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Abstract. Each statistic, which is pairwise sufficient and (in a natural
sense) countably complete, is a minimal pairwise sufficient statistic. The
Basu theorem for pairwise suffcient statistic is also obtained.

1. Introduction

The notions of sufficiency and pairwise sufficiency are one of the funda-
mental concepts in mathematical statistics. Important contributions to this
theory are due to P. R. Halmos and L. J. Savage [8], R. R. Bahadur [1],
D. L. Burkholder [5], R. A. Fisher [6] and L. Le Cam [10]. Sufficiency can
be characterized by a factorization criterion, and by means of this criterion
a minimal sufficient subfield can be constructed ([2], [3], [7]).

H. Heyer and S. Yamada [9] provide a construction of common conditional
probabilities given a pairwise sufficient o-field under the hypothesis that the
underlying statistical experiment is majorized in the sense of E. Siebert [12].
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In the paper we show relations between pairwise sufficiency and other
important properties of statistics such as minimal pairwise sufficiency, com-
pletness, independence and ancillarity.

2. Preliminaries

Throughout the paper we are dealing with classical statistical experiments
of the form E := (X,2,P) where P denotes a parametrized family {Py :
0 € ©} of probability measures Py on the measurable space (X,2(). For any
sub-o-field B of 2 we consider the subexperiment E(B) = (X, B,P|B) of E
with the corresponding family P|B = {Fy|B : 0 € ©} of restrictions of Py to
B.

We introduce the notion of sufficency and pairwise sufficiency, following
Heyer and Yamada [9].

A sub-o-field B of 2 is called sufficient for E (or for P) if for each A € A
there exists a common conditional probability F(14|B) of A given B in the
sense that

/ E(14|B)dPy = Pp(ANB) for all B € B and all § € ©.
B

A statistic T : (X,2A) — (R, Borel(R)) is sufficient for P if the sub-o-field
o(T) generated by the statistic 7" is sufficient.

Next we give two formulations of pairwise sufficiency of a sub-o-field
which are clearly equivalent by an elementary reasoning.

Definition 2.1. A sub-o-field B of 2 is called pairwise sufficient for P if B
is sufficient for all two-element subsets Py C P.

Equivalently, B is pairwise sufficient for P if, for each countable set ©¢ C
O, there exists a common conditional probability E(14|B), A € 2, given B
in the sense that

/ E(14|B)dPy = Py(AN B) for all B € Band all 6 € Q.
B

Similarly, a statistic T is pairwise sufficient for P if the corresponding sub-
o-field o(T') is pairwise sufficient.

Now we exhibit a statistic which is, for a suitable set of measures, pairwise
sufficient but not sufficient. It is a simplification of the example of Halmos
and Savage [8].
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Example 2.2. Let X = ([0,1] x {0,1}), {FPy : 0 € ©} = {dz, : w0 €
[0,1] x {0}} U {Ajp1)xq13} where {4, : zo € [0,1] x {0}} is a family of
Dirac measures and A[g 1]x {1} is the one-dimensional Lebesgue measure. The
statistic S, defined by S(z,y) = z, is pairwise sufficient but not sufficient.

Now we give definitions of some other “pairwise” notions. As a gener-
alization of a classical definition of the minimal statistic we propose the
following

Definition 2.3. A sub-o-field B of 2 is called minimal pairwise sufficient
if B is pairwise sufficient and
(V C C A, C—pairwise sufficient) (V B € B) (V ©g C O, ©p—countable)
(3 CeC)(V 00y Py(BAC)=0.

Similarly, the statistic 7" is minimal pairwise sufficient if it generates the
minimal pairwise sufficient o-field.

Definition 2.4. As usual, we say that a family of distributions {pg : 0 € O}
on (R, Borel(R)) is complete if for any Borel function x : R — R the
condition

/Xdp(;:O forall 9 € ©
R
implies

po({x #0}) =0 for 0 €O.

The statistic T : (X, ) — (R, Borel(R)) is said to be complete if the family
of its distributions pg = Py(T~1(-)), 6 € © is a complete family.

We also propose the following notion of countable completness.

Definition 2.5. The statistic T" is said to be countably complete if there
exists a countable set ©g C © such that {Py(T~1(-)); 6 € ©1} is a complete
family for all countable ©1,0¢ C ©; C O.

Now we give an example of a family of distributions {pg : € ©} which
is complete but not countably complete.

Example 2.6. Let X = [0,1] and let {ps = (1/2)Ag,1)+(1/2)dp, 0 € [0,1]}
be a family of distributions.

We first show that this family is complete. Let f denote a Borel function.
Assume that

/ fdpg =0 forall 6 € 0,1],
X
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then
1/ FdA+ 2 £(0) = 0
2 /x 2 N
and consequently,

po({f #0}) =0 for 6€]0,1].

According to the definition, the family {pp : 0 € [0, 1]} is complete.
Next we suppose that {pg : € O} is a countably complete family. In
particular, for some countable family ©¢ = {61, 62, ... }, the condition

/fdpgizo for all ¢ >1

implies that there exists a set A such that
fla=0 and pg, (A) =1 for 6; € Oy.

But properties of the function

1 if x € {61, 6, ... },

gy =4 et I

-1 ifx¢ {6, 0o, ...} and z € 0,1],
contradict our assumption. The family of distributions {pg : 6 € [0, 1]} is
not countably complete.

In the notation of Schervish [11] we have

Definition 2.7. The statistic T is said to be ancillary if its distribution in
Py does not depend on 6 for 0 € ©.

For the sake of completeness we prove the following elementary lemmas
for a fixed subset ©g C O.

Lemma 2.8. Let C C 2 be o-field. Assume that for B € 2 there exists a
C-measurable function f : X — [0,1] such that f —Ey(1p|C) = 0 Py—a.e.
for 8 € ©g. If for each 8 € ©q

E@‘]-B - f‘ = 07
then there exists C' € C satisfying
Py(BAC) =0 for each 6 € Oy.

Proof. Assume that
Egl1p — f| =0 for each 6 € ©y.
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Let f =E(1p|C) and put C' = {E(15|C) > 1/2}. Then for arbitrary 6 € ©g
we have

Po(BAC) =Eg(1pac) = Eg(|11s — 1c|) = Eo(I15 — Lg@si0)>1/2)])

=Eo(15 — L i0)>1/2) " + Eo(Lwio)>1/2) — 18)T
=E(15 — Log40)>1) " + Eo(Lr(1,10)>1) — 18)T
<Ep2(1p —E(15[C))" + E2(E(1p|C) — 15) - 15
<2E¢(1p — E(15[C))" + 2E¢(E(15|C) — 15)*
=2Ey (|15 — E(15]C)]) =0,

where, as usual, x* = max{x,0} for any x € R. The lemma is proved. []

Lemma 2.9. Let us fir 60 € ©Oq, a o-field B C A, B € B and a measurable
function f: X — [0,1]. IfEgf =Eplp and
Ep[1p — f| # 0. (1)
Then
Eg|1p — Eq(f|B)| # 0.

Proof. Suppose that
Epllp — Eo(f|B)| = 0.
Obviously, we have

Eg(f-1pe) =Eg(Eg(f|B) - 1pc) =Eg(lp-1pc) =0.
Consequently,
Eo(f - 1) =Eo(f) = Eo(1p).
Thus
f=1p Py—ae,
which contradicts (1). The lemma is proved. O

3. Main results

Let (X, 2, P) be a statistical space and let T : (X,2) — (R, Borel(R))
be a statistic.

Theorem 3.1 (Bahadur’s “pairwise” theorem). IfT is a pairwise sufficient
and countably complete statistic for a family {Py : 0 € ©} then T is the min-
1mal pairwise sufficient statistic.
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Proof. Put B = T~!(Borel(R)), thus B is pairwise sufficient for P. Now
consider another sub-o-field C C 2 which is pairwise sufficient, and a count-
able family of indices ©¢ C ©. In particular there exists a common condi-
tional probability with respect to C for all {Py : 0 € O¢}.

Let us take any set B € B and its characteristic function 15. Next, define
a function, independent of 8 € O, by the formula

h=1p —Ey(Eg(15]C)|B).

Observe that h = x o T for some Borel x : R — R and
/ (@) Py(T~1(d)) = Bgh = 0 for all & € Op. )
R

From the countable completeness of the statistic T', we obtain
Py({h #0}) =0 for all § € ©. (3)

Since C is pairwise sufficient, there exists a C-measurable function f: X —
[0, 1] such that

f—Eg(1p|C)=0 Py — a.e. for all § € Oy.
If, for any set C € C, there exists 6 € Og such that
Py(BAC) # 0,
then, according to Lemma 2.8, there exists 01 € ©q satisfying
Eo, |15 — f] # 0.
But, by Lemma 2.9, it implies
Eg,[15 — Eo, (f|B)| # 0,
which contradicts (3). The proof is completed. O

Remark 1. Another version of Bahadur’s “pairwise” theorem can be found
in [13, Theorem 5.12, p. 102]. In this theorem, S. Yamada assumes in fact,
that the subfield B is complete. This assumption is rather weaker than
ours, the experiment E is countably complete (what has been suggested by
Example 2.6). Moreover experiments used by S. Yamada are majorized.

Theorem 3.2 (Basu’s “pairwise” theorem). If T' is a pairwise sufficient
statistic, countably complete for a family {Py : 0 € O}, and if V is an
ancillary statistic, then statistics T and V are independent.
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Proof. Let A be a Borel set in R. It is sufficient to prove that for all § € ©
PQ{V € A|T} = PQ{V S A}

Since V is an ancillary statistic, Pp{V € A} does not depend on 6.
On the other hand we have

E@[PQ{V S A’T}] = Pg{v S A}

Consequently,

EQ[PQ{V S A‘T} — Pg{v S A}] =0.
Observe that Py{V € A|T} — Py{V € A} is a function of T, and T is a
countably complete statistic, thus there exists a countable set ©¢ € ©
such that for each countable ©1, ©g C ©; C ©, we have Pp{ V€ A | T} —
Py{V € A} =0, Py — a.e., for all § € ©;. This means that

Py{V € AIT} = Pp{V € A} forall 0 € 0O,
which completes the proof. O

Remark 2. These theorems are still true if we change Definition 2.5 of the
countably complete statistic on the following definition:

A statistic T is said to be countably complete if, for every countable
subset ©g of O, the family of distributions {Py(T1(-)): 6 € Op} is
complete.

However, this definition extorts the one-element distributions.
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