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Abstract. The order structure of time projections associated with ran-
dom times in a von Neumann algebra is investigated in the general setup
as well as that of the CAR and CCR algebras. In the second case var-
ious additional properties (such as e.g. the upper/lower continuity) of
the lattice of time projections are also discussed.

0. Introduction

In this paper we investigate the order structure of time projections as-
sociated with random times in an arbitrary non-commutative filtration of
a von Neumann algebra as well as those employed in quantum stochastic
theory of the canonical anticommutation relations (CAR) and the canonical
commutation relations (CCR) (cf. [4], [9]). Within the context of certain
quasi-free representations of the CAR and CCR, we give an answer to a
question posed in [3] — the dual of Theorem 1.12 of [3] (see Theorem 2.7
and Theorem 3.5 in this paper, which can be considered as a partial answer
to that question for an arbitrary non-commutative filtration).
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Section 2 contains a brief review of random times and the associated
time projections. The structure of time projections is discussed within an
abstract setup.

In Section 3 we specialize to the quantum stochastic theory of the CAR,
although all of the results have analogues within the theory of the CCR.
Various properties, of the lattice of time projections (in particular, the up-
per/lower continuity) are discussed in this context.

1. Notation and preliminaries

Let H be a complex Hilbert space, B (H) — the bounded linear operators
on H, A ⊆ B (H) — a von Neumann algebra, and let (At), t ∈ R+, be an
increasing, right continuous family of von Neumann subalgebras of A such
that A = A∞ is generated by the collection {At : t ∈ [0,∞)}. We also
suppose that there is a cyclic and separating unit vector Ω for A in H, and
that there is a family (Et) of normal ω-invariant conditional expectations
Et : A → At, where ω is the vector state induced by Ω. If we denote the
closure of AtΩ in H by Ht, and the orthogonal projection from H onto Ht
by Pt, we have

Pt (aΩ) = Et (a) Ω
for any a ∈ A. Furthermore, since Ht is invariant under At, it follows that
Pt ∈ A′t (see [1], [2] for a more detailed description).

Let us now recall some basic notions from lattice theory which will be
employed in the sequel. For simplicity and since this is all we need, we
restrict attention to lattices of orthogonal projections in a Hilbert space.

Definition 1.1 (cf. [11, 7.7 p. 152]). Let L be a lattice of projections act-
ing on a Hilbert space.

(i) L is said to be modular, if for each p, q, r ∈ L such that p ≤ r we have
(p ∨ q) ∧ r = p ∨ (q ∧ r).

(ii) L is said to be upper (resp. lower) continuous, if for each q ∈ L and
each increasingly (resp. decreasingly) directed set {pi : i ∈ I} ⊂ L
such that

∨
i∈I pi ∈ L (resp.

∧
i∈I pi ∈ L) we have

∨
i∈I(pi ∧ q) =(∨

i∈I pi
)
∧ q (resp.

∧
i∈I(pi ∨ q) =

(∧
i∈I pi

)
∧ q).

2. Random times and time projections

We recall the definition and elementary properties of a random time and
its associated time projection. For more details the reader is referred to [1],
[2], [3].
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Definition 2.1. A random time, τ , is an increasing family of projections
τ = (qt) , t ∈ [0,∞], where qt ∈ At, q0 = 0 and q∞ = 1. A random time
τ = (qt) is called simple, if it assumes only finitely many distinct values.

Let Θ denote the set of all finite partitions of [0,∞]. Then, for θ ∈ Θ,
say θ = {0 = t0 < t1 < ... < tn = ∞}, the simple random time associated
with τ and θ is given by τ (θ) =

(
qθt
)
, where

qθt =
n−1∑
i=0

qtiχ[ti,ti+1) (t)

for t ∈ [0,∞), and qθ∞ = 1.

Definition 2.2. (i) Let τ = (qt) and σ = (q′t) be random times. We say
that τ ≤ σ, if q′t ≤ qt for each t ∈ R+. We define τ ∧ σ and τ ∨ σ to be the
random times τ ∧ σ = (qt ∨ q′t) and τ ∨ σ = (qt ∧ q′t). In a similar fashion,
for any family Λ of random times, we define sup Λ and inf Λ as the random
times consisting respectively of infima and suprema of the corresponding
projections.

(ii) Let θ = {0 = t0 < t1 < ... < tn =∞} ∈ Θ. We define:

Mτ(θ) =
n−1∑
i=0

(
qti+1 − qti

)
Pti+1 =

n−1∑
i=0

∆qti+1Pti+1 .

Mτ(θ) has the following properties (see Theorem 2.3 of [1]):
1. Mτ(θ) is an orthogonal projection;
2. For θ, η ∈ Θ with η finer than θ,Mτ(η) ≤Mτ(θ);
3. If σ is another random time with τ ≤ σ, then Mτ(θ) ≤ Mσ(θ) for each
θ ∈ Θ.

These properties and the fact that Θ is a directed set ordered by inclusion,
imply that {Mτ(θ) : θ ∈ Θ} is a decreasing net of orthogonal projections.
Hence there exists a unique orthogonal projection

Mτ =
∧
θ∈Θ

Mτ(θ);

moreover,
Mτ(θ) ↘Mτ

in the strong operator topology as θ refines. We shall call Mτ the time
projection for the random time τ (Definition 2.4 of [1]). The next result
summarises what is known about the order structure of random times.

Let τ , σ be random times. For θ, η ∈ Θ we have

Mτ(θ) ∨Mσ(η) = Mτ(θ)∨σ(η) and Mτ(θ) ∧Mσ(η) = Mτ(θ)∧σ(η).
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Also
Mτ ∧Mσ = Mτ∧σ,

so that, in particular, if σ ≤ τ thenMσ ≤Mτ (Optional Stopping Theorem).
The complete proofs of these relations can be found in [2], [3]. It is not clear
whether the corresponding result for suprema (Mτ ∨Mσ = Mτ∨σ) holds in
general. As seen in [2], this relation is true in the quasi-free representations
of the CAR and the CCR, where one has integral formulae for the various
time projections. In this section we observe that it is true when M⊥τ and M⊥σ
are finite projections in the time algebra T = {Mτ : τ is a random time}′′.
This will show that it is not necessary to assume that the time algebra is
finite, as in Theorem 3.18 of [5], in order to prove that Mτ ∨Mσ = Mτ∨σ.

Proposition 2.3. For any random times τ, σ with M⊥τ and M⊥σ finite, we
have

Mτ ∨Mσ = Mτ∨σ.

Proof. We first note that

Mτ ∨Mσ = (
∧
θ

Mτ(θ)) ∨Mσ =

[
(
∨
θ

M⊥τ(θ)) ∧M
⊥
σ

]⊥
,

and since M⊥τ =
∨
θM

⊥
τ(θ) is finite, {M⊥τ(θ) : θ ∈ Θ} is an increasing net of

finite projections in the time algebra T . Then, by Corollary 7.6 of [11],

(
∨
θ

M⊥τ(θ)) ∧M
⊥
σ =

∨
θ

(M⊥τ(θ) ∧M
⊥
σ ),

and hence

Mτ ∨Mσ =

[∨
θ

(
M⊥τ(θ) ∧M

⊥
σ

)]⊥
=
∧
θ

(
Mτ(θ) ∨Mσ

)
.

Similarly, ∧
θ

(
Mτ(θ) ∨Mσ

)
=
∧
θ

∧
η

(
Mτ(θ) ∨Mσ(η)

)
.

Thus
Mτ ∨Mσ =

∧
θ

∧
η

(
Mτ(θ) ∨Mσ(η)

)
,

and since Mτ∨σ ≤ Mτ(θ)∨σ(η) = Mτ(θ) ∨Mσ(η) for θ, η ∈ Θ, we have

Mτ∨σ ≤
∧
θ

∧
η

(
Mτ(θ) ∨Mσ(η)

)
= Mτ ∨Mσ.

But we know that Mτ ∨Mσ ≤Mτ∨σ because Mτ ≤ Mτ∨σ and Mσ ≤ Mτ∨σ.
Combining both inequalities, we get Mτ ∨Mσ = Mτ∨σ, as required.
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We now turn to the order structure of the family of the time projections
and give a partial answer to the question: is the map τ 7→ Mτ an order
continuous lattice morphism, that is for any family F = {Mτ : τ ∈ Λ} of
time projections, is

∨
τ Mτ = Msup Λ? As we shall see in the next section,

this is true in the quasi-free representations of the CAR and CCR. According
to Theorem 1.12 of [3], the corresponding result for infima is true in general;
in this section we shall give a simple proof of this fact.

Let {τα} = {(q(α)
t )} be a net of random times, and let τ = (qt) be a

random time. τα is said to converge strongly to τ , if q(α)
t → qt strongly for

each t ∈ R+.

Lemma 2.4. Let {τα} be a net of random times converging strongly to a
random time τ. Then Mτα(θ) converges strongly to Mτ(θ) for each θ ∈ Θ.

Proof. Suppose that τα = (q(α)
t ) and τ = (qt) . By assumption, q(α)

t → qt
strongly for each t ∈ R+. Let θ ∈ Θ. Then

Mτα(θ) =
n−1∑
i=0

(
q

(α)
ti+1
− q(α)

ti

)
Pti+1 →

n−1∑
i=0

(
qti+1 − qti

)
Pti+1 = Mτ(θ).

Proposition 2.5. Let {τα : α ∈ Λ} be a family of random times, and let τ
be the supremum of this family. Then for each θ ∈ Θ,

Mτ(θ) =
∨
α

Mτα(θ).

Proof. We have ∨
α

Mτα(θ) =
∨
J

M θ
J = lim

J
M θ
J ,

where J = {α1, ..., αn} is a finite subset of Λ, and

M θ
J = Mτα1(θ) ∨ ... ∨Mταn(θ) .

Moreover,
M θ
J = Mτα1 (θ)∨...∨ταn(θ) = MτJ (θ),

where
τJ (θ) = τα1(θ) ∨ ... ∨ ταn(θ).

Since
lim
J
τJ (θ) = τ (θ) ,

we get on account of Lemma 2.4

Mτ(θ) = lim
J
MτJ (θ) = lim

J
M θ
J ,
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which finishes the proof.

Note that the corresponding result for infima is also true, i.e. Mτ(θ)
=
∧
αMτα(θ), where {τα} is a family of random times and τ = infα τα. Using

this fact, we give below a simple proof of Theorem 1.12 of [3].

Theorem 2.6. Let {τα} be a family of random times. Let τ be the infimum
of this family. Then

Mτ =
∧
α

Mτα .

Proof. We have

Mτ =
∧
θ

Mτ(θ) =
∧
θ

∧
α

Mτα(θ) =
∧
α

∧
θ

Mτα(θ) =
∧
α

Mτα .

It is an interesting open problem whether the corresponding result for
suprema holds true. Below we show it under some additional assumptions.

Theorem 2.7. Suppose that the lattice of time projections in T satisfies∨
nMτn = Msupn τn for any countable family of time projections, and assume

that H is a separable Hilbert space. Let {τα} be a family of random times,
and let τ be the supremum of this family. Then

Mτ =
∨
α

Mτα .

Proof. SinceH is separable, the strong operator topology on the closed unit
ball of B (H) is metrizable (see e.g. [12, Proposition 2.7 p. 71]). Hence there
is an increasing sequence {Mτn} in {Mτα} converging strongly to

∨
αMτα .

This means that,∨
α

Mτα =
∨
n

Mτn = Msupn τn and Mτα ≤Msupn τn for each α.

Hence for each θ ∈ Θ and each α, Mτα(θ) ≤ M(supn τn)(θ). So
∨
αMτα(θ) ≤

M(supn τn)(θ). From Proposition 2.5, Mτ(θ) =
∨
αMτα(θ) for each θ ∈ Θ. Thus

Mτ =
∧
θ

Mτ(θ) =
∧
θ

∨
α

Mτα(θ) ≤
∧
θ

M(supn τn)(θ) = Msupn τn =
∨
n

Mτn

=
∨
α

Mτα ,

so Mτ ≤
∨
αMτα , but on the other hand

∨
αMτα ≤ Mτ . Therefore Mτ =∨

αMτα , as required.
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Hereafter we consider a filtration of a finite von Neumann algebra. We
want to investigate the lattice of time projections in greater detail. For
θ ∈ Θ, let T θ denote the von Neumann algebra generated by {Mτ(θ) : τ is
a random time}.

Proposition 2.8. The lattice of time projections in T θ is both upper and
lower continuous.

Proof. Let {Mτα(θ)} be an increasingly directed family of time projections
in T θ, and let Mσ(θ) be any time projection in T θ. Then∨

α

(
Mτα(θ) ∧Mσ(θ)

)
=
∨
α

Mτα(θ)∧σ(θ) =
∨
α

M(τα∧σ)(θ)

= Msupα(τα∧σ)(θ) (by Proposition 2.5)

= M(supα τα)(θ)∧σ(θ) (by Theorem 1.9 of [3])
= M(supα τα)(θ) ∧Mσ(θ)

= (
∨
α

Mτα(θ)) ∧Mσ(θ) (by Proposition 2.5).

To show lower continuity, suppose {Mτα(θ)} is a decreasingly directed
family of time projections in T θ. Then∧
α

(
Mτα(θ) ∨Mσ(θ)

)
=
∧
α

Mτα(θ)∨σ(θ) =
∧
α

M(τα∨σ)(θ)

= Minfα(τα∨σ)(θ) (by Proposition 2.5 for infima)

= M(infα τα(θ))∨σ(θ) (by Theorem 1.9 of [3])
= M(infα τα)(θ)∨σ(θ) = Minfα τα(θ) ∨Mσ(θ)

= (
∧
α

Mτα(θ)) ∨Mσ(θ) (by Proposition 2.5 for infima),

as required.

Proposition 2.9. Let τ and σ be random times. Then

Mτ∨σ =
∧
η

∧
θ

(
Mτ(θ) ∨Mσ(η)

)
.
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Proof. Let η ∈ Θ. Then∧
θ

(
Mτ(θ) ∨Mσ(η)

)
=
∧
θ

Mτ(θ)∨σ(η)

= Minfθ(τ(θ)∨σ(η)) (by Theorem 2.6)

= M(infθ τ(θ))∨σ(η) (by Theorem 1.9 of [3])
= Mτ∨σ(η).

Similarly, ∧
η

Mτ∨σ(η) = Minfη(τ∨σ(η)) (by Theorem 2.6)

= Mτ∨(infη σ(η)) (by Theorem 1.9 of [3])
= Mτ∨σ.

So
Mτ∨σ =

∧
η

∧
θ

(
Mτ(θ) ∨Mσ(η)

)
.

For general time projections we have the following result.

Proposition 2.10. The lattice of time projections is lower continuous if
and only if Mτ ∨Mσ = Mτ∨σ for any two random times τ and σ.

Proof. Suppose that Mτ ∨Mσ = Mτ∨σ for any two random times. Let
{Mτα} be a decreasingly directed family of time projections, and let Mσ be
the time projection associated with random time σ. Then∧

α

(Mτα ∨Mσ) =
∧
α

Mτα∨σ.

We may assume that {τα} is a decreasingly directed family of random times
with τ = infα τα. The family {τα ∨ σ} is also decreasingly directed with
infα (τα ∨ σ) = (infα τα) ∨ σ (Theorem 1.9 of [3]). Thus∧

α

(Mτα ∨Mσ) =
∧
α

Mτα∨σ = Minfα(τα∨σ) (by Theorem 2.6)

= M(infα τα)∨σ (by Theorem 1.9 of [3])

= Minfα τα ∨Mσ (by assumption)

= (
∧
α

Mτα) ∨Mσ (by Theorem 2.6).
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Conversely, suppose that the family of time projections is lower continu-
ous. Let τ and σ be any two random times. Then

Mτ ∨Mσ = (
∧
θ

Mτ(θ)) ∨Mσ =
∧
θ

(
Mτ(θ) ∨Mσ

)
=
∧
θ

(
Mτ(θ) ∨ (

∧
η

Mσ(η))

)
=
∧
θ

∧
η

(
Mτ(θ) ∨Mσ(η)

)
= Mτ∨σ (by Proposition 2.9).

As seen from the second part of the above proof, lower continuity of the
family of time projections yields the relation Mτ ∨Mσ = Mτ∨σ without the
assumption of finiteness of the algebra. Indeed, the equality

Mτ ∨Mσ =
∧
θ

∧
η

(
Mτ(θ) ∨Mσ(η)

)
follows solely from the lower continuity of the lattice of time projections;
furthermore we have

Mτ(θ) ∨Mσ(η) = Mτ(θ)∨σ(η) ≥Mτ∨σ,

since τ ∨ σ ≤ τ(θ) ∨ σ(η). Hence

Mτ ∨Mσ ≥Mτ∨σ,

while the converse inequality is obvious.

3. Times with respect to a filtration of the CAR algebra

In this section we restrict our attention to the CAR theory as developed
in [4]. Let ω denote the gauge-invariant quasi-free state of the CAR algebra
over L2 (R+) with two-point function

ω (b∗(f)b(g)) =
∫ ∞

0
f(s)g(s)ρ(s)ds

where 0 < ρ < 1 almost everywhere, ds denotes Lebesgue measure, and
f, g ∈ L2 (R+).

Let A denote the von Neumann algebra generated by the quasi-free rep-
resentation of the CAR algebra on H — the tensor product of two copies
of the anti-symmetric Fock space over L2 (R+), given in [4] (see also [6]).
Thus ω is the vector state ω(·) =〈·Ω,Ω〉, with Ω = Ω◦ ⊗ Ω◦, where Ω◦ is
the Fock vacuum vector. The conditions on ρ imply that Ω is cyclic and
separating for A. For t ∈ [0,∞], let At denote the von Neumann subalge-
bra of A∞ = A generated by the operators {b∗(f) : suppf ⊂ [0, t]}. Then
there exist ω-invariant normal conditional expectations Et : A → At satis-
fying Et (b(f)) = b(fχ[0,t]), [7] has the details. Let bt = b(χ[0,t]). Then
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bt and b∗t are A-valued martingales and one can define quantum stochastic
integrals

∫∞
0 db∗

s
ξ (s) and

∫∞
0 dbsη (s) as elements of H, for suitable adapted

H-valued processes ξ and η. These two stochastic integrals are orthogonal
in H, and satisfy

Pt

(∫ ∞
0

db∗
s
ξ (s)

)
=
∫ t

0
db∗

s
ξ (s) and Pt

(∫ ∞
0

dbsη (s)
)

=
∫ t

0
dbsη (s) ,

consequently, the stochastic integrals are orthogonal to Ω and obey isometry
relations (for details of these results see [4]).

The stochastic integral representation of elements of H states that for any
ζ ∈ H, there are a unique α ∈ C and processes ξ ∈ L2 (R+, (1− ρ(s))ds,H),
η ∈ L2 (R+, ρ(s)ds,H) such that

ζ = αΩ +
∫ ∞

0
db∗

s
ξ (s) +

∫ ∞
0

dbsη (s) .

This representation theorem, which may be found in [13], allows a concrete
representation for the action of the time projections Mτ , namely,

Mτζ = αΩ +
∫ ∞

0
db∗

s
β
(
q⊥s

)
ξ (s) +

∫ ∞
0

dbsβ
(
q⊥s

)
η (s) ,

where τ = (qt) and β is the parity automorphism of A which is spatial:
β(a) = θaθ, where θ = θ∗ = θ−1 and θΩ = Ω (for details of these results see
[2]).

We shall use the formula above for the action of the time projection to
discuss the relationship between random times, the associated time projec-
tions and properties of the lattice of the time projections.

Let us start with the following result which can be considered as a con-
verse of Corollary 3.4 of [2].

Proposition 3.1. Let τ = (qt) be a random time, and let τn =
(
q

(n)
t

)
be

a sequence of random times with Mτn → Mτ strongly. Then there is a
subsequence (τnk) such that τnk → τ Lebesgue almost everywhere.

Proof. Let ζ ∈ H. There are α ∈ C and processes ξ ∈ L2(R+, (1− ρ(s))ds,
H), η ∈ L2 (R+, ρ(s)ds,H) such that

Mτnζ = αΩ +
∫ ∞

0
db∗

s
β
(
q(n)⊥
s

)
ξ (s) +

∫ ∞
0

dbsβ
(
q(n)⊥
s

)
η (s) ,

and

Mτζ = αΩ +
∫ ∞

0
db∗

s
β
(
q⊥s

)
ξ (s) +

∫ ∞
0

dbsβ
(
q⊥s

)
η (s) .
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So by the isometry and orthogonality relations we obtain

‖(Mτn −Mτ ) ζ‖2

=
∥∥∥∥∫ ∞

0
db∗

s
β
(
q(n)⊥
s − q⊥s

)
ξ (s) +

∫ ∞
0

dbsβ
(
q(n)⊥
s − q⊥s

)
η (s)

∥∥∥∥2

=
∥∥∥∥∫ ∞

0
db∗

s
β
(
q(n)⊥
s − q⊥s

)
ξ (s)

∥∥∥∥2

+
∥∥∥∥∫ ∞

0
dbsβ

(
q(n)⊥
s − q⊥s

)
η (s)

∥∥∥∥2

=
∫ ∞

0

∥∥∥β (q(n)⊥
s − q⊥s

)
ξ (s)

∥∥∥2
(1− ρ(s)) ds

+
∫ ∞

0

∥∥∥β (q(n)⊥
s − q⊥s

)
η (s)

∥∥∥2
ρ(s)ds.

When n→∞, ‖(Mτn −Mτ ) ζ‖2 → 0, thus both the integrals∫ ∞
0

∥∥∥β (q(n)⊥
s − q⊥s

)
ξ (s)

∥∥∥2
(1− ρ(s)) ds

and ∫ ∞
0

∥∥∥β (q(n)⊥
s − q⊥s

)
η (s)

∥∥∥2
ρ(s)ds

converge to 0 and hence
∥∥∥β (q(n)⊥

s − q⊥s
)∥∥∥2

converges to 0 in measure
(1 − ρ(s))ds, and thus in Lebesgue measure. So, there is a subsequence∥∥∥β (q(nk)⊥

s − q⊥s
)
ξ (s)

∥∥∥2
converging to 0 Lebesgue almost everywhere. Now

by taking ξ(t) = e−tΩ ∈ L2(R+, (1 − ρ(s))ds,H), we deduce that∥∥∥β (q(nk)⊥
s − q⊥s

)
Ω
∥∥∥2

converges to 0 almost everywhere. Since Ω is sep-

arating for A, we get that
∥∥∥β (q(nk)⊥

s − q⊥s
)
ζ
∥∥∥ converges to 0, Lebesgue

almost everywhere for each ζ ∈ H, and hence β
(
q

(nk)⊥
s − q⊥s

)
converges

strongly to 0 Lebesgue almost everywhere. Since the automorphism β is
spatial, q(nk)

s → qs strongly Lebesgue almost everywhere. This means that
the subsequence (τnk) converges Lebesgue almost everywhere to τ , and the
proof is complete.

As a corollary to the above result we obtain the following one-to-one
correspondence between random times and time projections.

Corollary 3.2. If Mτ = Mσ, then τ = σ Lebesgue almost everywhere.
Indeed, it is enough to take τn = τ and apply Proposition 3.1.

We shall use the above corollary to examine the relation between the
modularity of the lattice of random times and the lattice of associated time
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projections (Proposition 3.6). Now we give the following theorem, which
characterises the commuting time projections.

Proposition 3.3. Let τ = (qt) and σ = (q′t) be random times. Then
MτMσ = MσMτ if and only if qtq′t = q′tqt Lebesgue almost everywhere.

Proof. Let ζ ∈ H. There are α ∈ C and processes ξ ∈ L2(R+,
(1− ρ(s))ds,H), η ∈ L2(R+, ρ(s)ds,H) such that

Mτζ = αΩ +
∫ ∞

0
db∗sβ

(
q⊥s

)
ξ(s) +

∫ ∞
0

dbsβ
(
q⊥s

)
η(s),

and
Mσζ = αΩ +

∫ ∞
0

db∗sβ
(
q′⊥s

)
ξ(s) +

∫ ∞
0

dbsβ
(
q′⊥s

)
η(s).

Then

MτMσζ = αΩ +
∫ ∞

0
db∗sβ

(
q⊥s q

′⊥
s

)
ξ(s) +

∫ ∞
0

dbsβ
(
q⊥s q

′⊥
s

)
η(s),

and

MσMτζ = αΩ +
∫ ∞

0
db∗sβ

(
q′⊥s q

⊥
s

)
ξ(s) +

∫ ∞
0

dbsβ
(
q′⊥s q

⊥
s

)
η(s).

Thus

(MτMσ −MσMτ ) ζ =
∫ ∞

0
db∗sβ

(
q⊥s q

′⊥
s − q′⊥s q⊥s

)
ξ(s)

+
∫ ∞

0
dbsβ

(
q⊥s q

′⊥
s − q′⊥s q⊥s

)
η(s),

so by the isometry and orthogonality relations

‖(MτMσ −MσMτ )ζ‖2 =
∫ ∞

0

∥∥∥β (q⊥s q′⊥s − q′⊥s q⊥s ) ξ(s)∥∥∥2
(1− ρ(s)) ds

+
∫ ∞

0

∥∥∥β (q⊥s q′⊥s − q′⊥s q⊥s ) η(s)
∥∥∥2
ρ(s) ds. (∗)

If MτMσ = MσMτ , then taking ξ(t) = e− tΩ ∈ L2(R+, (1−ρ(s)) ds,H), we
obtain ∥∥∥β (q⊥s q′⊥s − q′⊥s q⊥s )Ω

∥∥∥2
= 0

for Lebesgue almost all s, since 0 < ρ < 1 Lebesgue almost everywhere.
Since Ω is a separating vector for A and β is an automorphism of A, qsq′s =
q′sqs Lebesgue almost everywhere.

The converse is immediate from (∗).

Now we shall prove a stronger version of the Optional Stopping Theorem,
namely
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Theorem 3.4. Let τ = (qt) and σ = (q′t) be random times such that σ ≤ τ
Lebesgue almost everywhere, i.e. qt ≤ q′t for almost all t ∈ [0,∞]. Then
Mσ ≤Mτ .

Proof. Let ζ ∈ H. There are α ∈ C and processes ξ ∈ L2(R+,
(1− ρ(s))ds,H), η ∈ L2(R+, ρ(s)ds,H) such that

MτMσζ = αΩ +
∫ ∞

0
db∗sβ

(
q⊥s q

′⊥
s

)
ξ(s) +

∫ ∞
0

dbsβ
(
q⊥s q

′⊥
s

)
η(s).

Since q⊥s q
′⊥
s = q′⊥s for almost all s ∈ [0,∞], we get

MτMσζ = αΩ +
∫ ∞

0
db∗sβ

(
q′⊥s

)
ξ(s) +

∫ ∞
0

dbsβ
(
q′⊥s

)
η(s) = Mσζ,

which means that Mσ ≤Mτ .

The next result is the ascending version of a descending random time
martingale convergence theorem (Theorem 1.12 of [3]), and gives an answer
to a question raised in [3].

Theorem 3.5. Let {τα : α ∈ Λ} be a family of random times. Let τ be the
supremum of this family. Then

Mτ =
∨
α

Mτα .

Proof. Since H is separable, thus by virtue of Theorem 2.7 it is enough to
prove the above equality for a countable family of random times. Assume
therefore that Λ is countable. By Corollary 3.6 of [2] the lattice of time
projections is complete, so

∨
αMτα is a time projection,

∨
αMτα = Mσ

for some random time σ. As τα ≤ τ , we have Mτα ≤ Mτ for all α ∈ Λ,
and consequently Mσ ≤ Mτ . Furthermore, Mτα ≤ Mσ for each α ∈ Λ, and
according to [2; Remark p. 435], τα ≤ σ Lebesgue almost everywhere. Since
Λ is countable, we obtain τ = supα τα ≤ σ Lebesgue almost everywhere, and
by Theorem 3.4, Mτ ≤Mσ, which finishes the proof.

In particular, for any two random times τ and σ, we haveMτ∨Mσ = Mτ∨σ
as proved in [2] Theorem 3.5.

Proposition 3.6. The lattice of time projections is modular if and only if
the lattice of random times is modular Lebesgue almost everywhere.
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Proof. Suppose that the lattice of time projections is modular and let τ ,
ρ and σ be random times with τ ≤ ρ. By the Optional Stopping Theorem
(Theorem 3.4), Mτ ≤Mρ. Thus

Mτ∨(σ∧ρ) = Mτ ∨M(σ∧ρ) = Mτ ∨ (Mσ ∧Mρ) = (Mτ ∨Mσ) ∧Mρ

= Mτ∨σ ∧Mρ = M(τ∨σ)∧ρ.

Using Corollary 3.2, we get τ ∨ (σ ∧ ρ) = (τ ∨ σ) ∧ ρ Lebesgue almost ev-
erywhere.

For the converse, suppose that the lattice of random times is modular
Lebesgue almost everywhere and let Mτ , Mσ and Mρ be time projections
with Mτ ≤ Mρ. Using [2; Remark p. 435], we infer that τ ≤ ρ Lebesgue
almost everywhere. Thus

Mτ ∨ (Mσ ∧Mρ) = Mτ ∨Mσ∧ρ = Mτ∨(σ∧ρ).

But τ ∨ (σ ∧ ρ) = (τ ∨ σ) ∧ ρ Lebesgue almost everywhere, so

Mτ∨(σ∧ρ) = M(τ∨σ)∧ρ = M(τ∨σ) ∧Mρ = (Mτ ∨Mσ) ∧Mρ.

Hence
Mτ ∨ (Mσ ∧Mρ) = (Mτ ∨Mσ) ∧Mρ.

Hereafter we examine the lattice of time projections for a filtration of a
finite CAR von Neumann algebra. In particular, we shall show that the
lattice is upper and lower continuous. This situation arises if we take ρ to
be the constant function equal to 1/2, so that ω is a tracial vector state
with two-point function

ω (b∗(f)b(g)) =
1
2

∫ ∞
0

f(s)g(s)ds.

Let us begin with

Lemma 3.7. Let F = {Mτα : α ∈ Λ} be an increasingly directed family of
time projections. Then for each time projection Mσ associated with random
time σ, ∨

n

(Mτn ∧Mσ) = (
∨
n

Mτn) ∧Mσ = (
∨
α

Mτα) ∧Mσ

for some sequence (Mτn) in F .

Proof. From Theorem 3.5, supF =
∨
αMτα is a time projection, say, Mτ ,

where τ = supα τα. Since the strong operator topology on the closed unit
ball of B (H) is metrizable, there is an increasing sequence (Mτn) in F
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converging strongly to Mτ . Hence (Mτn ∧Mσ) is an increasing sequence
converging strongly to Mτ ∧Mσ. Indeed,∨
n

(Mτn ∧Mσ) =
∨
n

Mτn∧σ = Msupn(τn∧σ) (by Theorem 3.5)

= M(supn τn)∧σ (by Theorem 1.9 of [3])
= M(supn τn) ∧Mσ = Mτ ∧Mσ,

that is ∨
n

(Mτn ∧Mσ) = (
∨
n

Mτn) ∧Mσ = (
∨
α

Mτα) ∧Mσ.

In a similar fashion one may prove the corresponding result for infima,
that is ∧

n

(Mτn ∨Mσ) = (
∧
n

Mτn) ∨Mσ = (
∧
α

Mτα) ∨Mσ

for some sequence (Mτn) in a decreasingly directed family F={Mτα : α∈Λ}
of time projections.

Theorem 3.8. The lattice of time projections is both upper and lower con-
tinuous.

Proof. Consider an increasingly directed family {Mτα : α ∈ Λ} of time
projections, and let Mσ be any time projection. By Lemma 3.7, for some
sequence (Mτn) with

∨
nMτn =

∨
αMτα , we have∨

n

(Mτn ∧Mσ) = (
∨
α

Mτα) ∧Mσ.

It is clear that

Mτα ∧Mσ ≤ (
∨
α

Mτα) ∧Mσ, for each α ∈ Λ,

and so ∨
α

(Mτα ∧Mσ) ≤ (
∨
α

Mτα) ∧Mσ.

Note that for each n, there exists αn ∈ Λ such that Mτn ≤Mταn , and

Mτn ∧Mσ ≤Mταn ∧Mσ ≤
∨
α

(Mτα ∧Mσ) .

Thus ∨
n

(Mτn ∧Mσ) ≤
∨
α

(Mτα ∧Mσ) .
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But
(
∨
α

Mτα) ∧Mσ =
∨
n

(Mτn ∧Mσ) ≤
∨
α

(Mτα ∧Mσ) ,

so ∨
α

(Mτα ∧Mσ) = (
∨
α

Mτα) ∧Mσ.

Therefore, the lattice of time projections is upper continuous and a similar
calculation shows that the lattice is lower continuous, i.e., for a decreasingly
directed family {Mτα : α ∈ Λ} and arbitrary time projection Mσ,∧

α

(Mτα ∨Mσ) = (
∧
α

Mτα) ∨Mσ.

Let us notice that the lower continuity of the family of time projections
also follows immediately from Theorem 2.10.

Remark 3.9. When dealing with the CCR algebra, there exists a mar-
tingale representation theorem (see [8], [10]), and one can use it to give a
corresponding result for the action of the time projection and to prove the
results of Section 3 of [2] in this context; all our results in this section have
analogues in the CCR theory.
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