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Abstract. Nonlinear vector integral equations are considered. Solu-
tion estimates and solvability conditions are derived. Applications to
the periodic boundary value problem are also discussed. Under some
restrictions our results improve the well-known ones. The main tool in
the paper is the recent estimates for the resolvent of Hilbert-Schmidt
operators.

1. Introduction and statement of the main result

A lot of papers and books are devoted to nonlinear integral equations,
cf. [2], [9], [14], [15]. In this paper we suggest a new approach to deriving
a priori solution estimates and solvability conditions for nonlinear vector
integral equations. That approach is based on the recent estimates for the
resolvent of linear Hilbert-Schmidt operators. As it is shown in Section 6
below, in appropriate situations our results improve the well known ones.
In particular, we establish estimates for the amplitude of periodic solutions.
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Let E be a compact subset of a real Euclidean space Rm, and Cn a
complex Euclidean space with the Euclidean norm ‖ · ‖Cn . In addition,
L2 = L2(E,Cn) is the space of functions defined on E with values in Cn
and equipped with the norm

‖h‖L2 = [
∫
E
‖h(x)‖2Cndx]1/2 (h ∈ L2(E,Cn)),

and C(E,Cn) is the space of continuous functions defined on E with values
in Cn and equipped with the sup-norm ‖ · ‖C .

For a positive r ≤ ∞, put

ωr = {z ∈ Cn : ‖z‖Cn ≤ r} and Ωr(C) = {h ∈ C(E,Cn) : ‖h‖C ≤ r}.
Consider the equation

u(x) =
∫
E
K(x, s, u(s))u(s)ds+ f(x) (x ∈ E) (1.1)

where f ∈ C(E,Cn) and K is an n × n-matrix defined on E2 × ωr. In
addition, K(x, s, z) is continuous in z ∈ ωr for almost all s ∈ E and

lim
x→x0

∫
E

sup
z∈ωr
‖K(x0, s, z)−K(x, s, z)‖Cnds = 0 (x0 ∈ E).

Put
Qr(x, s) := sup

z∈ωr
|K(x, s, z)| (1.2)

for almost all s ∈ E. Here |K(x, s, z)| means the matrix whose entries are
the absolute values of the entries of K(x, s, z). So Qr(x, s) is a nonnegative
n× n-matrix.

Assume that

q(Qr) := sup
x∈E

[
∫
E
‖Qr(x, s)‖2Cnds]1/2 <∞. (1.3)

Let B be an m-dimensional Hilbert-Schmidt operator (m ≤ ∞). The fol-
lowing quantity plays a key role in this paper:

g(B) := (N2(B)−
m∑
k=1

|λk(B)|2)1/2,

where λk(B), k = 1, 2, . . . ,m are the eigenvalues of B taking with their
multiplicities and N(B) is its Hilbert-Schmidt norm, i.e.

N2(B) = Trace (BB∗).

The asterisk means the adjointness. The following relations are true: g2(B) ≤
N2(B)− |Trace B2| and

g2(B) ≤ 1
2
N2(B∗ −B), (1.4)
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cf. [5, Corollary 3.4.6]. Furthermore, introduce in L2 the operator Q̃r by

(Q̃rv)(x) =
∫
E
Qr(x, s)v(s)ds (v ∈ L2(E,Cn)).

Due to (1.3), Q̃r is a Hilbert-Schmidt operator. Assume that the spectral
radius rs(Q̃r) of Q̃r is less than one:

ρs(Q̃r) < 1, (1.5)

and put

Θ(Qr) =
∞∑
k=0

gk(Q̃)√
k!(1− ρs(Q̃r))k+1

.

Now we are in a position to formulate the main result of the paper

Theorem 1.1. Let the conditions (1.3), (1.5) and

q(Qr)Θ(Qr)‖f‖L2 + ‖f‖C < r (1.6)

hold. Then equation (1.1) has at least one solution u ∈ Ωr(C), satisfying
the estimates

‖u‖L2 ≤ Θ(Qr)‖f‖L2 (1.7)
and

‖u‖C ≤ q(Qr)Θ(Qr)‖f‖L2 + ‖f‖C ≤ r. (1.8)

The proof of this theorem is divided into a series of lemmas, which are
presented in the next section.

Note that due to (1.4)

g2(Q̃r) ≤
1
2
N2(Q̃∗r − Q̃r) =

1
2

∫
E

∫
E

n∑
j,k=1

|bjk(x, s)− bjk(s, x)|2dx ds

where bjk are the entries of Qr(x, s). If Qr is a symmetric kernel, i.e.
bjk(x, s) = bjk(s, x), then g(Q̃r) = 0. Now Theorem 1.1 implies

Corollary 1.2. Let conditions (1.3) and (1.5) hold. If, in addition, Qr is
a symmetric kernel, and

q(Qr)‖f‖L2

1− ρs(Q̃r)
+ ‖f‖C < r

then equation (1.1) has at least one solution u ∈ Ωr(C), satisfying the esti-
mates

‖u‖L2 ≤
‖f‖L2

1− ρs(Q̃r)
and

‖u‖C ≤
q(Qr)‖f‖L2

1− ρs(Q̃r)
+ ‖f‖C .
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By virtue of Schwarz’s inequality, it is not hard to check that

Θ(Qr) ≤
√

2
1− ρs(Q̃r)

exp[
g2(Q̃)

(1− ρs(Q̃r))2
]. (1.9)

2. Proof of Theorem 1.1

Let X be a Banach space with a norm ‖ · ‖X and the unit operator I. In
addition, Y ⊆ X is a continuously imbedded Banach subspace with a norm
‖ · ‖Y . For a positive number r ≤ ∞, put Ωr(Y ) ≡ {h ∈ Y : ‖h‖Y ≤ r}.
Consider the equation

u = A(u)u+ f, (2.1)

where A(h), for all h ∈ Ωr(Y ), is a linear operator acting from X into Y
and f ∈ Y is given. Moreover, there is a constant q(Y,X), such that

‖A(h)w‖Y ≤ q(Y,X)‖w‖X (w ∈ X; h ∈ Ω(Y )). (2.2)

We will say that the mapping Φ: Ωr(Y )→ Y defined by

Φ(h) ≡ A(h)h+ f (h ∈ Ωr(Y ))

has the fixed point property in Y if the uniform bound ‖vt‖Y ≤ r for all
possible solutions vt of the equation

v = tA(v)v + tf (0 ≤ t ≤ 1) (2.3)

implies the solvability of equation (2.1).
For instance, Φ can be a continuous compact mapping [12], [15] or a

continuous condensing one (the Schaefer principle) [13], [1, Section 3.9.2],
[4].

Lemma 2.1. Let Φ have the fixed-point property in Y . In addition, let the
conditions (2.2) and

JA := sup
h∈Ωr(Y ),t∈[0,1]

‖(I − tA(h))−1‖X <∞ (2.4)

hold. Then equation (2.1) has at least one solution u ∈ Ωr(Y ) satisfying the
estimates

‖u‖X ≤ JA‖f‖X (2.5)

and
‖u‖Y ≤ q(Y,X)JA‖f‖X + ‖f‖Y , (2.6)

provided
q(Y,X)JA‖f‖X + ‖f‖Y < r. (2.7)
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Proof. First, let r =∞. Equation (2.3) is equivalent to the equation

v = t(I − tA(v))−1f.

Hence, a possible solution vt of (2.3) satisfies the inequalities

‖vt‖X ≤ t‖(I − tA(vt))−1f‖X ≤ JA‖f‖X (0 ≤ t ≤ 1).

This proves inequality (2.5). Moreover, from (2.3) it follows that

‖vt‖Y ≤ ‖A(vt)vt‖Y + ‖f‖Y ≤ q(Y,X)‖vt‖X + ‖f‖Y
≤ q(Y,X)JA‖f‖X + ‖f‖Y ≤ q(Y,X)JA‖f‖X + ‖f‖Y . (2.8)

Since Φ has the fixed point property, equation (2.1) has a solution.
Let now r < ∞. Put r1 ≡ q(Y,X)JA‖f‖X + ‖f‖Y . According to (2.7),

r1 < r.
By the Urysohn theorem [3, p. 15], there is a continuous real function ψr

defined on Y , such that ψr(h) = 1 (‖h‖Y ≤ r1) and ψr(h) = 0 (‖h‖Y ≥ r).
Besides, 0 ≤ ψr(h) ≤ 1 (‖h‖Y ≤ r). Thus

sup
h∈Y,t∈[0,1]

‖(I − tψr(h)A(h))−1‖X ≤ JA.

Put Φr(h) = ψr(h)A(h) + f and consider the equation

vt = tΦr(vt). (2.9)

According to (2.7) and (2.8), a solution vt of equation (2.9) satisfies the
uniform estimate ‖vt‖Y ≤ r1. Since Φr and Φ coincide on Ωr1(Y ) and Φ has
the fixed point property, Φr also has the fixed point property. So equation
(2.9) with t = 1 has a solution v1, satisfying estimates (2.5) and (2.6). But
Φr(v1) = Φ(v). Thus, v1 satisfies (2.1). This finishes the proof.

Now, let X = H be a Hilbert lattice, cf. [11]. Assume that

|A(h)w| ≤ B|w| (w ∈ H, h ∈ Ωr(Y )), (2.10)

where B is a positive Hilbert-Schmidt operator and | · | means the absolute
value [11]. We will use the following result: let B be an m-dimensional
Hilbert-Schmidt operator (m ≤ ∞). Then for any regular λ ∈ C,

‖(B − λI)−1‖H ≤
m−1∑
k=0

gk(B)√
k!ρk+1(B, λ)

(2.11)

where ρ(B, λ) is the distance between the spectrum σ(B) of B and a complex
point λ (see [5, Corollary 1.2.4 and Theorem 2.4.1]). Assume that the
spectral radius ρs(B) of B is less than one:

ρs(B) < 1. (2.12)

Then (2.10) implies

‖(I − tA(h))−1‖H ≤ ‖(I −B)−1‖H (h ∈ Ωr(Y ), t ∈ [0, 1]).
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But due to (2.11) and (2.12),

‖(B − I)−1‖H ≤ θ(B)

where

θ(B) :=
∞∑
k=0

gk(B)√
k!(1− ρs(B))k+1

.

So JA ≤ θ(B). Now the previous lemma yields

Lemma 2.2. Let Φ have the fixed-pont property in Y ⊆ H. In addition,
let the conditions (2.2) with X = H, (2.10), (2.12) and

‖f‖Hq(Y,H)θ(B) + ‖f‖Y < r

hold. Then equation (2.1) has at least one solution u ∈ Ωr(Y ), satisfying
the estimates

‖u‖H ≤ θ(B)‖f‖H
and

‖u‖Y ≤ ‖f‖Hq(Y,H)θ(B) + ‖f‖Y .

Proof of Theorem 1.1. Due to the well-known Theorem X.1.2 [14], the
nonlinear integral operator defined by the right-hand part of equation (1.1)
is compact as operator acting from C to C. Now the required result directly
follows from the previous lemma with Y = C(E,Cn),H = L2(E,Cn) and
B = Q̃.

3. Equations “close” to Volterra ones

In this section we are going to specialize Theorem 1.1 in the case of
equations which are “close” to Volterra ones.

Let x = (xk), s = (sk) ∈ E. Under condition (1.2), put

Q+
r (x, s) = Qr(x, s) if xk < sk and Q+

r (x, s) = 0 for other x, s.

Define on L2 an operator Vr by

(Vrv)(x) =
∫
E
Q+
r (x, s)v(s)ds (x ∈ E, v ∈ L2)

and put Tr = Q̃r−Vr. Since under condition (1.3), Qr is a Hilbert-Schmidt
kernel, the Volterra operator Vr is a Hilbert-Schmidt one:

N2(Vr) =
∫
E

∫
E
‖Q+

r (x, s)‖2Cnds dx <∞.

Clearly,

‖Tr‖2L2 ≤
∫
E

∫
E
‖Qr(x, s)−Q+

r (x, s)‖2Cndx ds.



A PRIORI SOLUTION ESTIMATES 193

Due to Theorem 3.5 from [6], the spectral radius ρs(Q̃r) of Q̃r satisfies the
inequality ρs(Q̃r) ≤ βr, where βr is the extreme right (positive) root of the
scalar equation

2‖Tr‖2L2

y2 exp[
2N2(Vr)

y2 ] = 1. (3.1)

Let βr < 1. Then Θ(Q̃r) ≤ θ(Vr, Tr), where

θ(Vr, Tr) :=
√

2
1− βr

exp[
N2(Vr)

(1− βr)2 ].

Now Theorem 1.1 implies

Theorem 3.1. Let the conditions (1.3), βr < 1 and

q(Qr)θ(Vr, Tr)‖f‖L2 + ‖f‖C < r

hold. Then equation (1.1) has at least one solution u ∈ Ωr(C), satisfying
the estimates

‖u‖L2 ≤ θ(Vr, Tr)‖f‖L2

and
‖u‖C ≤ q(Qr)θ(Vr, T )‖f‖L2 + ‖f‖C .

Substituting y2 = 2N2(Vr)x in (3.1) we have

‖Tr‖2L2

N2(Vr)x
exp[

1
x

] = 1.

Now Lemma 4.6 from [7] yields the inequality βr ≤ δr, where

δr :=
√

2N(Vr)

ln1/2 [1/2 +
√

1/4 + ‖Tr‖−2
L2N2(Vr)]

.

Thus the previous theorem implies

Corollary 3.2. Let the conditions (1.3) and δr < 1 hold. In addition, with
the notation

θ(δr, Vr) :=
√

2
1− δr

exp[
N2(Vr)

(1− δr)2 ],

let
q(Qr)θ(δr, Vr)‖f‖L2 + ‖f‖C < r. (3.2)

Then equation (1.1) has at least one solution u ∈ Ωr(C), satisfying the
estimates

‖u‖L2 ≤ θ(δr, Vr)‖f‖L2

and
‖u‖C ≤ q(Qr)θ(δr, Vr)‖f‖L2 + ‖f‖C . (3.3)
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Furthermore let x = (xk), s = (sk) ∈ E, again. Put

Q−r (x, s) = Qr(x, s) if xk > sk and Q−r (x, s) = 0 for other x, s,

and introduce the Volterra operator Ṽr by

(Ṽrv)(x) =
∫
ω
Q−r (x, s)v(s)ds.

Then in our above arguments we can replace Vr by operator Ṽr.

4. Equations with convolution majorants

Let E = [−π, π] and conditions (1.2) and (1.3) hold with Qr(x, s) =
Qr(x− s) where Qr(x) is a nonnegative n×n matrix defined on R. That is,

|K(x, s, z)| ≤ Qr(x− s) (−π ≤ x, s ≤ π; z ∈ ωr). (4.1)

and

q(Qr) = sup
x∈[−π,π]

[
∫ π

−π
‖Qr(x− s)‖2Cnds]1/2 <∞. (4.2)

Therefore

(Q̃rv)(x) =
∫ π

−π
Qr(x− s)v(s)ds (v ∈ L2([−π, π],Cn)).

In this section we are going to improve Theorem 1.1 in the case (4.1). Let

Qr(x) =
∞∑

k=−∞
Bke

ikx

be the Fourier expansion of Qr with the matrix Fourier coefficients

Bk =
1

2π

∫ π

−π
Qr(s)e−iksds.

Due to Lemma 4.1 from [6],

ρs(Q̃) = sup
l=0, ±1,...

ρs(Bl). (4.3)

where ρs(Bl) is the spectral radius of matrix Bl. It is easy to check that
under consideration,

‖(Q̃r − I)−1‖L2 = sup
l=0, ±1,...

‖(Bl − In)−1‖Cn .

Here I and In are the unit operators in L2 and Cn, respectively. Assume
that

sup
l=0, ±1,...

ρs(Bl) < 1. (4.4)



A PRIORI SOLUTION ESTIMATES 195

Then according to (2.11)

‖(Q̃r − I)−1‖L2 ≤ θ0(Qr)

where

θ0(Qr) := sup
l=0, ±1,...

n−1∑
k=0

gk(Bl)√
k!(1− ρs(Bl))k+1

.

Now Lemma 2.1 implies

Theorem 4.1. Let the conditions (4.1), (4.2), (4.4) and

q(Qr)θ0(Qr)‖f‖L2 + ‖f‖C < r

hold. Then equation (1.1) with E = [−π, π] has at least one solution
u ∈ Ωr(C), satisfying the estimates

‖u‖L2 ≤ θ0(Qr)‖f‖L2

and
‖u‖C ≤ q(Qr)θ0(Qr)‖f‖L2 + ‖f‖C .

Let Qr(x) be a Hermitian matrix for all x ∈ [−π, π]. Then Bl are normal
matrices and g(Bl) = 0. Thus Corollary 1.2 is true with ρs(Q̃r) defined by
(4.3).

5. The periodic boundary value problem

Consider in Cn the problem

du/dx =W (x, u(x))u(x) + f0(x) (5.1)

u(−π) =u(π) (5.2)

where f0 ∈ L2([−π, π],Cn) and W (x, z) is an n × n-matrix continuously
dependent on x ∈ [−π, π] and z ∈ ωr. The operator S defined on L2 by

(Sv)(x) = du/dx+ u

with conditions (5.2) has the Green matrix-function G(x, s) = G(x − s)
defined by

G(x− s) =
∞∑

k=−∞
(1 + ki)−1eik(x−s)In (x, s ∈ [−π, π]) (5.3)

where In is the unit matrix. Hence (5.1) can be written as

u(x) =
∫ π

−π
G(x− s)(W (s, u(s))− In)u(s)ds+ f(x) (5.4)
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where

f(x) =
∫ π

−π
G(x− s)f0(s)ds.

Since G is a solution of the equation

G′ +G = δ(x),

where δ(x) is the delta-Dirack function, we have

G(x) =
{
Cπe

−x if x < 0
(Cπ + In)e−x if x ≥ 0 (5.5)

where

Cπ :=
e−π

eπ − e−π
In.

That is G is positive. Let the condition

|W (x, z)− In| ≤Mr (z ∈ ωr) (5.6)

hold where Mr is a nonnegative constant matrix. Then (4.1) is valid with
K(x, s, z) = G(x − s)(W (s, z) − In) and Qr(x − s) = G(x − s)Mr. So
according to (5.3) in the considered case the Fourier coefficients to Qr are

Bk = (1 + ki)−1Mr.

Moreover, the eigenvalues of Bk are λj(Bk) = (1 + ki)−1λj(Mr) (j =
1, . . . , n). Hence,

ρs(Bk) =
ρs(Mr)

(1 + k2)1/2 ≤ ρs(Mr)

and

g(Bk) =
g(Mr)

(1 + k2)1/2 (k = 0,±1,±2, . . . ).

Consequently,

θ0(Qr) = sup
l=0, ±1,...

n−1∑
k=0

gk(Bl)√
k!(1− ρs(Bl))k+1

≤ ψ(Mr) (5.7)

where

ψ(Mr) :=
n−1∑
k=0

gk(Mr)√
k!(1− ρs(Mr))k+1

.

Moreover, in the considered case, conditin (4.2) holds with

q(Qr) ≤ ‖Mr‖Cn sup
x

[
∫ π

−π
G2(x− s)ds]1/2.

According to (5.3), simple calculations show that

sup
x

[
∫ π

−π
G2(x− s)ds]1/2 ≤ βπ
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where

βπ := [2π
∞∑

k=−∞

1
1 + k2 ]1/2.

So condition (4.2) holds with

q(Qr) = βπ‖Mr‖Cn . (5.8)

Moreover, due to the Schwarz inequality

‖f‖C = sup
x
‖
∫ π

−π
G(x− s)f0(s)ds‖Cn ≤ βπ‖f0‖L2 .

Hence,
‖f‖L2 ≤

√
2π‖f‖C ≤

√
2πβπ‖f0‖L2 .

Now Theorem 4.1 and relations (5.7) and (5.8) yield

Theorem 5.1. Let the conditions (5.6) and ρs(Mr) < 1 hold. In addition,
let

‖f0‖L2βπ(
√

2π‖Mr‖Cnψ(Mr) + 1) < r.

Then problem (5.1), (5.2) has at least one continous solution u ∈ Ωr(C),
satisfying the estimates

‖u‖L2 ≤ ‖f0‖L2βπ
√

2πψ(Mr)

and
‖u‖C ≤ ‖f0‖L2βπ(

√
2π‖Mr‖Cnψ(Mr) + 1).

Note that if Mr is a Hermitian matrix, then

ψ(Mr) ≤
1

1− ρs(Mr)
.

In the general case, thanks to (1.4), g2(Mr) ≤ N2(Mr −M∗r )/2.

6. Concluding remarks

In this section we are going to compare our results with the well-known
ones.

1. Take E = [0, 1] and consider the Volterra equation

u(x)−
∫ x

0
K(x, s, u(s))u(s)ds = f(x) (x ∈ [0, 1]) (6.1)

where f ∈ C([0, 1],Cn) and K is the same as in Section 1 with E = [0, 1].
In addition, Qr(x, s) (0 ≤ s ≤ x ≤ 1) defined by (1.2) has the property

q(Qr) = sup
0≤x≤1

[
∫ x

0
‖Qr(x, s)‖2Cnds]1/2 <∞.
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Simple calculations show that in the considered case

g2(Q̃r) =
∫ 1

0

∫ x

0
‖Qr(x, s)‖2Cnds dx ≤ q2(Qr)

and ρs(Q̃r) = 0. Moreover,

Θ(Qr) ≤
∞∑
k=0

qk(Qr)√
k!
≤
√

2 exp[q2(Qr)].

Obviously, under consideration, ‖f‖L2 ≤ ‖f‖C . Let the condition

‖f‖C(1 + q(Qr)
√

2 exp[q2(Qr)]) < r (6.2)

hold. Then due to Theorem 1.1 and inequality (1.9), equation (6.1) has at
least one solution u ∈ Ωr(C). Let us compare this result with the following
well known solvability conditions for equation (1.1) in the scalar case [14,
Chapter X, Theorem 2.4]:

K continuously maps [0, 1]2 × Ωr(C) into C, (6.3)

and
r sup

0≤x,s≤1; |z|≤r
|K(x, s, z)|+ ‖f‖C < r. (6.4)

Or, equivalently,
r sup

0≤x,s≤1
|Qr(x, s)|+ ‖f‖C < r. (6.5)

About other solvability conditions see for instance [15, p. 59].
Theorem 1.1 does not require condition (6.3). In particular, K can have

integrable singularities with respect to the second argument. But even under
condition (6.3), relation (6.2) with n = 1 improves (6.4), since (6.5) requires
the inequality

sup
0≤x,s≤1; |z|≤r

|K(x, s, z)| < 1.

At the same time due to (6.2), K can be “arbitrary” if f is sufficiently
small. So (6.2) improves (6.4) for Volterra equations of the type (6.1) and
equations which are “close” to (6.1).

The same reasonings are valid for the equation

u(x)−
∫ 1

x
K(x, s, u(s))u(s)ds = f(x) (0 ≤ x ≤ 1)

and equations which are “close” to it.
2. Now let us consider the Anselone-Moor system from elasticity theory

[2, Section 1.2]

uj(x)− γ
∫ 1

0
(Lj1(x, s)u1(s)u2(s) + Lj2(x, s)u2

1(s))ds = fj(x)

(x ∈ [0, 1]; γ = const > 0) (6.6)
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where Lj2(x, s) are bounded measurable kernels. The following solvability
conditions for system (6.6) are well known [2, p. 10]:

4γ‖f‖C max
j=1,2

sup
x,s∈[0,1]

(|Lj2(x, s)|+ |Lj2(x, s)|) < 1. (6.7)

Let us improve this result in the case of the Volterra system

uj(x)− γ
∫ x

0
(Lj1(x, s)u1(s)u2(s) + Lj2(x, s)u2

1(s))ds = fj(x)

(x ∈ [0, 1]). (6.8)

Put

Kj1(x, s, z) = γLj2(x, s)z1,Kj2(x, s, z) = γLj1(x, s)z1

(z = (z1, z2) ∈ C2; j = 1, 2).

Then (6.8) takes the form (6.1). According to (1.2) put

Qr(x, s) = rγ|L(x, s)|
where |L(x, s)| is the 2 × 2-matrix whose entries are the absolute values of
the matrix

L(x, s) = (Ljk(x, s))2
j,k=1.

Clearly, condition (1.3) holds with q(Qr) = γ rν(L), where

ν(L) = [sup
x

∫ x

0
‖L(x, s)‖2C2ds]1/2.

Now (6.2) yields the following solvability conditions for system (6.8):

‖f‖C(1 + γrν(L)
√

2 exp[γrν(L)]) < r. (6.9)

Taking r sufficiently small, due to Theorem 1.1, we can assert that system
(6.8) is solvable for arbitrary γ, provided ‖f‖C < r. Thus, (6.9) improves
(6.7) for the Volterra system and systems which are “close” to it.

3. Furthermore, let us consider periodic problem (5.1), (5.2). Let (·, ·)
denote the scalar product in L2([−π, π],Cn). If one of the following conitions
holds:

(z,W (x, z)) ≤ a(x)(‖z‖2Cn + 1) (x ∈ [−π, π]; z ∈ Rn). (6.10)

for a nonnegative function a ∈ L1[−π, π], or

(z,W (x, z)) ≤ 0 (x ∈ [−π, π]; z ∈ ωr), (6.11)

then the problem (5.1), (5.2) has a continous solution, cf. [10, p. 67,
Corollaries VI.4 and VI.5 ] (see also [8] and [15]).

Clearly, our Theorem 5.1 allows us to consider more general nonlinearities
than ones satisfying (6.10) and (6.11). In addition, Theorem 5.1 gives us
estimates for the amplitude of oscillations.
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