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Abstract. Results on products of Schwartz distributions are obtained
when they have coinciding point singularities and only sums of the prod-
ucts exist in the distribution space. These results follow the pattern of a
well-know distributional product published by Jan Mikusiński in 1966,
and are named Mikusiński type products. The formulas are derived
as the distributions are embedded in Colombeau algebra of generalized
functions. This algebra possesses optimal properties regarding the dis-
tributional multiplication, and its notion of “association” allows one to
obtain the results in terms of distributions.

1. Introduction

The problem of multiplication of Schwartz distributions has been for a
long time objective of many research studies. This is due to the large em-
ployment of distributions in the natural sciences and other mathematical
fields, where products of distributions with coinciding singularities often
appear. Starting with the historically first work of König [14], various
constructions of differential algebras that include distributions have been
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proposed by Berg [2], Antonevich and Radyno [1], Egorov [9], and other
authors.

In the last years, the associative differential algebra G of generalized func-
tions of J.-F. Colombeau [4] became very popular in tackling distributional
problems. The distributions are linearly embedded in G and the multiplica-
tion is compatible with the operations of differentiation and products with
C∞-differentiable functions. Moreover, the “association” in G, being a faith-
ful generalization of the equality of distributions in the space D′(Rm), yields
results in terms of distributions (and numerical factors). With applications
in mind, this approach is followed here: we evaluate particular products
of distributions with coinciding singularities — as embedded in Colombeau
algebra — by their associated distributions.

Recall now the well-known result of Mikusiński published in [15]:

x−1 . x−1 − π2 δ(x) . δ(x) = x−2, x ∈ R. (1)

Though, neither of the products on the left-hand side here exists, their
difference still has a correct meaning in D′(Rm). Another formula of this
type in dimension one — in a nonstandard approach to Distribution theory
— was given in [17]:

H . δ′(x) + δ(x) . δ(x) ∗= δ′(x) /2. (2)

(H is the Heaviside function and “ ∗=” stands for the equality up to an
infinitesimal quantity.)

Formulas of that type can be found in the mathematical and physical
literature. We proposed the name “products of Mikusiński type” for such
equations in previous papers [6], [8], where generalization of (2) and the
basic Mikusiński formula (1) were derived in Colombeau algebra (see equa-
tions (9) and (11) below). In this paper, we continue the study in [6] and [7]
obtaining further results on Mikusiński type products, or M-type products
for short, in the algebra G(R). Some of the results are extended to the case
of several variables as well. Singular products of piecewise differentiable
functions with derivatives of the δ-function are also evaluated in G(R).

2. Fundamentals of Colombeau theory

We recall the basic definitions of Colombeau algebra of generalized func-
tions.

Notation 1. If N0 stands for the nonnegative integers and p = (p1, p2, . . . ,
pm) is a multiindex in Nm0 , we let |p| =

∑m
i=1 pi and p! = p1!...pm!. Then,

if x = (x1, . . . , xm) is in Rm, denote xp = (xp1
1 , x

p2
2 , . . . , x

pm
m ) and ∂p =

∂|p|/∂xp1
1 . . . ∂xpmm . Also, by x < 0 is meant: x1 ≤ 0, . . . , xm ≤ 0 and x 6= 0.



RESULTS ON SINGULAR DISTRIBUTION PRODUCTS 51

Further, if q is in N0, we put Aq(R) = {ϕ(x) ∈ D(R) :
∫
R x

j ϕ(x) dx = δ0j
for 0 ≤ j ≤ q, where δ00 = 1, δ0j = 0 for j > 0}. This also extends to
Rm as an m-fold product: Aq(Rm) = {ϕ(x) ∈ D(Rm) : ϕ(x1, . . . , xm) =∏m
i=1 χ(xi) for some χ in Aq(R)}. Finally, we denote ϕε = ε−mϕ(ε−1x) for

ϕ in Aq(Rm) and ε > 0.

Definition 1. Let E [Rm] be the algebra of functions f(ϕ, x) : A0(Rm) ×
Rm→C that are infinitely differentiable, by a fixed “parameter” ϕ. The
generalized functions of Colombeau are elements of the quotient algebra

G ≡ G(Rm) = EM[Rm] / I [Rm].

Here EM[Rm] is the subalgebra of “moderate” functions such that for each
compact subset K of Rm and p ∈ Nm0 there is a q ∈ N such that, for each
ϕ ∈ Aq(Rm),

sup
x∈K
|∂pf(ϕε, x) | = O(ε−q), as ε→0+.

In turn, the ideal I [Rm] of EM[Rm] is the set of functions such that for each
compact subset K of Rm and any p ∈ Nm0 there is a q ∈ N such that, for
every r ≥ q and ϕ ∈ Ar(Rm),

sup
x∈K
|∂pf(ϕε, x) | = O(εr−q), as ε→0+.

(The Landau symbol O(ε) stands for an arbitrary function of asymptotic
order less or equal to that of ε, as ε→0+.)

The algebra G contains the distributions on Rm, canonically embedded
as a C-vector subspace by the map i : D′(Rm)→G : u 7→ ũ = {ũ(ϕ, x) =
(u ∗ ϕ̌)(x)}, where ϕ̌(x) = ϕ(−x) and ϕ is running the set Aq(Rm). The
equality in Colombeau algebra G is very strict, so the next weaker concept
for “association” is introduced.

Definition 2. (a) Two generalized functions f, g ∈ G are said to be asso-
ciated, denoted f ≈ g, if for some representatives f(ϕε, x), g(ϕε, x) of theirs
and each ψ(x) ∈ D(Rm) there is a q ∈ N0 such that limε→0+

∫
Rm [f(ϕε, x)−

g(ϕε, x)]ψ(x) dx = 0, for all ϕ(x) ∈ Aq(Rm).
(b) A generalized function f ∈ G is said to admit some u ∈ D′(Rm)

as an “ssociated distribution”, denoted f ≈ u, if for some representative
of f and for each ψ(x) ∈ D(Rm) there is a q ∈ N0 such that, for all
ϕ(x) ∈ Aq(Rm), limε→0+

∫
Rm f(ϕε, x)ψ(x) dx = 〈u, ψ〉 .

These definitions are independent of the representative chosen. The dis-
tribution associated, if it exists, is unique. The image in G of every distri-
bution is associated with the latter [4], the association thus being a gener-
alization of the equality of distributions in D′(Rm). Now, we give this.
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Definition 3. By product of some distributions in Colombeau algebra G,
sometimes called “Colombeau product”, is meant the product of their em-
beddings in G, whenever the result admits an associated distribution.

The following coherence result holds [16, Proposition 10.3]: If the reg-
ularized model product of two distributions exists, then their Colombeau
product also exists and coincides with the former. On the other hand, in the
general setting of Colombeau algebra G(Rm) [4], as well as in the algebra
G(R) on the real line, this assertion turns into an equivalence, according
to a result by Jeĺınek [12]; cf. also a recent study by Boie [3]. However, in
the setting of algebra G(Rm) with parameter functions ϕ defined as m-fold
tensor products, the Colombeau product extends the model product: simple
examples of Colombeau products do not exist as model products [16].

3. Preliminary results

We recall now several results that will be needed later. The ≈-association
is consistent with the linear operations in Colombeau algebra, but it holds
only the following “weak” version of the formula for partial derivatives
∂i, i = 1, . . . ,m of the Colombeau product of distributions on Rm.

Lemma 1 ([6]). Let the embeddings of the distributions u, v and the dis-
tribution w satisfy ũ . ṽ ≈ w. Then it holds

∂̃iu . ṽ + ũ . ∂̃iv ≈ ∂iw, i = 1, 2, . . . ,m. (3)

Note that, in general, only the sum on the left-hand side of (3) has an
associated distribution, but not the individual summands in it; hence the
name “weak”. Clearly, this assertion extends to M-type products in G(Rm)
as well.

Notation 2. We denote the “normed” powers of the variable x ∈ Rm for an
arbitrary p ∈ Nm0 that are supported only in one quadrant of the Euclidean
space Rm by:

ν p+ ≡ ν
p
+(x) = {xp/p!, x > 0, = 0 elsewhere },

ν p− ≡ ν
p
−(x) = {(−x)p/p!, x < 0, = 0 elsewhere }.

Denote further their “even” and “odd” compositions as: ν p0 = ν p+ + ν p−,
ν p0 = ν p+ − ν

p
−, which will be jointly denoted as ν pσ , σ = (0, 1).

In dimension one, these notations correspond to the normed even and
odd distributions |x|p and |x|p sgnx (x ∈ R, p ∈ N), as introduced in [10].
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Observe that ν pσ are indeed even and odd functions of x for σ = 0 or 1:
ν pσ (−x) = (−1)σ ν pσ (x). Finally, one has

∂x ν
p+1
± = ± ν p±, ∂x ν

p+1
0 = ν p1 , ∂x ν

p+1
1 = ν p0 (4)

(with no number coefficients). With the above notation, it now holds the
following.

Proposition 1 ([5]). For an arbitrary p ∈ Nm0 , the embeddings δ̃(p)(x), ν̃ p±
in G(Rm) of the distributions δ(p)(x), ν p± satisfy:

ν̃ p+ . δ̃
(p)(x) ≈ (−1)|p| 2−m δ(x), ν̃ p− . δ̃

(p)(x) ≈ 2−m δ(x). (5)

We note that these equations are known in distribution theory but they
have been only derived as regularized products in dimension one, using
symmetric mollifiers.

Combining now equations (5) and taking into account Notation 2, we
obtain for each p ∈ Nm0 :

ν̂ 2p+1
0 . ^δ(2p+1)(x) ≈ 0, ν̃ 2p

1 . ^δ(2p)(x) ≈ 0. (6)

Remark 1. Note that ν 2p
0 and ν 2p+1

1 coincide with the C∞ function
ν q(x) = xq/q! for q = 2p, 2p + 1, correspondingly, except for x = 0, and
ν qσ (±0) = ν q(0) for σ = 0, 1 and any q ∈ Nm0 . Thus, by classical theorems
in Distribution theory [13, Chapter 6], their products with δ(q)(x) coincide
with ν q(x) . δ(q)(x), which exist in the space D′(Rm).

We next give some results on M-type products of the above distributions
in G(R). Denoting Ȟ := H(−x)( = ν0

− ), one easily checks that (ν−)′ = −Ȟ
and (Ȟ)′ = −δ. Then, combining the results of Lemma 1 and Proposition 1,
the following equations can be proved in G(R) for an arbitrary p ∈ N:

ν̃ p+. δ̂
(p+1)(x) + ]ν p−1

+ . δ̃(p)(x) ≈ (−1)p

2
δ′,

ν̃ p−. δ̂
(p+1)(x)−]ν p−1

− . δ̃(p)(x) ≈ 1
2
δ′.

(7)

When p = 0 in equation (5), we obtain by Lemma 1:

H̃. δ̃′(x) + δ̃ 2(x) ≈ 1
2
δ′, ˜̌H. δ̃′(x)− δ̃ 2(x) ≈ 1

2
δ′. (8)

Note that the first equation in (8) coincides with (2), but it was derived
in [6] with no auxiliary requirements on the mollifiers, such as to be even
functions as required in [17]. Furthermore, the next proposition directly
generalizes the M-type products (8) for the distributions ν p± and δ(p+1)(x).
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Proposition 2 ([6]). For an arbitrary p in N0, the embeddings in G(R) of
the distributions ν p± and δ(p+1)(x) satisfy:

(−1)p ν̃p+ . δ̂(p+1)(x) + δ̃ 2(x) ≈ p+ 1
2

δ′,

ν̃ p− . δ̂
(p+1)(x)− δ̃ 2(x) ≈ p+ 1

2
δ′.

(9)

Accordingly, combining equations (9), we get for any p in N0:

ν̂ 2p+1
0 . δ̂(2p+2)(x)− 2δ̃ 2(x) ≈ 0,

ν̃ 2p
1 . δ̂(2p+1)(x) + 2δ̃ 2(x) ≈ 0.

(10)

We finally recall the generalization of basic Mikusiński equation (1) for
arbitrary p, q ∈ N derived in [8] in Colombeau algebra of tempered gener-
alized functions on R:

x̃−p . x̃−q − π2 (−1)p+q

(p− 1)! (q − 1)!
δ̂(p−1)(x) . δ̂(q−1)(x) ≈ x−p−q. (11)

4. Further results on Mikusiński type distributional products

We now proceed to particular M-type products of the distributions ν p±, ν
p
σ ,

and δ(p)(x) in Colombeau algebra. Applying first the weak rule (3) for
differentiation of Colombeau products to equations (8), we get:

H̃ . δ̃′′(x) + 3 δ̃(x) . δ̃′(x) ≈ 1
2
δ′′,

˜̌H . δ̃′′(x)− 3 δ̃(x) . δ̃′ ≈ 1
2
δ′′.

(12)

Differentiating then equations (7) and (9) for p = 1, according to that
rule, and combining the results, we obtain:

ν̃+ . δ̃′′′(x)− 5 δ̃(x) . δ̃′(x) ≈ −3
2
δ′′,

ν̃− . δ̃′′′(x)− 5 δ̃(x) . δ̃′ ≈ 3
2
δ′′.

(13)

Moreover, as shown by the next two propositions, the M-type products
given by equations (12) and (13) can be directly generalized for the distri-
butions ν p± and δ(p+2)(x) for each p ∈ N0.
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Proposition 3. For an arbitrary p ∈ N0, the embeddings in G(R) of the
distributions ν p+ and δ(p+2)(x) satisfy

(−1)p ν̃ p+ . δ̂(p+2)(x) + (2p+ 3) δ̃(x) . δ̃′(x) ≈ (p+ 1)(p+ 2)
4

δ′′(x). (14)

Proof. For an arbitrary ψ(x) in D(R), denote first V := 〈 δ̃(ϕε, x)δ̃′(ϕε, x),
ψ(x) 〉. Then, we get on the change −x/ε = t and applying Taylor theorem:

V =− 1
ε3

∫ −εa
−εb

ϕ
(
−x
ε

)
ϕ′
(
−x
ε

)
ψ(x) dx

=− 1
ε2

∫ −εa
−εb

ϕ(t)ϕ′(t)ψ(−εt) dx

=
∫ b

a

[
−ψ(0)

ε2 +
ψ′(0)
ε

t− ψ′′(0)
2

t2
]
ϕ(t)ϕ′(t) dt+O(ε)

=− ψ′(0)
2 ε

∫ b

a
ϕ2(t) dt+

ψ′′(0)
2

∫ b

a
t ϕ2(t) dt + O(ε). (15)

It is taken into account here that, if suppϕ(x) ⊆ [a, b] for some a, b in R,
then suppϕ(−x/ε) ⊆ [−εb,−εa].

Denoting further Vp := 〈 ν̃ p+(ϕε, x) . δ̂(p+2)(ϕε, x), ψ(x) 〉, we obtain

p! Vp =
(−1)p+2

εp+3

∫ −aε
−bε

(∫ b

−x/ε
(x+ εt)pϕ(t) dt

)
ϕ(p+2)

(
−x
ε

)
ψ(x) dx

=
1
ε2

∫ b

a
ψ(−εy)ϕ(p+2)(y)

∫ b

y
(y − t)pϕ(t) dt dy

=
ψ(0)
ε2

∫ b

a
ϕ(t)

∫ t

a
(y − t)pϕ(p+2)(y) dy dt

− ψ′(0)
ε

∫ b

a
ϕ(t)

∫ t

a
y (y − t)pϕ(p+2)(y) dy dt

+
ψ′′(0)

2

∫ b

a
ϕ(t)

∫ t

a
y2 (y − t)pϕ(p+2)(y) dy dt+O(ε)

=:
ψ(0)
ε2 I1 −

ψ′(0)
ε

I2 +
ψ′′(0)

2
I3 + O(ε). (16)

On a multiple integration by parts, the integrated term being zero each
time, we calculate successively:

I1 =(−1)p p!
∫ b

a
ϕ(y)

∫ t

a
ϕ′′(y) dy dt = (−1)p p!

ϕ2(t)
2

∣∣∣∣b
a

= 0,
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I2 =
∫ b

a
ϕ(t)

∫ t

a
(y − t)p+1ϕ(p+2)(y) dy dt

+
∫ b

a
tϕ(t)

∫ t

a
(y − t)pϕ(p+2)(y) dy dt

=(−1)p+1 (p+ 1)!
∫ b

a
ϕ2(t) dt+ (−1)p p!

∫ b

a
t ϕ(t)ϕ′(t) dt

=
1
2

(−1)p+1 p! (2p+ 3)
∫ b

a
ϕ2(t) dt,

I3 =
∫ b

a
ϕ(t)

∫ t

a
(y−t)p+2ϕ(p+2)(y)dy dt

+
∫ b

a
ϕ(t)

∫ t

a
(2yt−t2)(y−t)pϕ(p+2)(y)dy dt

=2
∫ b

a
t ϕ(t)

∫ t

a
(y−t)p+1ϕ(p+2)(y) dy dt

+
∫ b

a
t2ϕ(t)

∫ t

a
(y−t)pϕ(p+2)(y) dy dt

=(−1)p+1 2 (p+ 1)!
∫ b

a
t ϕ2(t) dt+ (−1)p p!

∫ b

a
t2 ϕ(t)ϕ′(t) dt

=(−1)p+1 (p)! (2p+ 3)
∫ b

a
t ϕ2(t) dt.

Replacing these latter terms in (16), we get

(−1)p Vp =(2p+ 3)
[
ψ′(0)
2 ε

∫ b

a
ϕ2(t) dt+

ψ′′(0)
2

∫ b

a
t ϕ2(t) dt

]
+

1
4

(p+ 1)(p+ 2)ψ′′(0) +O(ε).

In view of equality (15), we finally write

(−1)p Vp + 〈(2p+ 3) δ̃(x) δ̃′(x), ψ(x)〉 =
(p+ 1)(p+ 2)

4
〈 δ′′(x), ψ(x) 〉+O(ε).

Passing therefore to the limit, as ε→0+, and applying Definition 2, we obtain
the M-type product (14) for any p ∈ N.

Proposition 4. For an arbitrary p ∈ N0, the embeddings in G(R) of the
distributions ν p− and δ(p+2)(x) satisfy

ν̃ p− . δ̂
(p+2)(x) − (2p + 3) δ̃(x) . δ̃′(x) ≈ (p+ 1)(p+ 2)

4
δ′′(x). (17)
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Proof. Since xp− = (−x)p+ for any p ∈ N0, equation (17) is obtained
on replacing x→ − x in (14) and taking into account that δ(p)(−x) =
(−1)pδ(p)(x).

Remark 2. Further extension of the results of Propositions 3–4 to the
products ν p± . δ

(p+q)(x) for q = 3, 4, . . . or for arbitrary q ∈ N, is also possi-
ble (though more difficult) to prove, but the results are not M-type products
any more: one gets for the balancing term not single product but a sum of
such products.

Combining now equations (14), (17), we get this.

Corollary 1. For an arbitrary p ∈ N, the embeddings in G(R) of the dis-
tributions ν pσ and δ(p+2)(x) satisfy:

ν̂ 2p−1
0 . ^δ(2p+1)(x)− 2 (4p+ 1) δ̃(x) . δ̃′(x) ≈ 0, (18)

ν̂ 2p−2
1 . ^δ(2p)(x) + 2 (4p− 1) δ̃(x) . δ̃′(x) ≈ 0. (19)

We will now demonstrate that a class of M-type distributional products
can be extended to the many-variable case. Namely, the following general
assertion holds.

Theorem 1. Let uk, vk (k = 1, 2) be distributions in D′(Rm), such that
uk(x) =

∏m
i=1 u

i
k(xi) and vk(x) =

∏m
i=1 v

i
k(xi). If all uik, v

i
k are distributions

in D′(R) and their embeddings in G(R) satisfy: ũi1 . ṽ
i
1 − ũi2 . ṽi2 ≈ 0, i =

1, . . . ,m, then the embeddings in G(Rm) of the tensor-product distributions
uk, vk satisfy: ũ1 . ṽ1 − ũ2 . ṽ2 ≈ 0.

Proof. By the linearity of Definition 2, we have ũi1 . ṽ
i
1 ≈ ũi2 . ṽ

i
2, which

holds in G(R) for each i = 1, . . . ,m. Suppose further we have restricted
ourselves to the subspace of test-functions ψ(x) =

∏m
i=1 ψi(xi), with each

ψi in D(R). Then, in view of the tensor-product structure of both the
distributions uk, vk ∈ D′(Rm) and the parameter functions ϕ ∈ A0(Rm), on
applying a Fubini-type theorem for tensor-product distributions [11, § 4.3],
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we get for I := 〈ũ1(ϕε, x) . ṽ1(ϕε, x), ψ(x)〉:

I =〈
m∏
i=1

ũ1
i(χε, xi) .

m∏
i=1

ṽ1
i(χε, xi),

m∏
i=1

ψi(xi)〉

=
m∏
i=1

〈ũ1
i(χε, xi) . ṽ1

i(χε, xi), ψi(xi)〉

=
m∏
i=1

[〈ũ2
i(χε, xi) . ṽ2

i(χε, xi), ψi(xi)〉+ oi(1)]

=〈ũ2(ϕε, x) . ṽ2(ϕε, x), ψ(x)〉+ o(1).

Here, each Landau symbol o(1) stands for an arbitrary function of asymp-
totic order less than any constant, or equivalently, that tends to 0, as ε→0.
Thus, we have

lim
ε→0
〈[ũ1(ϕε, x)ṽ1(ϕε, x) − ũ2(ϕε, x)ṽ2(ϕε, x)], ψ(x)〉 = 0.

Now since the set of test-functions ψ(x) =
∏m
i=1 ψi(xi) is a dense subset

of D(Rm) [11, § 4.3], it follows, by Definition 2, that the product in consid-
eration holds for the embeddings of the tensor-product distributions uk, vk.
The proof is complete.

Remark 3. Observe that the distributions νpσ and δ(q)(x) have a tensor-
product structure (with coinciding components ui). Thus, by Theorem 1,
the M-type products (10), (18), and (19) hold when the distributions in-
volved belong to the space D′(Rm).

5. Singular products of piecewise differentiable functions

We first recall a result proved in [7], starting with the following.

Notation 3. Let Ckd (R\{0}) be the class of k-times differentiable functions
on R\{0} for some k ∈ N0, such that each function f(x) and its derivatives
have discontinuities of first order at the point x = 0, i.e. for each i =
0, . . . , k, the values f (i)(0+) and f (i)(0−) exist but generally differ from
each other. Denote then:

mi =
1
2

[
f (i)(0+) + f (i)(0−)

]
,

hi =f (i)(0+)− f (i)(0−) (the jump at 0), i = 0, . . . , k.
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In Distribution theory, functions in Ckd (R \ {0}) cannot be multiplied
with a distribution having singular support that includes the point x = 0.
Nonetheless, their Colombeau products with the δ-function and its deriva-
tive exist, as proved in [7]:

Proposition 5. For each function f(x) ∈ C1
d(R \{0}), the embedding in

G(R) satisfy:

f̃(x) . δ̃(x) ≈ m0 δ(x),

f̃(x) . δ̃′(x) + h0 δ̃
2(x) ≈ m0 δ

′(x)−m1 δ(x).
(20)

Remark 4. The choice of the point x = 0 is no loss of generality, and
moreover these equations can be modified for the case of finite number
of discontinuities. Observe that whenever the jump h0 of the function is
zero, then the M-type product in (20) becomes an “ordinary” Colombeau
product.

We now extend these results, connecting them with such given above.
Recall that any function on R can be canonically represented as a sum of
its even and odd parts:

f(x) =
∑
σ=0,1

fσ(x), where

f0(x) :=
1
2

[f(x) + f̌(x)] and f1(x) :=
1
2

[f(x)− f̌(x)]

are indeed even and odd functions: fσ(−x) = (−1)σ fσ(x), σ = (0, 1).
One then checks that, for any function f(x) in Ckd (R \ {0}) and i ≤

(k − 1)/2,

m
(
f

(2i)
0

)
= m2i, m

(
f

(2i+1)
1

)
= m2i+1,

h
(
f

(2i)
1

)
= h2i, h

(
f

(2i+1)
0

)
= h2i+1,

(21)

the rest four combinations being all zero. Now from (20) and (21), it follows
this.

Corollary 2. For each function f(x) ∈ C1
d(R\{0}), the embeddings in G(R)

of its even and odd parts satisfy:

f̃0(x) . δ̃(x) ≈ m0 δ(x), f̃1(x) . δ̃(x) ≈ 0, (22)

f̃0(x) . δ̃′(x) ≈ m0 δ
′(x), f̃1(x) . δ̃′(x) + h0 δ̃

2(x) ≈ −m1 δ
′(x). (23)
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We next give more M-type products in G(R) for the even and odd (parts
of) functions in C2

d(R \{0}).

Proposition 6. The embedding in G(R) of the even and odd parts of any
function f(x) ∈ C2

d(R \{0}), satisfy:

f̃0(x) . δ̃′′(x)− h1 δ̃
2(x) ≈ m0 δ

′′(x) +m2 δ(x), (24)

f̃1(x) . δ̃′′(x) + 3h0 δ̃ . δ̃′ ≈ −2 m1 δ
′(x). (25)

Proof. Differentiating equation (20) in G, where it holds ∂xũ = ∂̃xu for the
imbedding in G of anu distribution u ∈ D′(R), we get

f̃(x) . δ̃′′(x) + f̃ ′(x) . δ̃′(x) + 2h0 δ̃(x) . δ̃′(x) ≈ m0 δ
′′(x)−m1 δ

′(x).

The left-hand side of this equation is to be considered as a single entity.
Recall now [10, § 1.2] that the distributional derivative of any function
f ∈ C1

d(R \{0}) is given by f ′ = f ′cl + h0 δ, where f ′cl is the classical
derivative of f for x 6= 0. We thus obtain

f̃(x) . δ̃′′(x) + f̃ ′cl(x) . δ̃′(x) + 3h0 δ̃(x) . δ̃′(x) ≈ m0 δ
′′(x)−m1 δ

′(x).

For the second term here, equation (20) yields

f̃ ′cl(x) . δ̃′(x) + h1 δ̃
2(x) ≈ m1 δ

′(x)−m2 δ(x).

Replacing this in the above equation, we get

f̃(x) . δ̃′′(x)− h1 δ̃
2(x) + 3h0 δ̃(x) . δ̃′(x)

≈ m0 δ
′′(x)− 2m1 δ

′(x) +m2 δ(x). (26)

Applying then the last equation successively to the even and odd parts fσ
of f(x) and taking into account that (21) gives

h(f0) = m(f ′0) = 0, h(f ′1) = m(f1) = m(f ′′1 ) = 0,

equation (26) splits into the M-type products (24), (25). The proof is com-
plete.

Examples . The next equations are obtained, replacing the function f(x)
successively with:
(a) ν0

1 ≡ sgnx in (25): ]sgn x . δ̃′′(x) + 6 δ̃(x) . δ̃′(x) ≈ 0,
(b) ν0 ≡ |x| in (24): |x| . δ̃′(x) − 2 δ̃ 2(x) ≈ 0,

(c) ν2
1 ≡

1
2
|x|2 sgnx in (25): |x|2 sgn x . δ̃′′(x) ≈ 0.

Note that these equations coincide correspondingly with: (19) for p = 1,
the first equation in (10) for p = 1, and with the second equation in (6) for
p = 0.
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