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Abstract. In this paper using the critical point theory of Chang [4]
for locally Lipschitz functionals we prove an existence theorem for non-
coercive Neumann problems with discontinuous nonlinearities. We use
the mountain-pass theorem to obtain a nontrivial solution.

1. Introduction

The problem under consideration is a Neumann elliptic boundary value
problem with multivalued nonlinear boundary conditions. Let Z ⊆ RN be
a bounded domain with a C1-boundary Γ− div(||Dx(z)||p−2Dx(z)) = f(z, x(z)) a.e. on Z

− ∂x

∂np
∈ ∂j(z, τ(x)(z)) a.e. on Γ, 2 ≤ p <∞. (1)
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Here the boundary condition is in the sense of Kenmochi [12] and the
operator τ is the trace operator in W 1,p(Z). We do not assume here that
the right-hand side is a Carathéodory function.

Many authors considered elliptic problems with non Carathéodory right
hand side. For example Heikkila-Lakshmikantham [9] had used the method
of upper and lower solution to obtain existence theorems for certain differen-
tial equations with discontinuous nonlinearities involving pseudomonotone
operators but they need the existence of upper and lower solutions. On the
other hand many authors established existence results for these problems
without upper and lower solutions using the critical point theory for smooth
or nonsmooth operators. Hence they need the differential operator to be
of variational type. Some characteristic papers on this direction is that of
Ambrosseti-Badiale [2] and Stuart-Tolland [15]. But non of them considered
Neumann problems with multivalued boundary conditions or noncoercive
problems. Here we consider noncoercive Neumann problems with multival-
ued boundary conditions and we do not use the method of upper and lower
solution.

Also, for some existence results about the p-Laplacian with nonlinear
boundary conditions see also [3].

For a more detailed study of the p-Laplacian one can read the well-written
book of Drábek-Kufner-Nicolosi [8].

This problem is closely related with the so-called hemivariational inequal-
ities. At this subject see [13], [14] and the references therein.

In the next section we recall some facts and definitions from the criti-
cal point theory for locally Lipschitz functionals and the subdifferential of
Clarke.

2. Preliminaries

Let X a real reflexive Banach space and let Y be a subset of X. A
function f : Y → R is said to satisfy a Lipschitz condition (on Y ) provided
that, for some nonnegative scalar K, one has

|f(y)− f(x)| ≤ K||y − x||

for all points x, y ∈ Y . Let f be Lipschitz near a given point x, and let v
be any other vector in X. The generalized directional derivative of f at x
in the direction v, denoted by f0(x; v) is defined as follows:

f0(x; v) = lim sup
y→x
t↓0

f(y + tv)− f(y)
t
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where y is a vector in X and t a positive scalar. If f is Lipschitz of
rank K near x then the function v → f0(x; v) is finite, positively homo-
geneous, subadditive and satisfies |f0(x; v)| ≤ K||v||. In addition f0 satisfies
f0(x;−v) = (−f)0(x; v). Now we are ready to introduce the generalized
gradient which denoted by ∂f(x) as follows:

∂f(x) = {w ∈ X∗ : f0(x; v) ≥ 〈w, v〉 for all v ∈ X}.

Some basic properties of the generalized gradient of locally Lipschitz func-
tionals are the following:

(a) ∂f(x) is a nonempty, convex, weakly compact subset of X∗ and
||w||∗ ≤ K for every w in ∂f(x).

(b) For every v in X, one has

f0(x; v) = max{〈w, v〉 : w ∈ ∂f(x)}.

If f1, f2 are locally Lipschitz functions then

∂(f1 + f2) ⊆ ∂f1 + ∂f2.

Let us recall the (PS)-condition introduced by Chang.

Definition 1. We say that Lipschitz function f satisfies the Palais-Smale
condition if any sequence {xn} ⊆ X along which |f(xn)| is bounded and
λ(xn) = minw∈∂f(xn) ||w||X∗ → 0 possesses a convergent subsequence.

The (PS)-condition can also be formulated as follows (see Costa and
Goncalves [6]).

(PS)∗c,+: Whenever (xn) ⊆ X, (εn), (δn) ⊆ R+ are sequences with
εn → 0, δn → 0, and such that

f(xn)→ c

f(xn) ≤ f(x) + εn||x− xn|| if ||x− xn|| ≤ δn,

then (xn) possesses a convergent subsequence: xn′ → x̂.
Similarly, we define the (PS)∗c condition from below, (PS)∗c,−, by inter-

changing x and xn in the above inequality. And finally we say that f satisfies
(PS)∗c provided it satisfies (PS)∗c,+ and (PS)∗c,−.

Note that these two definitions are equivalent when f is locally Lipschitz
functional.

Theorem 1. If a locally Lipschitz functional f : X → R on the reflexive
Banach space X satisfies the (PS)-condition and the hypotheses

(i) there exist positive constants ρ and a such that

f(u) ≥ a for all u ∈ X with ||u|| = ρ;
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(ii) f(0) = 0 and there a point e ∈ X such that

||e|| > ρ and f(e) ≤ 0,

then there exists a critical value c ≥ a of f determined by

c = inf
g∈G

max
t∈[0,1]

f(g(t))

where
G = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = e}.

In what follows we will use the well-known inequality
N∑
j=1

(aj(η)− aj(η′))(ηj − η′j) ≥ C|η − η′|p (2)

for η, η′ ∈ RN , with aj(η) = |η|p−2ηj .

3. Neumann problems

Let X = W 1,p(Z). In the following we will need some definitions. Let
f : Z × R→ R. Then we introduce the following functions

f1(z, x) = lim inf
x′→x

f(z, x′), f2(z, x) = lim sup
x′→x

f(z, x′).

Let x satisfies the boundary conditions of problem (1).

Definition 2. We say that x ∈ X is a solution of type I of problem (1) if
there exists some w ∈ Lq(Z) such that

w(z) ∈ [f1(z, x(z)), f2(z, x(z))] a.e. on Z

and
− div(||Dx(z)||p−2Dx(z)) = w(z) for almost all z ∈ Z.

Definition 3. We say that x ∈ X is a solution of type II of problem (1) if

−div(||Dx(z)||p−2Dx(z)) = f(z, x(z)) for almost all z ∈ Z.

Our existence theorem concerns the existence of nontrivial solutions of
type I. We use the mountain-pass theorem to obtain such a solution.

Our hypotheses on f(z, x) and j(z, x) are the following:
H(f): f1, f2 : Z × R → R are N -measurable (i.e. if x(z) is measurable

then so are f1(z, x(z)), f2(z, x(z)));
(i) for almost all z ∈ Z and all x ∈ R, |f(z, x)| ≤ α(z) + c|x|θ−1 with

α ∈ L∞(Z), c > 0, 1 ≤ θ < p;
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(ii) uniformly for almost all z ∈ Z we have that

f1,2(z, x)
|x|θ−2x

→ f+(z) as x→ ±∞

where f+ ∈ L1(Z), f+ ≥ 0 with strict inequality on a set of positive
Lebesgue measure;

(iii) uniformly for almost all z ∈ Z we have that

lim sup
x→0

pF (z, x)
|x|p

≤ h(z),

with h ∈ L∞(Z) and h(z) ≤ 0 with strict inequality on a set of positive
measure. Here, by F (z, x) we denote the integral of f , that is F (z, x) =∫ x

0 f(z, r)dr.
H(j): j(z, x) : Z×R→ R is such that z → j(z, x) is measurable and j(z, ·)

is a locally Lipschitz function such that for almost all z ∈ Z, all x ∈ R and
all v(z) ∈ ∂j(z, x) we have that |v| ≤ α1(z) + c1|x|µ, 0 ≤ µ < θ − 1 (θ the
same as in H(f) (i)) with α1 ∈ L∞, c1 > 0 and j(·, 0) ∈ L∞(Z) and finally
j(z, ·) ≥ 0 for almost all z ∈ Z.

Theorem 2. If hypotheses H(f) and H(j) hold, then problem (1) has a
nontrivial solution of type I.

Proof. Let Φ: W 1,p(Z)→ R and ψ : W 1,p(Z)→ R+ be defined by

Φ(x) = −
∫
Z
F (z, x(z))dz and ψ(x) =

1
p
||Dx||pp +

∫
Γ
j(z, τ(x)(z))dσ.

In the definition of Φ(·), F (z, x) =
∫ x

0 f(z, r)dr (the potential of f), τ(·) is
the trace operator on W 1,p(Z) and dσ is the (N −1)-dimensional Hausdorff
measure. Clearly Φ, is locally Lipschitz (see Chang [4]), while we can check
that ψ is locally Lipschitz too. Set R = Φ + ψ.

Claim 1. R(·) satisfies the (PS)-condition (in the sense of Costa and
Goncalves). Let us first begin with (PS)c,+.

Let {xn}n≥1 ⊆W 1,p(Z) such that R(xn)→ c when n→∞ and

R(xn) ≤ R(x) + εn||x− xn|| with ||x− xn|| ≤ δn.
with εn, δn → 0. This inequality is equivalent with

R(x)−R(xn) ≥ −εn||x− xn|| with ||x− xn|| ≤ δn.
Choose x = xn + δxn with δ||xn|| ≤ δn. Divide with δ. So, if δ → 0 we

have that

lim
δ→0

R(xn + δxn)−R(xn)
δ

≤ R0(xn;xn).

Thus we have that R0(xn;xn) ≥ −εn||xn||.
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For the (PS)c,− we have the following. Let {xn}n≥1 ⊆W 1,p(Z) such that
R(xn)→ c when n→∞ and

R(x) ≤ R(xn) + εn||x− xn|| with ||x− xn|| ≤ δn.

with εn, δn → 0. This inequality is equivalent to the following

(−R)(x)− (−R)(xn) ≥ −εn||x− xn|| with ||x− xn|| ≤ δn.

Note that (−R) is locally Lipschitz too. Choose x = xn + δ(−xn) with
δ||xn|| ≤ δn. So if we divide with δ and take the limit when δ → 0 we have

lim
δ→0

(−R)(xn + δ(−xn))− (−R)(xn)
δ

≤ (−R)0(xn; (−xn)) = R0(xn;xn).

So as before we have that R0(xn;xn) ≥ −εn||xn||.
Also,

1
p
||Dxn + δDxn||pp −

1
p
||Dxn||pp =

1
p
||Dxn||pp((1 + δ)p − 1).

So if we divide this with δ and let δ → 0 we have that is equal with ||Dxn||pp.
Finally, there exists wn ∈ ∂η(xn) where η(x) =

∫
Γ j(z, τ(x)(z))dσ such that

η0(xn;xn) =
∫

Γwn(z)xn(z)dσ and vn(z) ∈ [−f1(z, xn(z)),−f2(z, xn(z))]
such that 〈vn, xn〉 = Φ0(xn;xn). Note that wn(z) ∈ ∂j(z, τ(xn)(z)) a.e.
on Z. So, it follows that∫

Z
vnxn(z)dz − ||Dxn||pp −

∫
Γ
wn(z)τ(xn)(z)dσ ≤ εn||xn||,

for some vn(z) ∈ [f1(z, xn(z)), f2(z, xn(z))].
If we choose for the (PS)c,+, at the first place, x = xn + δ(−xn) we

obtain R0(xn;−xn) ≥ −εn||xn|| and for the (PS)c,− we choose x = xn + δxn
to obtain the same inequality. But from R0(xn;−xn) ≥ −εn||xn|| we also
obtain

− εn||xn|| ≤
∫
Z
vnxn(z)dz − ||Dxn||pp −

∫
Γ
wn(z)τ(xn)(z)dσ ≤ εn||xn||.

Suppose that {xn} ⊆ W 1,p(Z) was unbounded. Then (at least for a
subsequence), we may assume that ||xn|| → ∞. Let yn = xn/||xn||, n ≥ 1.
By passing to a subsequence if necessary, we may assume that

yn
w→ y in W 1,p(Z), yn → y in Lp(Z), yn(z)→ y(z) a.e. on Z as n→∞

and |yn(z)| ≤ k(z) a.e. on Z with k ∈ Lp(Z).



ON NONCOERCIVE ELLIPTIC PROBLEMS WITH DISCONTINUITIES 217

Recall that from the choice of the sequence {xn} we have |R(xn)| ≤ M1
for some M1 > 0 and all n ≥ 1,

⇒ 1
p
||Dxn||pp +

∫
Γ
j(z, τ(xn)(z))dσ −

∫
Z
F (z, xn(z))dz ≤M1

⇒ 1
p
||Dxn||pp −

∫
Z
F (z, xn(z))dz ≤M1 (since j ≥ 0).

Divide by ||xn||p. We obtain

1
p
||Dyn||pp −

∫
Z

F (z, xn(z))
||xn||p

dz ≤ M1

||xn||p
. (3)

We have

|
∫
Z

F (z, xn(z))
||xn||p

dz| ≤ 1
||xn||p

∫
Z

∫ |xn(z)|

0
|f(z, r)| dr dz

≤ 1
||xn||p

(||α||∞||xn||+
c

θ
||xn||θ)→ 0 as n→∞.

So by passing to the limit as n→∞ in (3), we obtain

lim
1
p
||Dyn||pp =0

⇒ ||Dy||p =0 (recall that Dyn
w→ Dy in Lp(Z,RN ) as n→∞)

⇒ y =ξ ∈ R.
Note that yn → ξ in W 1,p(Z) and since ||yn|| = 1, n ≥ 1 we infer that

ξ 6= 0. We deduce that |xn(z)| → +∞ a.e. on Z as n→∞.
From the choice of the sequence {xn} ⊆W 1,p(Z), we have

−εn||xn|| ≤
∫
Z
vn(z)xn(z)dz − ||Dxn||pp

−
∫
Z
wn(z)τ(xn)(z)dz ≤ εn||xn|| (4)

and

−pM1 ≤||Dxn||pp + p

∫
Γ
j(z, τ(x)(z)dσ − p

∫
Z
F (z, xn(z))dz

≤pM1. (5)

Substituting (4) and (5), we obtain

− pM1 − εn||xn|| ≤
∫

Γ
(pj(z, τ(xn)(z))− wn(z)τ(xn)(z)dσ

+
∫
Z

(vn(z))xn(z)− pF (z, xn(z)))dz ≤ pM1 + εn||xn||.
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Divide this inequality by ||xn||θ. We have

∫
Z

vn(z)
||xn||θ−1 yn(z)dz −

∫
Z

pF (z, xn(z))
||xn||θ

dz

+
∫

Γ

pj(z, τ(xn)(z)− wn(z)τ(xn)(z)
||xn||θ

dσ

≥ 1
||xn||θ

pM1 +
εn

||xn||θ−1 . (6)

Note that∫
Z

vn(z)
||xn||θ−1 yn(z)dz =

∫
Z

vn(z)
|xn(z)|θ−2xn(z)

|yn(z)|θdz → |ξ|θ
∫
Z
f+(z)dz

as n→∞.
Also by virtue of hypothesis H(f) (ii), given z ∈ Z \ N , |N | = 0 (|C|

denotes the Lebesgue measure of a measurable set C ⊆ Z) and ε > 0, we
can find Mε > 0 such that for all |r| ≥Mε we have

|f+(z)− f1,2(z, r)
|r|θ−2r

| ≤ ε.

Then, if xn(z)→ +∞, we have

1
|xn(z)|θ

F (z, xn(z)) ≥ 1
|xn(z)|θ

F (z,Mε)

+
1

|xn(z)|θ

∫ xn(z)

Mε

(f+(z)|r|θ−2r − ε|r|θ−2r)dr

=
1

|xn(z)|θ
η(z) +

|xn(z)|θ −M θ
ε

θ|xn(z)|θ
(f+(z)− ε)

for some η ∈ L1(Z)

⇒ lim inf
n→∞

F (z, xn(z))
|xn(z)|θ

≥1
θ

(f+(z)− ε). (7)

Similarly we obtain that

lim sup
n→∞

F (z, xn(z))
|xn(z)|θ

≤ 1
θ

(f+(z) + ε). (8)
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From (7) and (8) and since ε > 0 and z ∈ Z \ N were arbitrary, we infer
that

F (z, xn(z))
|xn(z)|θ

→ 1
θ
f+(z) a.e. on Z as n→∞

⇒
∫
Z

F (z, xn(z))
||xn||θ

dz =
∫
Z

F (z, xn(z))
|xn(z)|θ

|xn(z)|θ

||xn||θ
dz

=
∫
Z

F (z, xn(z))
|xn(z)|θ

|yn(z)|θdz → ξθ
∫
Z

1
θ
f+(z) as n→∞. (9)

Note that for almost all z ∈ Z j(z, ·) is locally Lipschitz. So by Lebourg’s
mean value theorem (see Clarke [5, Theorem 2.3.7, p. 41]), for almost all
z ∈ Z and all x ∈ R, we can find w(z) ∈ ∂j(z, ηx) 0 < η < 1 such that

|j(z, x)− j(z, 0)| = w(z)x

⇒ |j(z, x)| ≤ |j(z, 0)|+ |w(z)||x| ≤ β + |w(z)||x| (since j(·, 0) ∈ L∞(Z)).

But by H(j) we have

|w(z)| ≤a1(z) + c1|x|µ

⇒ |j(z, x)| ≤c1 + c2|x|+ c3|x|µ+1 for some c1, c2, c3 > 0.

So it is easy to see that∫
Γ

pj(z, τ(xn)(z))− wn(z)τ(xn)(z)
||xn||θ

dσ → 0 as n→∞

(recall that µ+ 1 < θ).

Indeed, ∫
Γ

pj(z, τ(xn)(z))− wn(z)τ(xn)(z)
||xn||θ

dσ

≤
∫

Γ

c2|xn(z)|
||xn||θ

dσ +
∫

Γ

c3|xn(z)|µ+1

||xn||θ
+

c1

||xn||θ

≤ c2
||xn||L1(Γ)

||xn||θ
+ c3
||xn||µ+1

Lµ+1(Γ)

||xn||θ
+

c1

||xn||θ
.

But we know that

||xn||L1(Γ) ≤ C||xn|| 1
q
,1,Γ ≤ C||xn||1,p,Z and

||xn||µ+1
Lµ+1(Γ) ≤ C||xn||

µ+1
1
q
,p,Γ
≤ C||xn||µ+1

1,p,Z , (see Adams [1, p. 217]).

Thus by passing to the limit in (6), we obtain

(1− p

θ
)ξθ
∫
Z
f+(z) ≥ 0
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a contradiction to hypothesis H(f) (ii) (recall p > θ). If xn(z)→ −∞, with
similar arguments as above we show that∫

Z

F (z, xn(z))
||xn||θ

dz → ξθ
∫
Z

1
θ
f+(z) as n→∞.

Therefore it follows that {xn} ⊆W 1,p(Z) is bounded. Hence we may assume
that xn

w→ x inW 1,p(Z), xn → x in Lp(Z), xn(z)→ x(z) a.e. on Z as n→∞
and |xn(z)| ≤ k(z) a.e. on Z with k ∈ Lp(Z).

From the properties of the subdifferential of Clarke, we have

∂R(xn) ⊆ ∂Φ(xn) + ∂ψ(xn)

⊆ ∂Φ(xn) + ∂(
1
p
||Dxn||pp) +

∫
Γ
∂j(z, τ(xn(z))dσ (see Clarke [5, p. 83]).

So we have

〈wn, y〉 = 〈Axn, y〉+ 〈rn, y〉Γ −
∫
Z
vn(z)y(z)dz

with rn(z) ∈ ∂j(z, τ(xn)(z)), vn(z) ∈ [f1(z, xn(z)), f2(z, xn(z))] and wn the
element with minimal norm of the subdifferential of R and A : W 1,p(Z) →
W 1,p(Z)∗ such that 〈Ax, y〉 =

∫
Z(||Dx(z)||p−2(Dx(z), Dy(z))RNdz. But

xn
w→ x in W 1,p(Z), so xn → x in Lp(Z) and xn(z) → x(z) a.e. on Z

by virtue of the compact embedding W 1,p(Z) ⊆ Lp(Z). Note that the trace
of xn belongs to W 1/q,p(Γ), so from H(j) we have that the trace of rn be-
longs in Lq(Γ). But we have that τ(xn) is bounded in W 1/q,p(Γ). Thus, rn
is bounded in Lq(Γ). Choose y = xn − x. Due to the compactness of the
trace operator τ : W 1,p(Z)→ Lp(Γ) we have that

|〈rn, τ(xn − x)〉Γ| = |(rn, τ(xn − x))Γ| → 0.

With 〈·, ·〉Γ we denote the natural pairing of (W 1/q,p(Γ), (W 1/q,p(Γ))∗) and
by (·, ·)Γ the natural pairing of (Lp(Γ), Lq(Γ)).

Then in the limit we have that lim sup〈Axn, xn − x〉 = 0 (note that vn
is bounded). By virtue of the inequality (2) we have that Dxn → Dx in
Lp(Z). So we have xn → x in W 1,p(Z). The Claim is proved.

Now for every ξ ∈ R we have

R(ξ) =
∫

Γ
j(z, ξ)dσ −

∫
Z
F (z, ξ)dz,

≤||a1||∞|ξ||Γ|+
c1

µ
|ξ|µ|Γ| −

∫
Z
F (z, ξ)dz

⇒ 1
|ξ|µ

R(ξ) ≤ 1
|ξ|µ−1 ||a1||∞|Γ|+

c

µ
|Γ| − 1

|ξ|µ

∫
Z
F (z, ξ)dz.

From hypotheses H(f) (ii) we conclude that R(ξ)→ −∞ as |ξ| → ∞.
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In order to use the mountain-pass theorem it remains to show that there
exists ρ > 0 such that for ||x|| = ρ we have that R(x) ≥ a > 0. In fact, we
will show that for every sequence {xn} ⊆ W 1,p(Z) with ||xn|| = ρn ↓ 0 we
have that R(xn) > 0. Indeed, suppose not. Then there exists some sequence
{xn} such that R(xn) ≤ 0. Thus, we have

1
p
||Dxn||pp ≤

∫
Z
F (z, xn(z))dz

recall that j ≥ 0.
Divide this inequality with ||xn||p. Let yn(z) = xn(z)/||xn||. Then we have

||Dyn||pp ≤
∫
Z
p
F (z, xn(z))
||xn||p

dz.

From H(f) (iii) we have that for almost all z ∈ Z for any ε > 0 we can find
δ > 0 such that for |x| ≤ δ we have

pF (z, x) ≤ (h(z) + ε)|x|p.

On the other hand, for almost all z ∈ Z and all |x| ≥ δ we have

p|F (z, x)| ≤ c1|x|+ c2|x|θ + c3 ≤ c1|x|p + c2|x|p
∗

+ c4.

Thus we can always find γ > 0 such that p|F (z, x)| ≤ (h(z) + ε)|x|p+γ|x|p∗

for all x ∈ R. Indeed, choose

γ ≥ c2 +
c4

|δ|p∗
+ |h(z) + ε− c1| |δ|p−p

∗
.

Therefore, we obtain

||Dyn||pp ≤
∫
Z

(h(z) + ε)|yn(z)|pdz + γ

∫
Z

|xn(z)|p∗

||xn||p
dz

≤
∫
Z

(h(z) + ε)|yn(z)|pdz + γ1||xn||p
∗−p. (10)

Here we have used the fact that W 1,p(Z) embeds continuously in Lp
∗
(Z).

So we obtain

0 ≤ ||Dyn||pp ≤ ε||yn||pp + γ1||xn||p
∗−p recall that h(z) ≤ 0.

Therefore in the limit we have that ||Dyn||p → 0. Recall that yn → y
weakly in W 1,p(Z). So ||Dy||p ≤ lim inf ||Dyn||p ≤ lim sup ||Dyn||p → 0. So
||Dy||p = 0, thus y = ξ ∈ R. Note that Dyn → Dy weakly in (Lp(Z))N

and ||Dyn||p → ||Dy||p so yn → y in W 1,p(Z). Since ||yn|| = 1 we have that
||y|| = 1 so ξ 6= 0. Suppose that ξ > 0. Going back to (10) we have

0 ≤
∫
Z

(h(z) + ε)ypn(z)dz + γ1||xn||p
∗−p.
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In the limit we have

0 ≤
∫
Z

(h(z) + ε)ξpdz ≤ εξp|Z| recall that h(z) ≤ 0.

Thus we obtain that
∫
Z h(z)ξpdz = 0. But this is a contradiction. The same

holds when ξ < 0. So the claim is proved.
Hence by Theorem 1 we have that there exists x ∈ W 1,p(Z) such that

0 ∈ ∂R(x). That is 0 ∈ ∂Φ(x) + ∂ψ(x).
So, we can say that∫

Z
w(z)y(z) =

∫
Z
||Dx(z)||p−2(Dx(z), Dy(z))dz (11)

+
∫

Γ
v(z)y(z)dσ (12)

for some w ∈ Lq(Z) such that w(z) ∈ [f1(z, x(z)), f2(z, x(z))] (note that
∂(−Φ)(x) ⊆ [f1(z, x(z)), f2(z, x(z))], see Chang [4]) and v(z) ∈ ∂j(z, x(z))
for every y ∈W 1,p(Z). Choose now y = s ∈ C∞0 (Z). We obtain∫

Z
w(z)s(z) =

∫
Z
||Dx(z)||p−2(Dx(z), Ds(z))dz.

Then we have that div(||Dx(z)||p−2Dx(z)) ∈ Lq(Z) because w ∈ Lq(Z).
Going back to (11) and letting y = C∞(Z) and finally using the Green

formula 1.6 of Kenmochi [12], we have that

− ∂x

∂np
∈ ∂j(z, τ(x)(z)).

So x is of type I.

Remark 1. The question whenever there exists a solution of type II re-
mains open.
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