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Abstract. Let K be a closed convex cone with the nonempty interior
in a real Banach space and cc(K) denote the family of all nonempty
convex compact subsets of K. If {F':t > 0} is a concave iteration
semigroup of continuous linear set-valued functions F': K — cc(K)
with F°(x) = {2} for z € K, then

DiF'(z) = F'(G(x))

for x € K and t > 0, where D;F*(x) denotes the Hukuhara derivative
of F'(x) with respect to t and

for z € K.

1. Let A and B be two subsets of a real vector space X. We define the
sum of A and B by the formula

A+B={a+b:ac A, be B}.
A subset K of a real vector space is called a cone iff
tK ={tr:z e K} CK
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for all positive t. A cone is said to be convex iff it is a convex set.

Let X and Y be two real vector spaces and let K C X be a convex cone.
A set-valued function F': K — n(Y'), where n(Y’) denotes the family of all
nonempty subsets of Y, is called additive (superadditive ) iff

F(r)+ F(y) = F(z +y) (F(z)+ F(y) C F(z +y))

for all z,y € K. A set-valued function F': K — n(K) is said to be ho-
mogeneous ( Qi-homogeneous) if F'(Ax) = AF(z) for all x € K and A > 0
(A € Q4), where Q is the set of all positive rational numbers. A set-valued
function F': K — n(K) is linear if it is additive and homogeneous.

A set-valued function F': [0,4+00) — n(Y) is said to be concave iff

FAz+ (1= XNy) CAF(x)+ (1= XN)F(y)

for all z,y € [0,+00) and A € (0,1).
The following property of additive set valued functions is easy to check.

Lemma 1. Let X and Y be two real vector spaces and let K be a convex
cone in X. Assume that F: K — n(Y) is an additive set-valued function
and A, B € n(K). Then

F(A)+ F(B)=F(A+ B),
where F(A) = |J{F(x): x € A}.

We need the following lemma.

Lemma 2 (cf. [7]). Let A, B and C be subsets of a real topological vector
space such that

A+BCC+B.
If C is convex closed and B is non-empty bounded, then

AcC.

Throughout the paper N denotes the set of all positive integers. All vector
spaces are supposed to be real. If X is a topological vector space, then ¢(X)
denotes the set of all compact members of n(X) and cc(X) stands for the
set of all convex sets of ¢(X). By B(X) we denote the set of all bounded
members of n(X).

Let A, B € ce(X). By Lemma 2 there exists at most one set C' € cc(X)
fulfilling the equality

A=B+C.

M. Hukuhara denoted such set C' by A— B and called the difference between
A and B (see [3]).
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A set valued function F': X — n(Y'), where X and Y are two topological
spaces, is said to be upper semicontinuous (lower semicontinuous) iff the set

FrU)={z e X: F(z) cU} (F-(U)={zeX: Fz)nU % 0})

is open for every open subset U of Y. A set-valued function is continuous
iff it is upper semicontinuous and lower semicontinuous.
Observe that Lemma 1 implies the following.

Lemma 3. Let X and Y be two topological vector spaces and let K be a
closed convexr cone in X. Assume that F: K — cc(K) is a continuous
additive set-valued function and A, B € cc(K). If there exists the difference
A — B, then there exists F(A) — F(B) and F(A) — F(B) = F(A — B).

Let X be a metric space. For A, A4, € ¢(X), n € N, the symbol
lim,, oo A, = A means that lim, .. d(A,, A) = 0, where d denotes the
Hausdorff metric derived by the metric in X. Let X and Y be two metric
spaces. A set-valued function F': X — ¢(Y") is continuous if and only if it is
continuous as a single-valued function from X into ¢(Y) with the Hausdorff
metric in ¢(Y') derived by the metric in Y (see [1], §6 of Chapter VI).

We will use the following six lemmas.

Lemma 4 (Theorem 3 in [10], see also Lemma 4 in [9]). Let X and Y be
two real normed spaces and let K be a conver cone in X. Suppose that
{F;:i € I} is a family of superadditive lower semicontinuous in K and
Q4 -homogeneous set-valued functions Fy: K — n(Y'). If K is of the second
category in K and J;c; Fi(x) € B(Y) for x € K, then there exists a positive
constant M such that

[1Fi(x)| := sup{l[yll: y € Fi(z)} < M|z|
for everyi eI and x € K.

Corollary . If X, Y and K are such as in Lemma 4, then the functional
F
I (x>||::ceK, x#o}

is finite for every Q4 -homogeneous superadditive lower semicontinuous set-
valued function F': K — B(Y).

P = |

Lemma 5 (Lemma 5 in [9]). Let X and Y be two real normed spaces and
let d be the Hausdorff distance derived from the norm in'Y . Suppose that K
s a convex cone in X with the nonempty interior. Then there exists a pos-
itive constant My such that for every linear continuous set-valued function
F: K — ¢(Y) the inequality

d(F(z), F(y)) < Mol Fll[}z — y]|
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holds for every z,y € K.

Lemma 6 (Theorem 2 in [4]). Let (X, px) and (Y, py) be two metric spaces
and let dx and dy be the Hausdorff metric derived from px and py, respec-
twely. If F: X — n(Y) is a set-valued function and M is a positive constant
such that

dy (F(z), F(y)) < Mpx(z,y)
for every x,y € X, then
dy(F(A),F(B)) < Mdx (A, B)

for every nonempty subsets A, B of X.

Lemma 7 (see e.g. Proposition 2.4.7 in [2]). Let X be a normed space. If
(A,) is a sequence of elements of the set ¢(X) such that A,+1 C A, for
n € N, then

n—oo

lim A, = ﬁ A,.
n=1

Lemma 8 (Lemma 3 in [8]). Let K be a closed conver cone such that
int K # () in Banach space X and let Y be a normed space. If (F,) is
a sequence of continuous additive set-valued functions Fy,: K — cc(Y') such
that F41(z) C F(z) for allz € K and n € N, then the formula

Fo(x) =[] Fulz), z€K
n=1

defines a continuous additive set-valued function Fy: K — cc(Y). Moreover,
lim F,(z) = Fy(x), xze€ K (1)
n—oo

and the convergence in (1) is uniform on every nonempty compact subset of
K.

Lemma 9 (Lemma 4 in [8]). Let D be a nonempty set and Y be a normed
space. Suppose that Fy, F,: D — ¢(Y) are set-valued functions. If the
sequence (Fy,) uniformly converges to Fy on D, then

lim F,(D) = Fy(D).

n—oo

Let X be a normed space and let ¢: [0, 00) — cc(X) be a set-valued func-
tion such that the Hukuhara differences ¢(t +s) — ¢(t) exist for nonnegative
t and s and the Hukuhara diferences ¢(t) — ¢(t — s) exist for positive ¢ and
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s € (0,t). Let t > 0. The Hukuhara derivative of ¢ at ¢ is defined by the
formula

Do(t) = lim 2UF) =00 _ ) 2O —dt=s)
s—0+ s 5—0+ s

whenever both these limits exist (see [3]). Moreover,

8(s) — 6(0)

2. Let K be a nonempty set. A family {F*: ¢t > 0} of set-valued functions
F': K — n(K) is said to be an iteration semigroup iff

F'o F5(z) := F'[F*(x)] = F*1!(z)

for all z € K and t,s > 0.

Let K be a convex cone in a normed space. An iteration semigroup
{F': ¢t > 0} of set-valued functions F': K — cc(K) is said to be differ-
entiable iff all set-valued functions ¢t — F!(z), (zx € K) have Hukuhara’s
derivative on [0,+00). An iteration semigroup {F': ¢ > 0} of set-valued
functions F': K — n(K) is said to be concave iff the set-valued function
t — F'(x) is concave for every x € K.

Concave iteration semigroups { F*: t > 0} of set-valued functions F': K —
cc(K) was introduced in the paper [5] in which also the following lemma
was proved.

Lemma 10. Assume that K is a closed conver cone with the nonempty
interior in a real Banach space X. Let {F':t > 0} be a concave iteration
semigroup of continuous linear set-valued functions F': K — c(K) with
FOx) = {z} for x € K. Then there exists a set-valued function G: K —
cc(K) such that the family {(1/t)(F'—F°): t > 0} uniformly converges to G
on every compact subset of K, when t tends to zero. Moreover, G is linear
continuous and

Al(z) — x
G(z) =) (t)
>0
for every x € K.

Some examples of concave iteration semigroups of continuous linear set-
valued functions can be found in [5]. We add the following two.

Example 1. Let F': [0, +00)? — cc(]0, +00)?) for t > 0 be set-valued func-
tions defined by

F'((x,y)) = [z,7 - cosht 4+ y - sinht] x [y, x - sinh + y - cosh ]
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for (z,y) € [0,4+00)2. Then the family {F: t > 0} of set-valued functions
Fis a concave iteration semigroup of continuous linear set-valued functions.
Moreover, G((z,y)) = [0,y] x [0,z] for (x,y) € [0, +00)?.

Example 2. Let X be the linear space of all functions f: R — R of the
form f(x) = ax + b, where a,b € R. The space X is a Banach space with
the norm

11 = [b] + [al.
Let
K:={feX:a>0}
The set K is a closed convex cone in X and fy € int K, where fy(z) =x+1
for x € R. Now, we define set-valued functions F* as follows

F'(f) = {9 € X: JueogVaerg(z) = f(z +u)}

for f € K. Tt is easy to check that sets F'(f) are nonempty, compact and
convex subsets of K. Moreover F are linear continuous multifunctions and
the family {F': ¢ > 0} is a concave iteration semigroup with G(f) = {g €
X:g(x)=d, 0<d<a}.

Lemma 11. Assume that K is a closed convex cone with nonempty interior
in a real Banach space X. Let {F':t > 0} be a concave iteration semigroup
of continuous linear set-valued functions F*: K — c(K) with F°(x) = {x}
forz € K. Then F'(y) converges to y uniformly on every nonempty compact
subset C of K, when t — 0.

Proof. Fix e > 0 and a set C' € ¢(K). According to Lemma 10 there exists
6 € (0,e/(1+||G(C)|))) such that

a8 ) <1

for every y € C' and s € (0,6). This implies that

Fs(y) —
(ygy C G(y)+ S,
where S is the closed unit ball, and
Fs(y) —
Gly) C (ys) Y45

for y € C and s € (0,9). Therefore
F*(y) C ly+sG(y)] + sS

and
[sG(y) +y]l C F*(y) + s5
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for the same y and s. Thus
d(F*(y),sG(y) +y) <s
for y € C'and 0 < s < §. Hence we have for the same y and s
d(F*(y), {y}) < d(F*(y),y + sG(y)) + d(y + sG(y), {y})
=d(F*(y),y +sG(y)) + s[|Gy)] < s+ s[|G(O)]
=s(1+||G(O)]) <e.
This completes the proof. O

Under assumptions of Lemma 10,
Fi(x) —
Glo) = Tim LB =2
t—0+ t

for z € K. Therefore G is the infinitesimal generator of semigroup {F*: ¢ >
0} and its domain D(QG) is equal to K. It is well known that if {f*: ¢ > 0}
is a strongly continuous semigroup of bounded linear operators on X and
g is its infinitesimal generator, then the function t — f%(z) is differentiable
for every x € D(g) and the equality

% f!(z) = f!(g(x)), = € D(g)

holds true (see [6]). A similar result for concave iteration semigroup of linear
continuous set-valued functions is contained in the following theorem.

Theorem . Let X be a Banach space and let K be a closed convex cone
with the nonempty interior. Suppose that {F: t > 0} is a concave iteration
semigroup of linear continuous set-valued functions F': K — cc(K) with
FO(x) = {x}. Then this iteration semigroup is differentiable and

DF'(x) = F'(G(x))

forz € K, t >0, where D; denotes the Hukuhara derivative of F*(z) with
respect to t and G is given by Lemma 10.

Proof. It is obvious that there exist differences
Fé(z) —=x
for s > 0 and = € K so according to Lemma 3 there exist differences
Fi*(2) = F(z) = F'[F*(2)] - F'(z) = F'(F*(z) — x)
and
Fl(z) = F'=* () = F"*[F(2)] — F'*(x) = F"*(F*(x) — )
whenever ¢t > 0, s € (0,t) and z € K.
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Lemmas 5 and 6 imply that

o (P20 pgey) - a (7 (F222) Pow)

< M0|Ft”2 (FS(J;)_:E’ G(x)>

forx € K,t>0, s € (0,t). Therefore, in view of Lemma 10
t+s N nl4
lim F**5(x) — F*(x)
s—0+ S

fort >0 and z € K.
Similarly we have

d <Ft<‘”> — @) PG =a (o (PO )

= F'(G(z))

s
—s Fé(x) —x _,
<l ja (S PG )
fort >0,s€(0,t) and z € K.
Fix 2 € K and t > 0. Since F'(z) € ¢(K) and
t—s
t
St s t
|F4 @)l + ] < max{||F4 )], =]} < oo.

IF*=* (@) < |l

t—

t

Thus the set Jy< <, F'=%(z) is bounded. By Lemma 4 there exists a positive
constant M such that

F'(2) + +{a}]

<

12 < M (3)
for s € [0,t]. According to (2) and (3) we have

d <Ft(x) _SFt_s(x) , F%G(@)) < MoMd (F(x)_x FS(G(x))>

S

Fé(z) —x

< MyMd <
S

,G<w>) T d(G(x), PG (@))).

According to Lemmas 10, 11 and 9, the right part of the last inequality has
the limit zero when s — 0+. Thus

D,F'(x) = FY(G(x)).
This ends the proof. O
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