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Abstract. For a constant k ∈ [0,∞) a normalized function f , an-
alytic in the unit disk, is said to be k-uniformly convex if Re (1 +
zf ′′(z)/f ′(z)) > k|zf ′′(z)/f ′(z)| at any point in the unit disk. The
class of k-uniformly convex functions is denoted k-UCV (cf. [4]). The
function g is said to be k-starlike if g(z) = zf ′(z) and f ∈ k-UCV.

For analytic functions f, g, where f(z) = z + a2z
2 + · · · and g(z) =

z + b2z
2 + · · · , the integral convolution is defined as follows:

(f ⊗ g)(z) = z +
∞X

n=2

anbn
n

zn.

In this note a problem of stability of the integral convolution of k-
uniformly convex and k-starlike functions is investigated.
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1. Introduction and definitions

Let H denote the class of functions f analytic in the unit disk U

f(z) = z +
∞∑
n=2

anz
n, (1.1)

and let S denote the subclass of functions in H which are univalent in U .
Further, for k ∈ [0,∞) let k-UCV and k-ST be the subclasses of S consisting,
respectively, of functions which are k-uniformly convex and k-starlike in
U defined, respectively, as follows:

k-UCV :=
{
f ∈ S : Re

(
1 +

zf ′′(z)
f ′(z)

)
> k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ , z ∈ U
}
, (1.2)

k-ST :=
{
f ∈ S : Re

(
zf ′(z)
f(z)

)
> k

∣∣∣∣zf ′(z)f(z)
− 1
∣∣∣∣ , z ∈ U

}
. (1.3)

Observe that the classes k-UCV and k-ST are related by the classical
Alexander theorem, that is known also as an equivalence between usual
class of convex functions CV and the class of starlike functions ST . Also
note, that the class k-UCV was defined pure geometrically as a subclass of
univalent functions that map each circular arc contained in the unit disc
U with a center ζ, |ζ| ≤ k ( 0 ≤ k < ∞), onto a convex arc. Classes
k-UCV and k-ST were introduced by Kanas and Wísniowska ([4], [6]) and
studied in a series of papers ([4], [5], [6], [7]). Some of properties of k-UCV
and k-ST , in particular, concerning the stability of the Hadamard product,
were studied by Bednarz and Kanas in [1].

The convolution, or Hadamard product, of two functions f and g of power
series f(z) = z + a2z

2 + · · · , and g(z) = z + b2z
2 + · · · , convergent in U , is

the function h = f ∗ g with the power series

h(z) = (f ∗ g)(z) = z +
∞∑
n=2

anbnz
n, z ∈ U . (1.4)

Convolution has the algebraic properties of ordinary multiplication, the geo-
metric series K(z) = z + z2 + · · · = z

1−z acts as the identity element under
convolution: (f ∗K)(z) = f(z), for any f ∈ H, z ∈ U .

The integral convolution H = f ⊗ g is defined by

H(z) = (f ⊗ g)(z) = z +
∞∑
n=2

anbn
n

zn =

z∫
0

h(ζ)
ζ
dζ, z ∈ U . (1.5)

Note that, if I denotes I(z) ≡ z then

f ∗ I = I and f ⊗ I = I.
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Various properties of Hadamard product and integral convolution were
studied by several authors, e.g. Robertson ([14]), Pólya and Schoenberg
([9]), Ruscheweyh and Sheil-Small ([13]), Hayman ([3]), Bshouty ([2]). The
most famous is Pólya and Schoenberg conjecture ([9]), that the class of
starlike functions is preserved by the integral convolution. This conjecture
was proved by Ruscheweyh and Sheil-Small ([13]). However as was shown
by Hayman ([3]) and Bshouty ([2]) independently, the univalence is not
preserved by integral convolution.

In accordance to Ruscheweyh ([11]), let V∗ denote the dual set of V ⊂ H.
Then

V∗ =
{
g ∈ H :

(f ∗ g)(z)
z

6= 0, ∀f ∈ V, ∀z ∈ U
}
, (1.6)

and V∗∗ = (V∗)∗ denote the second dual, which is the smallest of all dual
classes containing V. The duality principle states that for compact and
complete V the closed convex hull of V is the same as the closed convex hull
of V∗∗, so that under fairly weak conditions on V, many extremal problems
in V are solved in V∗∗ and can be obtained by unified approach.

Dual sets for the classes k-ST and k-UCV were found by Kanas,
Wísniowska (cf. [4], [7]). Let us denote the dual set for k-ST by B and
for k-UCV by G.

Then

f ∈ k-ST ⇐⇒ (f ∗ h)(z)
z

6= 0, ∀h ∈ B, ∀z ∈ U , (1.7)

and

f ∈ k-UCV ⇐⇒ (f ∗ h)(z)
z

6= 0, ∀h ∈ G, ∀z ∈ U , (1.8)

respectively (cf. [7]). For h(z) = z+ c2z
2 + ..., h ∈ B we have the following

estimates (cf. [7]),

|cn| ≤ n+ (n− 1)k, n ≥ 2, (1.9)

and for h ∈ G
|cn| ≤ n[n+ (n− 1)k], n ≥ 2. (1.10)

Further, sufficient conditions to be in k-ST and k-UCV are (cf. [7])
∞∑
n=2

[n+ (n− 1)k]|an| ≤ 1 =⇒ f ∈ k-ST , (1.11)

∞∑
n=2

n[n+ (n− 1)k]|an| ≤ 1 =⇒ f ∈ k-UCV, (1.12)

respectively.
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For δ ≥ 0 Ruscheweyh ([12]) defined Nδ neighbourhood of a function
f(z) = z +

∑∞
n=2 anz

n by

Nδ(f) =

{
g(z) = z +

∞∑
n=2

bnz
n ∈ H :

∞∑
n=2

n|an − bn| ≤ δ

}
. (1.13)

By Nδ(A), A ⊂ H, we denote the union of all neighbourhoods Nδ(f) with
f ranging over the class A. The quantity

∑∞
n=2 n|an − bn| can be regarded

as the distance between two functions f and g in a some subclass of H,
equipped with the pre-norm of functions F (z) = z +

∑∞
n=2Anz

n defined
as ||F || =

∑∞
n=2 n|An|. Ruscheweyh proved certain inclusions for the men-

tioned above neighbourhoods, in particular that N1/4(f) ⊂ ST holds for all
f ∈ CV. Problem of neighbourhoods in various classes of functions was also
studied in papers [1], [7], [10], [15], [16].

Assume that A,B are subclasses of the class H. Then the set of all
function f ∗ g and f ⊗ g, where f ∈ A and g ∈ B, will be denoted by A ∗B
and A⊗B, respectively (cf. eg. [13], [15]). Let A ∗B ⊂ C, the convolution
(1.4) is called C-stable on the pair of classes (A,B) if there exists δ > 0 such
that Nδ(A) ∗ Nδ(B) ⊂ C and C-unstable otherwise (cf. [8]). Stability of
inclusions for integral convolution is defined in a similar way. The constant
δ which characterizes the stability of Hadamard or integral convolutions is
defined as

δ(A ∗B,C) = sup{δ : Nδ(A) ∗Nδ(B) ⊂ C}, (1.14)

and

δ(A⊗B,C) = sup{δ : Nδ(A)⊗Nδ(B) ⊂ C}, (1.15)

respectively. If the related value (1.14) or (1.15) is positive then there
exists a neighborhood of the class A and B mapped by the convolution or
the integral convolution into C.

The stability of the Hadamard or integral convolution can be regarded as
a problem of preserving a product of the topology of neighbourhoods in A
and B onto the product A ∗B, and A⊗B, respectively.

Problem of the stability of the inclusion for the Hadamard product as well
as the integral convolution in the classes of univalent, starlike and convex
functions was considered by Nezhmetdinov ([8]). Among other he proved
that δ({I} ∗ {I}, CV) = 1 and δ({I} ∗ {I},S) =

√
2. Numerous results

concerning the stability of the Hadamard product were obtained by Kanas
and Bednarz ([1], [7]). In particular in [7] Kanas proved that

N1/[4(k+1)](f) ⊂ k-ST for f ∈ k-UCV, (1.16)

that is a k-uniform version of the Ruscheweyh result. Also, we should men-
tion some inequalities about stability of the Hadamard product for functions
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from the classes k-UCV and k-ST , below:

δ({I} ∗ {I}, k-UCV) ≥ 1√
k + 1

(1.17)

δ({I} ∗ {I}, k-ST ) ≥
√

2
k + 1

(1.18)

δ(k-UCV ∗ CV, k-ST ) ≥

√
4 +

1
2(k + 1)2 − 2. (1.19)

Let Q[f ] denote the integral transformation:

Q[f ](z) =

z∫
0

f(t)
t
dt, z ∈ U , (1.20)

where f ∈ A ⊂ H. Also, denote by Q[A] the image of a subclass A under the
mapping Q. It is well known that Q[ST ] = S, however Q[S] 6⊂ S (cf. [13],
[2], [3]). If the inclusion Q[A] ⊂ B holds, then we can define the constant

δ(Q[A], B) = sup{δ : Q[Nδ(A)] ⊂ B}

representing a quantitative characteristic of the stability of the inclusion.
In the present article we consider a problem of a stability of the integral

convolution over the class k-UCV and k-ST . We also study a stability of
geometric properties of a function f under the integral transformation Q[f ]
when f is in k-UCV or k-ST .

2. Stability of the integral convolution

In this section we obtain some results concerning the stability of the
integral convolution in the class k-UCV and k-ST .

In the sequel the following notation will be used: f(z) = z +
∑∞

n=2 anz
n,

f0(z) = z +
∑∞

n=2 a0nz
n, g(z) = z +

∑∞
n=2 bnz

n, g0(z) = z +
∑∞

n=2 b0nz
n.

First of all notice, that by (1.4), (1.5) and (1.20)

(f ⊗ g)(z) =

z∫
0

(f ∗ g)(t)
t

dt = Q[f ∗ g](z), (2.1)

and it is easily verified that Q[k-ST ] = k-UCV , therefore

(f ⊗ g)(z) ∈ k-UCV ⇐⇒ (f ∗ g)(z) ∈ k-ST . (2.2)

By the fact δ(k-ST ∗ CV, k-ST ) = 0, (cf. [7]) and by (2.2), it can be
immediately seen that δ(k-ST ⊗ CV, k-UCV) = 0. Below, we present other
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stability results over k-UCV and k-ST , however the authors do not know if
they are sharp.

Theorem 2.1. For the integral convolution (1.5) the following inequalities
concerning stability in the class k-UCV and k-ST are satisfied:

δ({I} ⊗ {I}, k-ST ) ≥ 2√
k + 1

, (2.3)

δ({I} ⊗ {I}, k-UCV) ≥
√

2
k + 1

, (2.4)

δ(k-UCV ⊗ {I}, k-ST ) ≥
√

1 +
4

k + 1
− 1, (2.5)

δ(k-ST ⊗ {I}, k-ST ) ≥
√

4 +
4

k + 1
− 2, (2.6)

δ(k-UCV ⊗ {I}, k-UCV) ≥
√

1 +
2

k + 1
− 1, (2.7)

δ(k-UCV ⊗ CV, k-UCV) ≥

√
4 +

1
2(k + 1)2 − 2, (2.8)

δ(k-ST ⊗ CV , k-ST ) ≥

√
9 +

1
(k + 1)2 − 3. (2.9)

Proof. Making use of (2.2) and inequalities (1.18), (1.19) the relations (2.4),
(2.8) follow immediately.

Further, for any f, g, f0, g0 ∈ H and h ∈ B we have∣∣∣∣(f ⊗ g ∗ h)(z)
z

∣∣∣∣ ≥ ∣∣∣∣(f0 ⊗ g0 ∗ h)(z)
z

∣∣∣∣− ∣∣∣∣(f0 ⊗ (g − g0) ∗ h)(z)
z

∣∣∣∣ (2.10)

−
∣∣∣∣((f − f0)⊗ g0 ∗ h)(z)

z

∣∣∣∣− ∣∣∣∣((f − f0)⊗ (g − g0) ∗ h)(z)
z

∣∣∣∣ .
Case (2.3). Assume f0 = g0 = I and let f, g ∈ Nδ(I), with δ satisfying

(2.3). We shall show that (f ⊗ g ∗ h)(z)/z 6= 0 for h ∈ B, or equivalently
f ⊗ g ∈ k-ST (in view of (1.7)). Observe that, by properties of Hadamard
product and integral convolution, we have (f0 ⊗ (g − g0) ∗ h)(z) = 0, ((f −
f0)⊗ g0 ∗ h)(z) = 0 and (f0 ⊗ g0 ∗ h)(z) = I(z). Moreover, by the fact that
f, g ∈ Nδ(I) we obtain

∑∞
n=2 n|an| ≤ δ and n|bn| ≤ δ, therefore |bn|/n ≤

δ/n2 ≤ δ/4 for n ≥ 2. Hence, in view of (1.9), the inequality (2.10) becomes:∣∣∣∣(f ⊗ g ∗ h)(z)
z

∣∣∣∣ >1−
∞∑
n=2

|an||bn||cn|
n

≥ 1− δ

4

∞∑
n=2

[n+ (n− 1)k]|an|
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≥1− (k + 1)
δ

4

∞∑
n=2

n|an| ≥ 1− δ2

4
(k + 1),

that is nonnegative. It means |(f ⊗ g ∗ h)(z)/z| > 0, so that f ⊗ g ∈ k-ST ,
which completes the proof.

Case (2.5). Assume that f0 ∈ k-UCV and g0 = I. Also, let f ∈ Nδ(f0),
g ∈ Nδ(g0), with δ satisfying (2.5). Then, applying (2.10), we obtain∣∣∣∣(f ⊗ g ∗ h)(z)

z

∣∣∣∣ > 1−
∞∑
n=2

|a0n||bn||cn|
n

−
∞∑
n=2

|an − a0n||bn||cn|
n

. (2.11)

Since f0 ∈ k-UCV ⊂ CV then |a0n| ≤ 1. By the fact that g ∈ Nδ(g0) we
have

∑∞
n=2 n|bn| ≤ δ whence

∑∞
n=2 |bn| =

∑∞
n=2 n|bn|/n ≤ δ/2, for n ≥ 2.

Similarly, since f ∈ Nδ(f0) we have
∑∞

n=2 |an − a0n| ≤ δ/2. Now, applying
above inequalities to (2.11), we obtain for all z ∈ U∣∣∣∣(f ⊗ g ∗ h)(z)

z

∣∣∣∣ ≥ 1− (k + 1)
δ

2
− (k + 1)

δ2

4

that is nonnegative when assuming (2.5), so that f ⊗ g ∈ k-ST .

Case (2.6). Assume f0 ∈ k-ST and g0 = I. Similarly as in the previous
cases, and in view of (1.7), it suffices to show that for δ satisfying (2.6) and
h ∈ B the inequality |(f ⊗ g ∗ h)(z)/z| > 0 holds. Since f0 ∈ k-ST ⊂ ST ,
then |a0n| ≤ n and, by virtue of (1.9), the inequality (2.10) takes the form∣∣∣∣(f ⊗ g ∗ h)(z)

z

∣∣∣∣ >1−
∞∑
n=2

|a0n||bn||cn|
n

−
∞∑
n=2

|an − a0n||bn||cn|
n

≥1− (k + 1)
∞∑
n=2

n|bn| − (k + 1)
∞∑
n=2

|an − a0n||bn|

≥1− (k + 1)δ − (k + 1)
δ2

4
,

which is nonnegative since δ satisfies (2.6).

Case (2.7). In view of (2.2) and (1.7) it suffices to show that
|(f ∗ g ∗ h)(z)/z| > 0 for f0 ∈ k-UCV , f ∈ Nδ(f0), g0 = I, g ∈ Nδ(g0)
and h ∈ B. We will proceed as in (2.10). Then∣∣∣∣(f ∗ g ∗ h)(z)

z

∣∣∣∣ ≥ ∣∣∣∣(f0 ∗ g0 ∗ h)(z)
z

∣∣∣∣− ∣∣∣∣(f0 ∗ (g − g0) ∗ h)(z)
z

∣∣∣∣ (2.12)

−
∣∣∣∣((f − f0) ∗ g0 ∗ h)(z)

z

∣∣∣∣− ∣∣∣∣((f − f0) ∗ (g − g0) ∗ h)(z)
z

∣∣∣∣ .
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Since f0 ∈ k-UCV ⊂ CV, then |a0n| ≤ 1 and∣∣∣∣(f0 ∗ (g − g0) ∗ h)(z)
z

∣∣∣∣ < ∞∑
n=2

|a0n||bn|[n+ (n− 1)k] (2.13)

≤(k + 1)
∞∑
n=2

n|a0n||bn| ≤ (k + 1)δ.

The function g ∈ Nδ(g0) so that n|bn| ≤ δ for all n ≥ 2, whence |bn| ≤ δ/2,
and therefore∣∣∣∣((f − f0) ∗ (g − g0) ∗ h)(z)

z

∣∣∣∣ < ∞∑
n=2

|bn||an − a0n|[n+ (n− 1)k]

≤(k + 1)
δ2

2
. (2.14)

Applying (2.13) and (2.14) to (2.12) one obtains∣∣∣∣(f ∗ g ∗ h)(z)
z

∣∣∣∣ ≥ 1− (k + 1)δ − (k + 1)
δ2

2

which is nonnegative if δ satisfies (2.6), so that f ∗ g ∈ k-ST , and therefore
f ⊗ g ∈ k-UCV.

Case (2.9). Let f0 ∈ k-ST , g0 ∈ CV and f ∈ Nδ(f0), g ∈ Nδ(g0) and
h ∈ B. Since f0 ∈ k-ST , g0 ∈ CV we have f0∗g0 ∈ k-ST (cf. [5]) or, by (2.2),
f0⊗ g0 ∈ k-UCV . Thus, in view of (1.16) |(f0⊗ g0 ∗h)(z)/z| > 1/(4(k+ 1)).
By the identity f ⊗ g ∗ h = f ∗ g ⊗ h, and the above, the relations (2.10)
becomes∣∣∣∣(f ⊗ g ∗ h)(z)

z

∣∣∣∣ > 1
4(k + 1)

−
∞∑
n=2

|a0n||bn − b0n||cn|
n

(2.15)

−
∞∑
n=2

|b0n||an − a0n||cn|
n

−
∞∑
n=2

|an − a0n||bn − b0n||cn|
n

.

The coefficients of f0 ∈ k-ST ⊂ ST satisfy inequality |a0n| ≤ n for n ≥ 2
then, by (1.9) we have:

∞∑
n=2

|a0n||bn − b0n||cn|
n

≤
∞∑
n=2

|bn − b0n|[n+ (n− 1)k] (2.16)

≤(k + 1)
∞∑
n=2

n|bn − b0n| ≤ (k + 1)δ.
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Similarly, since g0 ∈ CV then |b0n| ≤ 1, whereas f ∈ Nδ(f0) gives∑∞
n=2 n|an − a0n| ≤ δ, so that

∑∞
n=2 |an − a0n| ≤ δ/2. Hence

∞∑
n=2

|b0n||an − a0n||cn|
n

≤
∞∑
n=2

|an − a0n|[n+ (n− 1)k]
n

≤1
2

(k + 1)δ. (2.17)

Finally, we have
∞∑
n=2

|an − a0n||bn − b0n||cn|
n

≤(k + 1)
∞∑
n=2

|an − a0n||bn − b0n|

≤(k + 1)(δ2/4). (2.18)

By virtue of (2.16), (2.17), and (2.18) the inequality (2.15) gives∣∣∣∣(f ⊗ g ∗ h)(z)
z

∣∣∣∣ ≥ 1
4(k + 1)

− (k + 1)δ − (k + 1)δ/2− (k + 1)
δ2

4

that is nonnegative provided that δ satisfies the inequality (2.9). From this
we conclude f ⊗ g ∈ k-ST , that completes the proof.

3. Stability of geometric properties of the integral
transformation

In this section we provide some estimates of radii of Nδ(f) such that
the integral operator (1.20) carry the neighborhood into k-UCV or k-ST ,
however the authors do not know if the results are sharp.

Theorem 3.1. For the integral representation (1.18) the following inequal-
ities are valid:

δ(Q[{I}], k-ST ) ≥ 2
k + 1

(3.1)

δ(Q[{I}], k-UCV) ≥ 1
k + 1

(3.2)

δ(Q[k-UCV], k-UCV) ≥ 1
4(k + 1)

. (3.3)

Proof. By using the Hadamard product (1.4) and the integral convolution
(1.5), the transformation (1.20) can be rewritten as:

Q[f ](z) = f(z) ∗

(
z +

∞∑
n=2

zn

n

)
= f ⊗

(
z +

∞∑
n=2

zn

)
= (f ⊗K)(z).
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Case (3.1). Suppose that f ∈ Nδ(I) with δ satisfying (3.1). Then it is
easy to see, that for all h ∈ B and for all z ∈ U we have:∣∣∣∣(Q[f ] ∗ h)(z)

z

∣∣∣∣ ≥1−
∣∣∣∣ [(f − I)⊗K ∗ h](z)

z

∣∣∣∣ (3.4)

≥1−
∞∑
n=2

|an||cn|
n
|z|n−1 > 1− (k + 1)

∞∑
n=2

|an|

≥1− (k + 1)
δ

2
≥ 0.

The assertion and the above give that
(Q[f ] ∗ h)(z)

z
6= 0 and, consequently,

Q[f ] ∈ k-ST .
Case (3.2). Assuming h ∈ G and f ∈ Nδ(I) with δ satisfying (3.2) and

applying the estimation (1.10), we have∣∣∣∣(Q[f ] ∗ h)(z)
z

∣∣∣∣ ≥ 1−
∞∑
n=2

|an||cn|
n
|z|n−1 > 1−(k+1)

∞∑
n=2

n|an| ≥ 1−(k+1)δ.

The above is nonnegative, so that Q[Nδ(I)] ⊂ k-UCV is valid.
Case (3.3). By the relation Q[k-ST ] = k-UCV and (1.16) we immediately

obtain Q[N1/[4(k+1)](k-UCV)] ⊂ k-UCV.

Acknowledgment. The authors wish to thank the referee for his valuable
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