈ Θ0. If for each θ ∈ Θ0

Eθ|1B − f | = 0,

then there exists C ∈ C satisfying

Pθ(B4C) = 0 for each θ ∈ Θ0.

Proof. Assume that

Eθ|1B − f | = 0 for each θ ∈ Θ0.
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Let f = E(1B|C) and put C = {E(1B|C) > 1/2}. Then for arbitrary θ ∈ Θ0
we have

Pθ(B4C) =Eθ(1B4C) = Eθ(|1B − 1C |) = Eθ(|1B − 1(E(1B |C)>1/2)|)
=Eθ(1B − 1(E(1B |C)>1/2))

+ + Eθ(1(E(1B |C)>1/2) − 1B)+

=E(1B − 12E(1B |C)>1))
+ + Eθ(1(2E(1B |C)>1) − 1B)+

≤Eθ2(1B − E(1B|C))+ + Eθ2(E(1B|C)− 1B) · 1Bc
≤2Eθ(1B − E(1B|C))+ + 2Eθ(E(1B|C)− 1B)+

=2Eθ(|1B − E(1B|C)|) = 0,

where, as usual, x+ = max{x, 0} for any x ∈ R. The lemma is proved.

Lemma 2.9. Let us fix θ ∈ Θ0, a σ-field B ⊂ A, B ∈ B and a measurable
function f : X → [0, 1]. If Eθf = Eθ1B and

Eθ|1B − f | 6= 0. (1)

Then
Eθ|1B − Eθ(f |B)| 6= 0.

Proof. Suppose that
Eθ|1B − Eθ(f |B)| = 0.

Obviously, we have

Eθ(f · 1Bc) = Eθ(Eθ(f |B) · 1Bc) = Eθ(1B · 1Bc) = 0.

Consequently,
Eθ(f · 1B) = Eθ(f) = Eθ(1B).

Thus
f = 1B Pθ − a.e.,

which contradicts (1). The lemma is proved.

3. Main results

Let (X,A, P ) be a statistical space and let T : (X,A) → (R, Borel(R))
be a statistic.

Theorem 3.1 (Bahadur’s “pairwise” theorem). If T is a pairwise sufficient
and countably complete statistic for a family {Pθ : θ ∈ Θ} then T is the min-
imal pairwise sufficient statistic.
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Proof. Put B = T−1(Borel(R)), thus B is pairwise sufficient for P. Now
consider another sub-σ-field C ⊂ A which is pairwise sufficient, and a count-
able family of indices Θ0 ⊂ Θ. In particular there exists a common condi-
tional probability with respect to C for all {Pθ : θ ∈ Θ0}.

Let us take any set B ∈ B and its characteristic function 1B. Next, define
a function, independent of θ ∈ Θ0, by the formula

h = 1B − Eθ(Eθ(1B|C)|B).

Observe that h = χ ◦ T for some Borel χ : R→ R and∫
R
χ(x)Pθ(T−1(dx)) = Eθh = 0 for all θ ∈ Θ0. (2)

From the countable completeness of the statistic T , we obtain

Pθ({h 6= 0}) = 0 for all θ ∈ Θ0. (3)

Since C is pairwise sufficient, there exists a C-measurable function f : X →
[0, 1] such that

f − Eθ(1B|C) = 0 Pθ − a.e. for all θ ∈ Θ0.

If, for any set C ∈ C, there exists θ ∈ Θ0 such that

Pθ(B4C) 6= 0,

then, according to Lemma 2.8, there exists θ1 ∈ Θ0 satisfying

Eθ1 |1B − f | 6= 0.

But, by Lemma 2.9, it implies

Eθ1 |1B − Eθ1(f |B)| 6= 0,

which contradicts (3). The proof is completed.

Remark 1. Another version of Bahadur’s “pairwise” theorem can be found
in [13, Theorem 5.12, p. 102]. In this theorem, S. Yamada assumes in fact,
that the subfield B is complete. This assumption is rather weaker than
ours, the experiment E is countably complete (what has been suggested by
Example 2.6). Moreover experiments used by S. Yamada are majorized.

Theorem 3.2 (Basu’s “pairwise” theorem). If T is a pairwise sufficient
statistic, countably complete for a family {Pθ : θ ∈ Θ}, and if V is an
ancillary statistic, then statistics T and V are independent.
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Proof. Let A be a Borel set in R. It is sufficient to prove that for all θ ∈ Θ

Pθ{V ∈ A|T} = Pθ{V ∈ A}.
Since V is an ancillary statistic, Pθ{V ∈ A} does not depend on θ.

On the other hand we have

Eθ[Pθ{V ∈ A|T}] = Pθ{V ∈ A}.
Consequently,

Eθ[Pθ{V ∈ A|T} − Pθ{V ∈ A}] = 0.
Observe that Pθ{V ∈ A|T} − Pθ{V ∈ A} is a function of T , and T is a
countably complete statistic, thus there exists a countable set Θ0 ∈ Θ
such that for each countable Θ1, Θ0 ⊂ Θ1 ⊂ Θ, we have Pθ{ V ∈ A | T} −
Pθ{V ∈ A} = 0, Pθ − a.e., for all θ ∈ Θ1. This means that

Pθ{V ∈ A|T} = Pθ{V ∈ A} for all θ ∈ Θ,

which completes the proof.

Remark 2. These theorems are still true if we change Definition 2.5 of the
countably complete statistic on the following definition:

A statistic T is said to be countably complete if, for every countable
subset Θ0 of Θ, the family of distributions {Pθ(T−1(·)) : θ ∈ Θ0} is
complete.

However, this definition extorts the one-element distributions.
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