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Abstract. We present new semilocal convergence theorems for New-
ton methods in a Banach space. Using earlier general conditions we
find more precise error estimates on the distances involved using the
majorant principle. Moreover we provide a better information on the
location of the solution. In the special case of Newton’s method un-
der Lipschitz conditions we show that the famous Newton–Kantorovich
hypothesis having gone unchallenged for a long time can be weakened
under the same hypotheses/computational cost.

1. Introduction

In this study we are concerned with the problem of approximating a
locally unique solution x∗ of equation

F (x) = 0, (1)
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where, F is a Fréchet-differentiable operator defined on a closed ball
U(x0, R) = {x ∈ X | ‖x − x0‖ ≤ R} (R > 0) which is a subset of a
Banach space X with values in a Banach space Y .

A large number of problems in applied mathematics and also in engineer-
ing are solved by finding the solutions of certain equations. For example,
dynamic systems are mathematically modeled by difference or differential
equations, and their solutions usually represent the states of the systems.
For the sake of simplicity, assume that a time-invariant system is driven by
the equation

:
x = F (x), where x is the state. Then the equilibrium states are

determined by solving equation (1). Similar equations are used in the case of
discrete systems. The unknowns of engineering equations can be functions
(difference, differential, and integral equations), vectors (systems of linear
or nonlinear algebraic equations), or real or complex numbers (single alge-
braic equations with single unknowns). Except in special cases, the most
commonly used solution methods are iterative — when starting from one
or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to
an optimal solution of the problem at hand. Since all of these methods
have the same recursive structure, they can be introduced and discussed in
a general framework.

Newton’s method

xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0) (2)

has been used extensively and under various conditions to generate a se-
quence approximating x∗. A survey of local and semilocal convergence
theorems for Newton’s method under various conditions on the Fréchet-
derivative F ′(x) of operator F (x) can be found in [3], [4], [7], [9], [11].

Recently De Pascale and Zabrejko in [5] (see the references there also)
gave some semilocal convergence results using very general conditions. In
particular, they provided semilocal results by replacing the usual Lips-
chitz continuity conditions by a “small” majorizing monotonically increasing
function (see (7)).

Here under very similar conditions, via the majorant principle we intro-
duce more precise error estimates on the distances ‖xn+1 − xn‖, ‖xn − x∗‖
(n ≥ 0). Moreover we provide a better information on the location of the
solution x∗. Finally we show as an application/special case that the fa-
mous Newton–Kantorovich hypothesis (see (53)) [7] essentially having been
used unchallenged by Cauchy, Fourier and many others ever since can be
weakened (see (50)) under the same hypotheses/computational cost. This
observation is very important in computational mathematics since it allows
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a wider choice of initial guesses x0 and finer error bound on the distances
involved [1]–[4], [6], [8], [10].

2. Semilocal analysis of Newton’s method

Given functions w0, w defined on [0,∞) with values in [0,∞), and pa-
rameter R > 0 it is convenient for the presentation of Theorem 1 to define
functions w, ϕ on [0, R] by

w(r) = sup{w(v1) + w0(v2) : v1 + v2 = r}, (3)

ϕ(r) = η − r +
∫ r

0
w(t)dt (4)

and iteration {rn} (n ≥ 0) by

r0 = 0, rn+1 = rn +
ϕ(rn)

1− w0(rn)
(n ≥ 0). (5)

We state the following semilocal convergence result from [5] for Newton’s
method:

Theorem 1. Let F : U(x0, R) ⊆ X → Y be a Fréchet-differentiable opera-
tor. Assume there exist R > 0, and x0 ∈ X with F ′(x0)−1 ∈ L(Y,X) the
space of bounded linear operators from Y into X, such that:

‖F ′(x0)−1F (x0)‖ ≤ η, (6)
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ w(‖x− y‖), (x, y ∈ U(x0, R)) (7)

where η ∈ [0, R], and function w is monotonically increasing with

lim
r→0

w(r) = 0. (8)

Moreover, assume function w0 is monotonically increasing such that

0 ≤ w0(r) ≤ w(r) (0 ≤ r ≤ R) (9)

and

‖F ′(x)−1F ′(x0)‖ ≤ (1− w0(r))−1 (x ∈ U(x0, r)). (10)

Furthermore, function ϕ has a unique zero r∗ ∈ [0, R] and

ϕ(R) ≤ 0. (11)

Then,
(i) scalar sequence {rn} (n ≥ 0) converges monotonically to r∗.
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(ii) sequence {xn} (n ≥ 0) generated by Newton’s method (2) is well de-
fined, remains in U(x0, r

∗) for all n ≥ 0 and converges to a solution
x∗ ∈ U(x0, r

∗) of equation (1). Moreover the following error bounds
hold for all n ≥ 0,

‖xn+1 − xn‖ ≤ rn+1 − rn, (12)

and

‖xn − x∗‖ ≤ r∗ − rn. (13)

Note that under the hypotheses of Theorem 1 it was shown in [5] that
w0(rn) 6= 1 for all n ≥ 0 and 1− w0(r) > 0 for all r ∈ [0, R].

We will need the following result on the convergence of majorizing se-
quences.

Theorem 2. Assume there exist δ ∈ [0, 2), parameter η, functions w, w0
as in (6), (7), and (9) respectively, such that:

hδ = 2
∫ 1

0
w(θη)dθ + δw0(η) ≤ δ, (14)

w0

[
2η

2− δ

(
1−

(
δ

2

)n+1
)]

< 1, (15)

and

δ

{
w0

[
2η

2− δ

(
1−

(
δ

2

)n+2
)]
− w0(η)

}

≤ 2
∫ 1

0

[
w(θη)− w

(
θ

(
δ

2

)n+1

η

)]
dθ (n ≥ 0). (16)

Then, iteration {tn} (n ≥ 0) given by

t0 = 0, t1 = η,

0 ≤ tn+2 = tn+1 +

∫ 1
0 w[θ(tn+1 − tn)]dθ

1− w0(tn+1)
(tn+1 − tn)

(17)

is non-decreasing, bounded above by

t∗∗ =
2η

2− δ
, (18)

and converges to some t∗ such that

0 ≤ t∗ ≤ t∗∗. (19)
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Moreover, the following error bounds hold for all n ≥ 0

0 ≤ tn+2 − tn+1 ≤
δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

η. (20)

Proof. We must show:

2
∫ 1

0
w(θ(tk+1 − tk))dθ + δw0(tk+1) ≤ δ, (21)

and

1− w0(tk+1) > 0 (22)

for all k ≥ 0.
Estimate (20) can then follow immediately from (21) and (22). Using

induction on the integer k we have for k = 0

2
∫ 1

0
w[θ(t1 − t0)]dθ + δw0(t1) = 2

∫ 1

0
w(θη)dθ + δw0(η) ≤ δ (by (14))

and

1− w0(t1) = 1− w0(η) > 0 (by (15)).

But (17) gives

0 ≤ t2 − t1 ≤
δ

2
(t1 − t0).

Assume (21) and (22) hold for all k ≤ n+ 1. We obtain in turn

2
∫ 1

0
w[θ(tk+2 − tk+1)]dθ + δw0(tk+2)

≤ 2
∫ 1

0
w

[
θ

(
δ

2

)k+1

η

]
dθ + δw0

[
2η

2− δ

(
1−

(
δ

2

)k+2
)]

≤ 2
∫ 1

0
w(θη)dθ + δw0(η) ≤ δ (by (14) and (16)). (23)

Hence, estimate (20) holds for all k ≥ 0. Moreover, we must show:

tk ≤ t∗∗. (24)

We have

t0 = 0 ≤ t∗∗, t1 = η ≤ t∗∗ and t2 ≤ η +
δ

2
η =

2 + δ

2
η ≤ t∗∗.
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Assume (24) holds for all k ≤ n+ 1. It follows from (20)

tk+2 ≤ tk+1 +
δ

2
(tk+1 − tk) ≤ tk +

δ

2
(tk − tk−1) +

δ

2
(tk+1 − tk)

≤ · · · ≤ η +
δ

2
η +

(
δ

2

)2

η + · · ·+
(
δ

2

)k+1

η

≤
1−

(
δ
2

)k+2

1− δ
2

≤ 2
2− δ

η = t∗∗.

Hence, sequence {tn} (n ≥ 0) is bounded above by t∗∗.
Moreover (22) follows from (15) and the above.
Furthermore, sequence {tn} (n ≥ 0) is non-decreasing by (17) and as such

it converges to some t∗ satisfying (19).
That completes the proof of Theorem 2.

Below we present the main result on the semilocal convergence of New-
ton’s method. For relevant results, see also [1], [2], [6], [8].

Theorem 3. Suppose that the hypotheses of Theorem 2,

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ w0(‖x− x0‖) x ∈ U(x0, R),
(25)

and

t∗ ≤ R, (26)

hold.
Then, sequence {xn} (n ≥ 0) generated by Newton’s method (2) is well

defined, remains in U(x0, t
∗) for all n ≥ 0 and converges to a solution

x∗ ∈ U(x0, t
∗) of equation F (x) = 0.

Moreover, the following error bounds hold for all n ≥ 0

‖xn+1 − xn‖ ≤ tn+1 − tn (27)

and

‖xn − x∗‖ ≤ t∗ − tn, (28)

where, iteration {tn} (n ≥ 0) is given by (17). Furthermore, if there exists
R0 > t∗ such that:

R0 ≤ R, (29)∫ 1

0
w0[(θt∗ + (1− θ)R0)dθ] ≤ 1, (30)

then the solution x∗ is unique in U(x0, R0), and if

w0(t∗) < 1, (31)
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the solution is unique in U(x0, t
∗).

Proof. We must show estimate (27). For n = 0, (27) is obvious, since

‖x1 − x0‖ = ‖F ′(x0)−1F (x0)‖ ≤ η = t1 − t0 (by (6)).

Suppose (27) holds for n = 0, 1, . . . , k + 1; this implies, in particular that

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖
≤ (tk+1 − tk) + (tk − tk−1) + · · ·+ (t1 − t0)
= tk+1 − t0 = tk+1.

We show that (27) holds for n = k + 2. Using (25) and (15) we get

‖F ′(x0)−1(F ′(xk+1)− F ′(x0))‖ ≤ w0(‖xk+1 − x0‖)
≤ w0(tk+1) < 1. (32)

It follows from (32) and the Banach Lemma on invertible operators [7] that
F ′(xk+1)−1 exists and

‖F ′(xk+1)−1F ′(x0)‖ ≤ 1
1− w0(‖xk+1 − x0‖)

≤ 1
1− w0(tk+1)

. (33)

By (7) we obtain

‖F ′(x0)−1F (xk+1)‖

=
∥∥∥∥F ′(x0)−1

∫ 1

0

[
F ′((1− θ)xk + θxk+1)− F ′(xk)

]
(xk+1 − xk)dθ

∥∥∥∥
≤
∫ 1

0
‖F ′(x0)−1[F ′((1− θ)xk + θxk+1)− F ′(xk)]‖ ‖xk+1 − xk‖dθ

≤
∫ 1

0
w[θ(tk+1 − tk)](tk+1 − tk)dθ. (34)

Hence, by (2), (33) and (34) we get

‖xk+2 − xk+1‖ = ‖F ′(xk+1)−1F (xk+1)‖
≤ ‖F ′(xk+1)−1F ′(x0)‖ · ‖F ′(x0)−1F (xk+1)‖ (35)

≤
∫ 1

0 w[θ(tk+1 − tk)](tk+1 − tk)dθ
1− w0(tk+1)

= tk+2 − tk+1, (36)

which shows (27) for all n ≥ 0.
It follows that {xn} (n ≥ 0) is a Cauchy sequence in a Banach space X

and such it converges to some x∗ ∈ U(x0, t
∗) (since U(x0, t

∗) is a closed set).
By letting k → ∞ in (35) we obtain F (x∗) = 0. Moreover, estimate (28)
follows from (27) by using standard majorization techniques. Furthermore,
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to show uniqueness, let y∗ be a solution of equation F (x) = 0 in U(x0, R0).
It follows from the estimate∥∥∥∥F ′(x0)−1

∫ 1

0
[F ′(y∗ + θ(x∗ − y∗))− F ′(x0)]dθ

∥∥∥∥
≤
∫ 1

0
w0‖y∗ + θ(x∗ − y∗)− x0‖dθ

≤
∫ 1

0
w0[θ‖x∗ − x0‖+ (1− θ)‖y∗ − x0‖]dθ

<

∫ 1

0
w0[θt∗ + (1− θ)R0]dθ ≤ 1, (by (30))

and the Banach lemma on invertible operators that linear operator

L =
∫ 1

0
F ′[y∗ + θ(x∗ − y∗)]dθ

is invertible.
Using the identity

0 = F (x∗)− F (y∗) = L(x∗ − y∗),

we deduce
x∗ = y∗.

The second result on the uniqueness follows similarly but using (31).
That completes the proof of Theorem 3.

In the next result we show: our error bounds (27), (28) are more precise
than (12), (13) respectively. We also provide a better information on the
location of the solution x∗.

Theorem 4. Under the hypotheses of Theorems 1 and 3 the following hold
for all n ≥ 0:

t0 = r0 = 0, t1 = η ≤ r1 =
η

1− w0(0)
,

tn+1 ≤ rn+1, (37)
tn+1 − tn ≤ rn+1 − rn, (38)
t∗ − tn ≤ r∗ − rn (39)

and

t∗ ≤ r∗. (40)
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Proof. We use induction on the integer k to show (37) and (38). For n = 0
in (17) we obtain

t2 − t1 =

∫ 1
0 w[θ(t1 − t0)](t1 − t0)dθ

1− w0(t1)

=

∫ 1
0 w[r0 + θ(r1 − r0)− r0](r1 − r0)dθ

1− w0(r1)

≤
∫ 1

0 {w[r0 + θ(r1 − r0)]− w0(r0)}(r1 − r0)dθ
1− w0(r1)

≤ ϕ(r1)− ϕ(r0)− (w0(r0)− 1)(r1 − r0)
1− w0(r1)

=
ϕ(r1)

1− w0(r1)
= r2 − r1,

and
t2 ≤ r2.

Assume:

tk+1 ≤ rk+1 (41)

and

tk+1 − tk ≤ rk+1 − rk (42)

for all k ≤ n.
Using (17), (41) and (42) we get in turn:

tk+2 − tk+1 =

∫ 1
0 w[θ(tk+1 − tk)](tk+1 − tk)dθ

1− w0(tk+1)

≤
∫ 1

0 w[rk + θ(rk+1 − rk)− rk](rk+1 − rk)dθ
1− w0(rk+1)

≤
∫ 1

0 {w[rk + θ(rk+1 − rk)]− w0(rk)}(rk+1 − rk)dθ
1− w0(rk+1)

≤ ϕ(rk+1)− ϕ(rk)− [w0(rk)− 1](rk+1 − rk)
1− w0(rk+1)

=
ϕ(rk+1)

1− w0(rk+1)
= rk+2 − rk+1

and
tk+2 ≤ rk+2,

which shows (37), (38) for all n ≥ 0.
Let m ≥ 0, then as above we can have:

tk+m − tk ≤ rk+m − rk. (43)
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By letting m → ∞ in (43) we obtain (39). Finally, set n = 0 in (39) to
obtain (40).

That completes the proof of Theorem 4.

Remark 1. Hypotheses of the form (14), (30) and (31) are as easy to han-
dle as (11) (see also (49) and (50)) and are always present as sufficient
convergence conditions in the study of Newton’s method (2) [3], [7]. Note
that t∗ can be replaced by 2η/(2− δ) in condition (26).

Remark 2. The assumptions (8) and (9) imply w0(0) = 0, then we obtain
t1 = r1. But if t2 < r2 then again (37) and (38) hold as strict inequalities.

Remark 3. It can easily be seen from (21) that condition (16) can be
dropped if (14) is replaced by

2
∫ 1

0
w(θη)dθ + δw0

(
2η

2− δ

)
≤ δ. (44)

Similarly condition (15) can be replaced by w0
[
2η/(2− δ)

]
≤ 1.

Remark 4. Condition (16) holds in many cases. For example, let

w(r) = `r (45)

and

w0(r) = `0r (46)

for some non-negative parameters `, `0 with `0 ≤ `. That is the original
Newton–Kantorovich case. With the above choices (16) becomes

δ`0

{
2

2− δ

(
1−

(
δ

2

)k+2
)
− 1

}
≤ `

[
1−

(
δ

2

)k+1
]
,

or [
`0δ

2

2− δ
− `
] [

1−
(
δ

2

)k+1
]
≤ 0,

or
`0δ

2

2− δ
≤ `. (47)

Moreover (15) holds if
2`0η
2− δ

≤ 1. (48)

Furthermore (14) holds if

hδ = (δ`0 + `)η ≤ δ. (49)
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It can easily be seen that (47), (48) always hold if δ ∈ [0, 1]. That is in this
case conditions (47)–(49) reduce to (49).

For the case of Theorem 2, set δ = 1 in (14) to obtain in particular:

h1 = (`+ `0)η ≤ 1. (50)

Using the same choices of functions w and w0, let us also consider the
case of Theorem 1. It can easily be seen from (3) that

w(r) = `r. (51)

Hence, ϕ has a zero s∗ given by

r∗ =
1−
√

1− h
`

(52)

provided that

h = 2`η ≤ 1. (53)

Condition (53) is the famous Newton–Kantorovich hypothesis [7] essentially
used since Newton’s time as the crucial sufficient convergence condition for
the convergence of Newton’s method in this case.

We have

h ≤ 1 =⇒ h1 ≤ 1, (54)

but not vice versa unless if `0 = `. Hence the long standing hypothesis (53)
has been weakened using the same information/computation cost. This
observation is very important in computational mathematics and makes
the choice of the initial guess x0 much easier.

Note also:

`0 ≤ `. (55)

in general. In case `0 < `, then t2 < r2 and (37), (38) hold as strict
inequalities (see also Remark 2). Hence we obtain more precise error bounds
in this case.

Moreover `/`0 can be arbitrarily large.
In the examples that follow the choices of functions w, w0, w given by

(45), (46) and (51) are used.

Example 1. Let X = Y = R, x0 = 0 and define function F on R by

F (x) = c0 + c1x+ c2 sin ec3x, (56)

where ci, i = 0, 1, 2, 3 are given parameters. It can easily be seen using (56)
for c3 large and c2 sufficiently small `/`0 can be arbitrarily large. That is
(50) may hold but not (53).
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Example 2. Let X = Y = R, U(x0, R) = U(
√

2, 1) and define function F
on U by

F (x) =
1
6
x3 −

(
23/2

6
+ 0.23

)
. (57)

It can easily be seen that

η = 0.23, ` = 2.4142136, `0 = 1.914213562,
h = 1.1105383 > 1 and h1 = 0.995538247 < 1.

That is there is no guarantee that Newton’s method starting at x0 converges
to x∗ = 1.614507018 since (49) is violated. However since (50) holds our
results guarantee limn→∞ xn = x∗ = 1.614507018.

Example 3. Let X = Y = R, x0 = 1 and define function F by

F (x) = x3 − a, for all a ∈
[
0,

1
2

)
, x ∈ [a, 2− a]. (58)

Using (6), (7), (25) and (58) we obtain

η =
1
3

(1− a), ` = 2(2− a) and `0 = 3− a.

The Newton–Kantorovich hypothesis (53) is violated since

h =
4
3

(1− a)(2− a) > 1 for all a ∈
[
0,

1
2

)
.

That is there is no guarantee that Newton’s method (2) converges to the
solution x∗ = 3

√
a of equation F (x) = 0. However our condition (50) guar-

antees convergence for all a ∈
[
(5−

√
13)/3, 1/2

)
since

h1 =
1
3

(1− a)[3− a+ 2(2− a)] ≤ 1.
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