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Abstract. Let K be a closed convex cone with the nonempty interior
in a real Banach space and cc(K) denote the family of all nonempty
convex compact subsets of K. If {F t : t ≥ 0} is a concave iteration
semigroup of continuous linear set-valued functions F t : K → cc(K)
with F 0(x) = {x} for x ∈ K, then

DtF
t(x) = F t(G(x))

for x ∈ K and t ≥ 0, where DtF t(x) denotes the Hukuhara derivative
of F t(x) with respect to t and

G(x) := lim
s→0+

F s(x)− x
s

for x ∈ K.

1. Let A and B be two subsets of a real vector space X. We define the
sum of A and B by the formula

A+B = {a+ b : a ∈ A, b ∈ B}.
A subset K of a real vector space is called a cone iff

tK := {tx : x ∈ K} ⊂ K
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for all positive t. A cone is said to be convex iff it is a convex set.
Let X and Y be two real vector spaces and let K ⊂ X be a convex cone.

A set-valued function F : K → n(Y ), where n(Y ) denotes the family of all
nonempty subsets of Y , is called additive (superadditive ) iff

F (x) + F (y) = F (x+ y) (F (x) + F (y) ⊂ F (x+ y))

for all x, y ∈ K. A set-valued function F : K → n(K) is said to be ho-
mogeneous ( Q+-homogeneous) if F (λx) = λF (x) for all x ∈ K and λ > 0
(λ ∈ Q+), where Q+ is the set of all positive rational numbers. A set-valued
function F : K → n(K) is linear if it is additive and homogeneous.

A set-valued function F : [0,+∞)→ n(Y ) is said to be concave iff

F (λx+ (1− λ)y) ⊂ λF (x) + (1− λ)F (y)

for all x, y ∈ [0,+∞) and λ ∈ (0, 1).
The following property of additive set valued functions is easy to check.

Lemma 1. Let X and Y be two real vector spaces and let K be a convex
cone in X. Assume that F : K → n(Y ) is an additive set-valued function
and A,B ∈ n(K). Then

F (A) + F (B) = F (A+B),

where F (A) =
⋃
{F (x) : x ∈ A}.

We need the following lemma.

Lemma 2 (cf. [7]). Let A,B and C be subsets of a real topological vector
space such that

A+B ⊂ C +B.

If C is convex closed and B is non-empty bounded, then

A ⊂ C.

Throughout the paper N denotes the set of all positive integers. All vector
spaces are supposed to be real. If X is a topological vector space, then c(X)
denotes the set of all compact members of n(X) and cc(X) stands for the
set of all convex sets of c(X). By B(X) we denote the set of all bounded
members of n(X).

Let A,B ∈ cc(X). By Lemma 2 there exists at most one set C ∈ cc(X)
fulfilling the equality

A = B + C.

M. Hukuhara denoted such set C by A−B and called the difference between
A and B (see [3]).
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A set valued function F : X → n(Y ), where X and Y are two topological
spaces, is said to be upper semicontinuous (lower semicontinuous) iff the set

F+(U) = {x ∈ X : F (x) ⊂ U} (F−(U) = {x ∈ X : F (x) ∩ U 6= ∅})
is open for every open subset U of Y . A set-valued function is continuous
iff it is upper semicontinuous and lower semicontinuous.

Observe that Lemma 1 implies the following.

Lemma 3. Let X and Y be two topological vector spaces and let K be a
closed convex cone in X. Assume that F : K → cc(K) is a continuous
additive set-valued function and A,B ∈ cc(K). If there exists the difference
A−B, then there exists F (A)− F (B) and F (A)− F (B) = F (A−B).

Let X be a metric space. For A,An ∈ c(X), n ∈ N, the symbol
limn→∞An = A means that limn→∞ d(An, A) = 0, where d denotes the
Hausdorff metric derived by the metric in X. Let X and Y be two metric
spaces. A set-valued function F : X → c(Y ) is continuous if and only if it is
continuous as a single-valued function from X into c(Y ) with the Hausdorff
metric in c(Y ) derived by the metric in Y (see [1], §6 of Chapter VI).

We will use the following six lemmas.

Lemma 4 (Theorem 3 in [10], see also Lemma 4 in [9]). Let X and Y be
two real normed spaces and let K be a convex cone in X. Suppose that
{Fi : i ∈ I} is a family of superadditive lower semicontinuous in K and
Q+-homogeneous set-valued functions Fi : K → n(Y ). If K is of the second
category in K and

⋃
i∈I Fi(x) ∈ B(Y ) for x ∈ K, then there exists a positive

constant M such that

‖Fi(x)‖ := sup{‖y‖ : y ∈ Fi(x)} ≤M‖x‖
for every i ∈ I and x ∈ K.

Corollary . If X, Y and K are such as in Lemma 4, then the functional

F 7→ ‖F‖ := sup
{
‖F (x)‖
‖x‖

: x ∈ K, x 6= 0
}

is finite for every Q+-homogeneous superadditive lower semicontinuous set-
valued function F : K → B(Y ).

Lemma 5 (Lemma 5 in [9]). Let X and Y be two real normed spaces and
let d be the Hausdorff distance derived from the norm in Y . Suppose that K
is a convex cone in X with the nonempty interior. Then there exists a pos-
itive constant M0 such that for every linear continuous set-valued function
F : K → c(Y ) the inequality

d(F (x), F (y)) ≤M0‖F‖‖x− y‖
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holds for every x, y ∈ K.

Lemma 6 (Theorem 2 in [4]). Let (X, ρX) and (Y, ρY ) be two metric spaces
and let dX and dY be the Hausdorff metric derived from ρX and ρY , respec-
tively. If F : X → n(Y ) is a set-valued function and M is a positive constant
such that

dY (F (x), F (y)) ≤MρX(x, y)

for every x, y ∈ X, then

dY (F (A), F (B)) ≤MdX(A,B)

for every nonempty subsets A,B of X.

Lemma 7 (see e.g. Proposition 2.4.7 in [2]). Let X be a normed space. If
(An) is a sequence of elements of the set c(X) such that An+1 ⊂ An for
n ∈ N, then

lim
n→∞

An =
∞⋂
n=1

An.

Lemma 8 (Lemma 3 in [8]). Let K be a closed convex cone such that
intK 6= ∅ in Banach space X and let Y be a normed space. If (Fn) is
a sequence of continuous additive set-valued functions Fn : K → cc(Y ) such
that Fn+1(x) ⊂ Fn(x) for all x ∈ K and n ∈ N, then the formula

F0(x) :=
∞⋂
n=1

Fn(x), x ∈ K

defines a continuous additive set-valued function F0 : K → cc(Y ). Moreover,

lim
n→∞

Fn(x) = F0(x), x ∈ K (1)

and the convergence in (1) is uniform on every nonempty compact subset of
K.

Lemma 9 (Lemma 4 in [8]). Let D be a nonempty set and Y be a normed
space. Suppose that F0, Fn : D → c(Y ) are set-valued functions. If the
sequence (Fn) uniformly converges to F0 on D, then

lim
n→∞

Fn(D) = F0(D).

Let X be a normed space and let φ : [0,∞)→ cc(X) be a set-valued func-
tion such that the Hukuhara differences φ(t+s)−φ(t) exist for nonnegative
t and s and the Hukuhara diferences φ(t)− φ(t− s) exist for positive t and
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s ∈ (0, t). Let t > 0. The Hukuhara derivative of φ at t is defined by the
formula

Dφ(t) = lim
s→0+

φ(t+ s)− φ(t)
s

= lim
s→0+

φ(t)− φ(t− s)
s

,

whenever both these limits exist (see [3]). Moreover,

Dφ(0) = lim
s→0+

φ(s)− φ(0)
s

.

2. Let K be a nonempty set. A family {F t : t ≥ 0} of set-valued functions
F t : K → n(K) is said to be an iteration semigroup iff

F t ◦ F s(x) := F t[F s(x)] = F s+t(x)

for all x ∈ K and t, s ≥ 0.
Let K be a convex cone in a normed space. An iteration semigroup

{F t : t ≥ 0} of set-valued functions F t : K → cc(K) is said to be differ-
entiable iff all set-valued functions t 7→ F t(x), (x ∈ K) have Hukuhara’s
derivative on [0,+∞). An iteration semigroup {F t : t ≥ 0} of set-valued
functions F t : K → n(K) is said to be concave iff the set-valued function
t 7→ F t(x) is concave for every x ∈ K.

Concave iteration semigroups {F t : t ≥ 0} of set-valued functions F t : K →
cc(K) was introduced in the paper [5] in which also the following lemma
was proved.

Lemma 10. Assume that K is a closed convex cone with the nonempty
interior in a real Banach space X. Let {F t : t ≥ 0} be a concave iteration
semigroup of continuous linear set-valued functions F t : K → c(K) with
F 0(x) = {x} for x ∈ K. Then there exists a set-valued function G : K →
cc(K) such that the family {(1/t)(F t−F 0) : t > 0} uniformly converges to G
on every compact subset of K, when t tends to zero. Moreover, G is linear
continuous and

G(x) =
⋂
t>0

At(x)− x
t

for every x ∈ K.

Some examples of concave iteration semigroups of continuous linear set-
valued functions can be found in [5]. We add the following two.

Example 1. Let F t : [0,+∞)2 → cc([0,+∞)2) for t ≥ 0 be set-valued func-
tions defined by

F t((x, y)) = [x, x · cosh t+ y · sinh t]× [y, x · sinh t+ y · cosh t]
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for (x, y) ∈ [0,+∞)2. Then the family {F t : t ≥ 0} of set-valued functions
F t is a concave iteration semigroup of continuous linear set-valued functions.
Moreover, G((x, y)) = [0, y]× [0, x] for (x, y) ∈ [0,+∞)2.

Example 2. Let X be the linear space of all functions f : R → R of the
form f(x) = ax + b, where a, b ∈ R. The space X is a Banach space with
the norm

‖f‖ = |b|+ |a|.
Let

K := {f ∈ X : a ≥ 0}.
The set K is a closed convex cone in X and f0 ∈ intK, where f0(x) = x+ 1
for x ∈ R. Now, we define set-valued functions F t as follows

F t(f) := {g ∈ X : ∃u∈[0,t]∀x∈Rg(x) = f(x+ u)}

for f ∈ K. It is easy to check that sets F t(f) are nonempty, compact and
convex subsets of K. Moreover F t are linear continuous multifunctions and
the family {F t : t ≥ 0} is a concave iteration semigroup with G(f) = {g ∈
X : g(x) ≡ d, 0 ≤ d ≤ a}.

Lemma 11. Assume that K is a closed convex cone with nonempty interior
in a real Banach space X. Let {F t : t ≥ 0} be a concave iteration semigroup
of continuous linear set-valued functions F t : K → c(K) with F 0(x) = {x}
for x ∈ K. Then F t(y) converges to y uniformly on every nonempty compact
subset C of K, when t→ 0.

Proof. Fix ε > 0 and a set C ∈ c(K). According to Lemma 10 there exists
δ ∈

(
0, ε/(1 + ‖G(C)‖)

)
such that

d(
F s(y)− y

s
,G(y)) < 1

for every y ∈ C and s ∈ (0, δ). This implies that

F s(y)− y
s

⊂ G(y) + S,

where S is the closed unit ball, and

G(y) ⊂ F s(y)− y
s

+ S

for y ∈ C and s ∈ (0, δ). Therefore

F s(y) ⊂ [y + sG(y)] + sS

and
[sG(y) + y] ⊂ F s(y) + sS
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for the same y and s. Thus

d(F s(y), sG(y) + y) ≤ s
for y ∈ C and 0 < s < δ. Hence we have for the same y and s

d(F s(y), {y}) ≤ d(F s(y), y + sG(y)) + d(y + sG(y), {y})
= d(F s(y), y + sG(y)) + s‖G(y)‖ < s+ s‖G(C)‖
= s(1 + ‖G(C)‖) < ε.

This completes the proof.

Under assumptions of Lemma 10,

G(x) := lim
t→0+

F t(x)− x
t

for x ∈ K. Therefore G is the infinitesimal generator of semigroup {F t : t ≥
0} and its domain D(G) is equal to K. It is well known that if {f t : t ≥ 0}
is a strongly continuous semigroup of bounded linear operators on X and
g is its infinitesimal generator, then the function t 7→ f t(x) is differentiable
for every x ∈ D(g) and the equality

d

dt
f t(x) = f t(g(x)), x ∈ D(g)

holds true (see [6]). A similar result for concave iteration semigroup of linear
continuous set-valued functions is contained in the following theorem.

Theorem . Let X be a Banach space and let K be a closed convex cone
with the nonempty interior. Suppose that {F t : t ≥ 0} is a concave iteration
semigroup of linear continuous set-valued functions F t : K → cc(K) with
F 0(x) = {x}. Then this iteration semigroup is differentiable and

DtF
t(x) = F t(G(x))

for x ∈ K, t ≥ 0, where Dt denotes the Hukuhara derivative of F t(x) with
respect to t and G is given by Lemma 10.

Proof. It is obvious that there exist differences

F s(x)− x
for s > 0 and x ∈ K so according to Lemma 3 there exist differences

F t+s(x)− F t(x) = F t[F s(x)]− F t(x) = F t(F s(x)− x)

and

F t(x)− F t−s(x) = F t−s[F s(x)]− F t−s(x) = F t−s(F s(x)− x)

whenever t > 0, s ∈ (0, t) and x ∈ K.
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Lemmas 5 and 6 imply that

d

(
F t+s(x)− F t(x)

s
, F t(G(x))

)
= d

(
F t
(
F s(x)− x

s

)
, F t(G(x))

)
≤M0‖F t‖d

(
F s(x)− x

s
,G(x)

)
for x ∈ K, t > 0, s ∈ (0, t). Therefore, in view of Lemma 10

lim
s→0+

F t+s(x)− F t(x)
s

= F t(G(x))

for t > 0 and x ∈ K.
Similarly we have

d

(
F t(x)− F t−s(x)

s
, F t(G(x))

)
= d

(
F t−s

(
F s(x)− x

s

)
, F t−s(F s(G(x)))

)
≤M0‖F t−s‖d

(
F s(x)− x

s
, F s(G(x))

)
(2)

for t > 0, s ∈ (0, t) and x ∈ K.
Fix x ∈ K and t > 0. Since F t(x) ∈ c(K) and

‖F t−s(x)‖ ≤ ‖ t− s
t

F t(x) +
s

t
{x}‖

≤ t− s
t
‖F t(x)‖+

s

t
‖x‖ ≤ max{‖F t(c)‖, ‖x‖} <∞.

Thus the set
⋃

0≤s≤t F
t−s(x) is bounded. By Lemma 4 there exists a positive

constant M such that

‖F t−s‖ ≤M (3)

for s ∈ [0, t]. According to (2) and (3) we have

d

(
F t(x)− F t−s(x)

s
, F t(G(x))

)
≤M0Md

(
F s(x)− x

s
, F s(G(x))

)
≤M0Md

(
F s(x)− x

s
,G(x)

)
+ d(G(x), F s(G(x))).

According to Lemmas 10, 11 and 9, the right part of the last inequality has
the limit zero when s→ 0+. Thus

DtF
t(x) = F t(G(x)).

This ends the proof.
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