STABILITY OF THE INTEGRAL CONVOLUTION OF k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS

U. BEDNARZ and S. KANAS

Received June 16, 2002 and, in revised form, April 28, 2003

Abstract. For a constant $k \in [0, \infty)$ a normalized function f, analytic in the unit disk, is said to be k-uniformly convex if $Re(1 +$ $zf''(z)/f'(z) > k|zf''(z)/f'(z)|$ at any point in the unit disk. The class of k-uniformly convex functions is denoted $k\text{-}UCV$ (cf. [4]). The function g is said to be k-starlike if $g(z) = z f'(z)$ and $f \in k$ -UCV.

For analytic functions f, g , where $f(z) = z + a_2 z^2 + \cdots$ and $g(z) =$ $z + b_2 z^2 + \cdots$, the integral convolution is defined as follows:

$$
(f \otimes g)(z) = z + \sum_{n=2}^{\infty} \frac{a_n b_n}{n} z^n
$$

.

In this note a problem of stability of the integral convolution of k uniformly convex and k -starlike functions is investigated.

ISSN 1425-6908 (C) Heldermann Verlag.

²⁰⁰⁰ Mathematics Subject Classification. 30C45, 30C50, 30C55.

Key words and phrases. k-uniformly convex functions, k-starlike functions, Hadamard product (or convolution), integral convolution, integral transformation, neighbourhoods of functions, stability of convolution.

1. Introduction and definitions

Let H denote the class of functions f analytic in the unit disk U

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
$$
 (1.1)

and let S denote the subclass of functions in H which are univalent in \mathcal{U} . Further, for $k \in [0,\infty)$ let k - $\mathcal{U}\mathcal{CV}$ and k - \mathcal{ST} be the subclasses of S consisting, respectively, of functions which are k-uniformly convex and k-starlike in U defined, respectively, as follows:

$$
k \text{-} \mathcal{UCV} := \left\{ f \in \mathcal{S} : \text{ Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > k \left|\frac{zf''(z)}{f'(z)}\right|, \quad z \in \mathcal{U} \right\},\tag{1.2}
$$

$$
k\text{-}\mathcal{ST} \ := \ \left\{ f \in \mathcal{S} : \ \text{Re}\left(\frac{zf'(z)}{f(z)}\right) > k \left|\frac{zf'(z)}{f(z)} - 1\right|, \quad z \in \mathcal{U} \right\}. \tag{1.3}
$$

Observe that the classes k - UCV and k - ST are related by the classical Alexander theorem, that is known also as an equivalence between usual class of convex functions CV and the class of starlike functions ST . Also note, that the class k - UCV was defined pure geometrically as a subclass of univalent functions that map each circular arc contained in the unit disc U with a center ζ , $|\zeta| \leq k$ ($0 \leq k < \infty$), onto a convex arc. Classes k- UCV and k-ST were introduced by Kanas and Wisniowska ([4], [6]) and studied in a series of papers ([4], [5], [6], [7]). Some of properties of k - UCV and $k-\mathcal{ST}$, in particular, concerning the stability of the Hadamard product, were studied by Bednarz and Kanas in [1].

The convolution, or Hadamard product, of two functions f and g of power series $f(z) = z + a_2 z^2 + \cdots$, and $g(z) = z + b_2 z^2 + \cdots$, convergent in \mathcal{U} , is the function $h = f * g$ with the power series

$$
h(z) = (f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in \mathcal{U}.
$$
 (1.4)

Convolution has the algebraic properties of ordinary multiplication, the geometric series $K(z) = z + z^2 + \cdots = \frac{z}{1-z}$ $\frac{z}{1-z}$ acts as the identity element under convolution: $(f * K)(z) = f(z)$, for any $f \in H$, $z \in \mathcal{U}$.

The *integral convolution* $H = f \otimes g$ is defined by

$$
H(z) = (f \otimes g)(z) = z + \sum_{n=2}^{\infty} \frac{a_n b_n}{n} z^n = \int_{0}^{z} \frac{h(\zeta)}{\zeta} d\zeta, \quad z \in \mathcal{U}.
$$
 (1.5)

Note that, if I denotes $I(z) \equiv z$ then

$$
f * I = I
$$
 and $f \otimes I = I$.

Various properties of Hadamard product and integral convolution were studied by several authors, e.g. Robertson $([14])$, Pólya and Schoenberg $([9])$, Ruscheweyh and Sheil-Small $([13])$, Hayman $([3])$, Bshouty $([2])$. The most famous is Pólya and Schoenberg conjecture $([9])$, that the class of starlike functions is preserved by the integral convolution. This conjecture was proved by Ruscheweyh and Sheil-Small ([13]). However as was shown by Hayman ([3]) and Bshouty ([2]) independently, the univalence is not preserved by integral convolution.

In accordance to Ruscheweyh ([11]), let \mathcal{V}^* denote the *dual set* of $\mathcal{V} \subset \mathcal{H}$. Then

$$
\mathcal{V}^* = \left\{ g \in \mathcal{H} : \frac{(f * g)(z)}{z} \neq 0, \ \forall f \in \mathcal{V}, \ \forall z \in \mathcal{U} \right\},\tag{1.6}
$$

and $\mathcal{V}^{**} = (\mathcal{V}^*)^*$ denote the second dual, which is the smallest of all dual classes containing V . The *duality principle* states that for compact and complete $\mathcal V$ the closed convex hull of $\mathcal V$ is the same as the closed convex hull of \mathcal{V}^{**} , so that under fairly weak conditions on \mathcal{V} , many extremal problems in V are solved in V^{**} and can be obtained by unified approach.

Dual sets for the classes k - ST and k - UCV were found by Kanas, Wisniowska (cf. [4], [7]). Let us denote the dual set for $k\text{-}ST$ by B and for k - $\mathcal{U}\mathcal{CV}$ by \mathcal{G} .

Then

$$
f \in k\text{-}ST \Longleftrightarrow \frac{(f * h)(z)}{z} \neq 0, \ \forall h \in \mathcal{B}, \ \forall z \in \mathcal{U}, \tag{1.7}
$$

and

$$
f \in k\text{-}U\text{CV} \Longleftrightarrow \frac{(f * h)(z)}{z} \neq 0, \ \forall h \in \mathcal{G}, \ \forall z \in \mathcal{U}, \tag{1.8}
$$

respectively (cf. [7]). For $h(z) = z + c_2 z^2 + \dots$, $h \in \mathcal{B}$ we have the following estimates (cf. [7]),

$$
|c_n| \le n + (n-1)k, \quad n \ge 2,
$$
 (1.9)

and for $h \in \mathcal{G}$

$$
|c_n| \le n[n + (n-1)k], \quad n \ge 2. \tag{1.10}
$$

Further, sufficient conditions to be in k - ST and k - UCV are (cf. [7])

$$
\sum_{n=2}^{\infty} [n + (n-1)k]|a_n| \le 1 \implies f \in k\text{-ST},\tag{1.11}
$$

$$
\sum_{n=2}^{\infty} n[n + (n-1)k]|a_n| \le 1 \implies f \in k\text{-UCV}, \tag{1.12}
$$

respectively.

For $\delta \geq 0$ Ruscheweyh ([12]) defined N_{δ} neighbourhood of a function $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ by

$$
N_{\delta}(f) = \left\{ g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{H} : \sum_{n=2}^{\infty} n |a_n - b_n| \le \delta \right\}.
$$
 (1.13)

By $N_{\delta}(\mathcal{A}), \mathcal{A} \subset \mathcal{H}$, we denote the union of all neighbourhoods $N_{\delta}(f)$ with f ranging over the class A. The quantity $\sum_{n=2}^{\infty} n |a_n - b_n|$ can be regarded as the distance between two functions f and g in a some subclass of H , equipped with the pre-norm of functions $F(z) = z + \sum_{n=2}^{\infty} A_n z^n$ defined as $||F|| = \sum_{n=2}^{\infty} n |A_n|$. Ruscheweyh proved certain inclusions for the mentioned above neighbourhoods, in particular that $N_{1/4}(f) \subset \mathcal{ST}$ holds for all $f \in \mathcal{CV}$. Problem of neighbourhoods in various classes of functions was also studied in papers [1], [7], [10], [15], [16].

Assume that A, B are subclasses of the class H . Then the set of all function $f * g$ and $f \otimes g$, where $f \in A$ and $g \in B$, will be denoted by $A * B$ and $A \otimes B$, respectively (cf. eg. [13], [15]). Let $A * B \subset C$, the convolution (1.4) is called C-stable on the pair of classes (A, B) if there exists $\delta > 0$ such that $N_{\delta}(A) * N_{\delta}(B) \subset C$ and C-unstable otherwise (cf. [8]). Stability of inclusions for integral convolution is defined in a similar way. The constant δ which characterizes the stability of Hadamard or integral convolutions is defined as

$$
\delta(A * B, C) = \sup \{ \delta : N_{\delta}(A) * N_{\delta}(B) \subset C \},\tag{1.14}
$$

and

$$
\delta(A \otimes B, C) = \sup \{ \delta : N_{\delta}(A) \otimes N_{\delta}(B) \subset C \},\tag{1.15}
$$

respectively. If the related value (1.14) or (1.15) is positive then there exists a neighborhood of the class A and B mapped by the convolution or the integral convolution into C.

The stability of the Hadamard or integral convolution can be regarded as a problem of preserving a product of the topology of neighbourhoods in A and B onto the product $A * B$, and $A \otimes B$, respectively.

Problem of the stability of the inclusion for the Hadamard product as well as the integral convolution in the classes of univalent, starlike and convex functions was considered by Nezhmetdinov ([8]). Among other he proved that $\delta({I} * {I}, \mathcal{CV}) = 1$ and $\delta({I} * {I}, \mathcal{S}) = \sqrt{2}$. Numerous results concerning the stability of the Hadamard product were obtained by Kanas and Bednarz ([1], [7]). In particular in [7] Kanas proved that

$$
N_{1/[4(k+1)]}(f) \subset k\text{-}ST \quad \text{for} \quad f \in k\text{-}UCV,\tag{1.16}
$$

that is a k-uniform version of the Ruscheweyh result. Also, we should mention some inequalities about stability of the Hadamard product for functions from the classes k - \mathcal{UCV} and k - \mathcal{ST} , below:

$$
\delta({I} * {I}, k \text{-UCV}) \ge \frac{1}{\sqrt{k+1}} \tag{1.17}
$$

$$
\delta({\{I\} * {\{I\}}, k\text{-}ST) \ge \sqrt{\frac{2}{k+1}}
$$
\n(1.18)

$$
\delta(k \cdot \mathcal{UCV} * \mathcal{CV}, k \cdot \mathcal{ST}) \ge \sqrt{4 + \frac{1}{2(k+1)^2}} - 2.
$$
 (1.19)

Let $Q[f]$ denote the integral transformation:

$$
Q[f](z) = \int_{0}^{z} \frac{f(t)}{t} dt, \quad z \in \mathcal{U},
$$
\n(1.20)

where $f \in \mathcal{A} \subset \mathcal{H}$. Also, denote by $Q[A]$ the image of a subclass A under the mapping Q. It is well known that $Q[\mathcal{ST}] = \mathcal{S}$, however $Q[\mathcal{S}] \not\subset \mathcal{S}$ (cf. [13], [2], [3]). If the inclusion $Q[A] \subset B$ holds, then we can define the constant

$$
\delta(Q[A], B) = \sup \{ \delta : Q[N_{\delta}(A)] \subset B \}
$$

representing a quantitative characteristic of the stability of the inclusion.

In the present article we consider a problem of a stability of the integral convolution over the class $k-\mathcal{U}\mathcal{CV}$ and $k-\mathcal{ST}$. We also study a stability of geometric properties of a function f under the integral transformation $Q[f]$ when f is in k - $\mathcal{U}\mathcal{CV}$ or k - \mathcal{ST} .

2. Stability of the integral convolution

In this section we obtain some results concerning the stability of the integral convolution in the class $k\text{-}UCV$ and $k\text{-}ST$.

In the sequel the following notation will be used: $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $f_0(z) = z + \sum_{n=2}^{\infty} a_{0n} z^n, \ g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \ g_0(z) = z + \sum_{n=2}^{\infty} b_{0n} z^n.$ First of all notice, that by (1.4) , (1.5) and (1.20)

$$
(f \otimes g)(z) = \int_{0}^{z} \frac{(f * g)(t)}{t} dt = Q[f * g](z),
$$
 (2.1)

and it is easily verified that $Q[k\text{-}ST] = k\text{-}\mathcal{UCV}$, therefore

$$
(f \otimes g)(z) \in k \text{-} \mathcal{U}\mathcal{CV} \Longleftrightarrow (f * g)(z) \in k \text{-} \mathcal{ST}.
$$
 (2.2)

By the fact $\delta(k-\mathcal{ST}*\mathcal{CV},k-\mathcal{ST}) = 0$, (cf. [7]) and by (2.2), it can be immediately seen that $\delta(k-\mathcal{ST}\otimes\mathcal{CV},k-\mathcal{UCV})=0$. Below, we present other

stability results over k - $\mathcal{U}\mathcal{CV}$ and k - \mathcal{ST} , however the authors do not know if they are sharp.

Theorem 2.1. For the integral convolution (1.5) the following inequalities concerning stability in the class k -UCV and k -ST are satisfied:

$$
\delta({\{I\}} \otimes {\{I\}}, k \text{-} \mathcal{ST}) \ge \frac{2}{\sqrt{k+1}},\tag{2.3}
$$

$$
\delta({\{I\}} \otimes {\{I\}}, k \text{-UCV}) \ge \sqrt{\frac{2}{k+1}},\tag{2.4}
$$

$$
\delta(k \text{UCV} \otimes \{I\}, k \text{-ST}) \ge \sqrt{1 + \frac{4}{k+1}} - 1,\tag{2.5}
$$

$$
\delta(k-\mathcal{ST}\otimes\{I\},k-\mathcal{ST})\geq \sqrt{4+\frac{4}{k+1}}-2,\tag{2.6}
$$

$$
\delta(k \text{UCV} \otimes \{I\}, k \text{UCV}) \ge \sqrt{1 + \frac{2}{k+1}} - 1,\tag{2.7}
$$

$$
\delta(k \text{UCV} \otimes \mathcal{CV}, k \text{UCV}) \ge \sqrt{4 + \frac{1}{2(k+1)^2}} - 2,\tag{2.8}
$$

$$
\delta(k \text{-} \mathcal{ST} \otimes \mathcal{CV}, k \text{-} \mathcal{ST}) \ge \sqrt{9 + \frac{1}{(k+1)^2}} - 3. \tag{2.9}
$$

Proof. Making use of (2.2) and inequalities (1.18) , (1.19) the relations (2.4) , (2.8) follow immediately.

Further, for any f, g, f_0 , $g_0 \in \mathcal{H}$ and $h \in \mathcal{B}$ we have

$$
\left|\frac{(f\otimes g*h)(z)}{z}\right| \ge \left|\frac{(f_0\otimes g_0*h)(z)}{z}\right| - \left|\frac{(f_0\otimes (g-g_0)*h)(z)}{z}\right| \qquad (2.10)
$$

$$
-\left|\frac{((f-f_0)\otimes g_0*h)(z)}{z}\right| - \left|\frac{((f-f_0)\otimes (g-g_0)*h)(z)}{z}\right|.
$$

Case (2.3). Assume $f_0 = g_0 = I$ and let $f, g \in N_\delta(I)$, with δ satisfying (2.3). We shall show that $(f \otimes g * h)(z)/z \neq 0$ for $h \in \mathcal{B}$, or equivalently $f \otimes g \in k\text{-}ST$ (in view of (1.7)). Observe that, by properties of Hadamard product and integral convolution, we have $(f_0 \otimes (g - g_0) * h)(z) = 0$, $((f$ $f_0 \otimes g_0 * h(x) = 0$ and $(f_0 \otimes g_0 * h)(z) = I(z)$. Moreover, by the fact that $f, g \in N_{\delta}(I)$ we obtain $\sum_{n=2}^{\infty} n|a_n| \leq \delta$ and $n|b_n| \leq \delta$, therefore $|b_n|/n \leq$ $\delta/n^2 \leq \delta/4$ for $n \geq 2$. Hence, in view of (1.9), the inequality (2.10) becomes:

$$
\left| \frac{(f \otimes g * h)(z)}{z} \right| > 1 - \sum_{n=2}^{\infty} \frac{|a_n||b_n||c_n|}{n} \ge 1 - \frac{\delta}{4} \sum_{n=2}^{\infty} [n + (n-1)k]|a_n|
$$

$$
\geq 1 - (k+1)\frac{\delta}{4} \sum_{n=2}^{\infty} n|a_n| \geq 1 - \frac{\delta^2}{4}(k+1),
$$

that is nonnegative. It means $|(f \otimes g * h)(z)/z| > 0$, so that $f \otimes g \in k\text{-}ST$, which completes the proof.

Case (2.5). Assume that $f_0 \in k\text{-}UCV$ and $g_0 = I$. Also, let $f \in N_\delta(f_0)$, $g \in N_{\delta}(g_0)$, with δ satisfying (2.5). Then, applying (2.10), we obtain

$$
\left| \frac{(f \otimes g * h)(z)}{z} \right| > 1 - \sum_{n=2}^{\infty} \frac{|a_{0n}| |b_n| |c_n|}{n} - \sum_{n=2}^{\infty} \frac{|a_n - a_{0n}| |b_n| |c_n|}{n} . \tag{2.11}
$$

Since $f_0 \in k\text{-}U\mathcal{CV} \subset \mathcal{CV}$ then $|a_{0n}| \leq 1$. By the fact that $g \in N_\delta(g_0)$ we have $\sum_{n=2}^{\infty} n |b_n| \leq \delta$ whence $\sum_{n=2}^{\infty} |b_n| = \sum_{n=2}^{\infty} n |b_n| / n \leq \delta/2$, for $n \geq 2$. Similarly, since $f \in N_\delta(f_0)$ we have $\sum_{n=2}^{\infty} |\overline{a_n} - a_{0n}| \leq \delta/2$. Now, applying above inequalities to (2.11), we obtain for all $z \in \mathcal{U}$

$$
\left| \frac{(f \otimes g * h)(z)}{z} \right| \ge 1 - (k+1)\frac{\delta}{2} - (k+1)\frac{\delta^2}{4}
$$

that is nonnegative when assuming (2.5), so that $f \otimes g \in k\text{-}ST$.

Case (2.6). Assume $f_0 \in k\text{-}ST$ and $g_0 = I$. Similarly as in the previous cases, and in view of (1.7), it suffices to show that for δ satisfying (2.6) and $h \in \mathcal{B}$ the inequality $|(f \otimes g * h)(z)/z| > 0$ holds. Since $f_0 \in k\text{-}\mathcal{ST} \subset \mathcal{ST}$, then $|a_{0n}| \leq n$ and, by virtue of (1.9), the inequality (2.10) takes the form

$$
\left| \frac{(f \otimes g * h)(z)}{z} \right| > 1 - \sum_{n=2}^{\infty} \frac{|a_{0n}| |b_n| |c_n|}{n} - \sum_{n=2}^{\infty} \frac{|a_n - a_{0n}| |b_n| |c_n|}{n}
$$
\n
$$
\geq 1 - (k+1) \sum_{n=2}^{\infty} n |b_n| - (k+1) \sum_{n=2}^{\infty} |a_n - a_{0n}| |b_n|
$$
\n
$$
\geq 1 - (k+1)\delta - (k+1)\frac{\delta^2}{4},
$$

which is nonnegative since δ satisfies (2.6).

Case (2.7) . In view of (2.2) and (1.7) it suffices to show that $|(f * g * h)(z)/z| > 0$ for $f_0 \in k$ -UCV, $f \in N_\delta(f_0), g_0 = I, g \in N_\delta(g_0)$ and $h \in \mathcal{B}$. We will proceed as in (2.10). Then

$$
\left| \frac{(f * g * h)(z)}{z} \right| \ge \left| \frac{(f_0 * g_0 * h)(z)}{z} \right| - \left| \frac{(f_0 * (g - g_0) * h)(z)}{z} \right|
$$
\n
$$
- \left| \frac{((f - f_0) * g_0 * h)(z)}{z} \right| - \left| \frac{((f - f_0) * (g - g_0) * h)(z)}{z} \right|.
$$
\n(2.12)

Since $f_0 \in k\text{-}U\mathcal{CV} \subset \mathcal{CV}$, then $|a_{0n}| \leq 1$ and

$$
\left| \frac{(f_0 * (g - g_0) * h)(z)}{z} \right| < \sum_{n=2}^{\infty} |a_{0n}| |b_n| [n + (n-1)k] \tag{2.13}
$$
\n
$$
\leq (k+1) \sum_{n=2}^{\infty} n |a_{0n}| |b_n| \leq (k+1)\delta.
$$

The function $g \in N_{\delta}(g_0)$ so that $n|b_n| \leq \delta$ for all $n \geq 2$, whence $|b_n| \leq \delta/2$, and therefore

$$
\left| \frac{((f - f_0) * (g - g_0) * h)(z)}{z} \right| < \sum_{n=2}^{\infty} |b_n||a_n - a_{0n}|[n + (n-1)k]
$$
\n
$$
\leq (k+1)\frac{\delta^2}{2}.\tag{2.14}
$$

Applying (2.13) and (2.14) to (2.12) one obtains

$$
\left| \frac{(f * g * h)(z)}{z} \right| \ge 1 - (k+1)\delta - (k+1)\frac{\delta^2}{2}
$$

which is nonnegative if δ satisfies (2.6), so that $f * g \in k\text{-}ST$, and therefore $f \otimes g \in k$ -UCV.

Case (2.9). Let $f_0 \in k\text{-}ST, g_0 \in CV$ and $f \in N_\delta(f_0), g \in N_\delta(g_0)$ and $h \in \mathcal{B}$. Since $f_0 \in k\text{-}\mathcal{ST}$, $g_0 \in \mathcal{CV}$ we have $f_0 * g_0 \in k\text{-}\mathcal{ST}$ (cf. [5]) or, by (2.2), $f_0 \otimes g_0 \in k\text{-}UCV$. Thus, in view of $(1.16) |(f_0 \otimes g_0 * h)(z)/z| > 1/(4(k+1)).$ By the identity $f \otimes g * h = f * g \otimes h$, and the above, the relations (2.10) becomes

$$
\left| \frac{(f \otimes g * h)(z)}{z} \right| > \frac{1}{4(k+1)} - \sum_{n=2}^{\infty} \frac{|a_{0n}| |b_n - b_{0n}| |c_n|}{n} - \sum_{n=2}^{\infty} \frac{|b_{0n}| |a_n - a_{0n}| |c_n|}{n} - \sum_{n=2}^{\infty} \frac{|a_n - a_{0n}| |b_n - b_{0n}| |c_n|}{n}.
$$
\n
$$
(2.15)
$$

The coefficients of $f_0 \in k\text{-}\mathcal{ST} \subset \mathcal{ST}$ satisfy inequality $|a_{0n}| \leq n$ for $n \geq 2$ then, by (1.9) we have:

$$
\sum_{n=2}^{\infty} \frac{|a_{0n}||b_n - b_{0n}||c_n|}{n} \le \sum_{n=2}^{\infty} |b_n - b_{0n}||n + (n-1)k| \tag{2.16}
$$

$$
\le (k+1) \sum_{n=2}^{\infty} n|b_n - b_{0n}| \le (k+1)\delta.
$$

Similarly, since Similarly, since $g_0 \in \mathcal{CV}$ then $|b_{0n}| \leq 1$, whereas $f \in N_{\delta}(f_0)$ gives $\sum_{n=2}^{\infty} n |a_n - a_{0n}| \leq \delta$, so that $\sum_{n=2}^{\infty} |a_n - a_{0n}| \leq \delta/2$. Hence

$$
\sum_{n=2}^{\infty} \frac{|b_{0n}||a_n - a_{0n}||c_n|}{n} \le \sum_{n=2}^{\infty} \frac{|a_n - a_{0n}|[n + (n-1)k]}{n} \le \frac{1}{2}(k+1)\delta.
$$
 (2.17)

Finally, we have

$$
\sum_{n=2}^{\infty} \frac{|a_n - a_{0n}||b_n - b_{0n}||c_n|}{n} \le (k+1) \sum_{n=2}^{\infty} |a_n - a_{0n}||b_n - b_{0n}|
$$

$$
\le (k+1)(\delta^2/4). \tag{2.18}
$$

By virtue of (2.16) , (2.17) , and (2.18) the inequality (2.15) gives

$$
\left| \frac{(f \otimes g * h)(z)}{z} \right| \ge \frac{1}{4(k+1)} - (k+1)\delta - (k+1)\delta/2 - (k+1)\frac{\delta^2}{4}
$$

that is nonnegative provided that δ satisfies the inequality (2.9). From this we conclude $f \otimes g \in k\text{-}ST$, that completes the proof. \Box

3. Stability of geometric properties of the integral transformation

In this section we provide some estimates of radii of $N_{\delta}(f)$ such that the integral operator (1.20) carry the neighborhood into $k\text{-}UCV$ or $k\text{-}ST$, however the authors do not know if the results are sharp.

Theorem 3.1. For the integral representation (1.18) the following inequalities are valid:

$$
\delta(Q[\{I\}], k\text{-}ST) \ge \frac{2}{k+1} \tag{3.1}
$$

$$
\delta(Q[\{I\}], k \text{-UCV}) \ge \frac{1}{k+1} \tag{3.2}
$$

$$
\delta(Q[k \text{UCV}], k \text{UCV}) \ge \frac{1}{4(k+1)}.\tag{3.3}
$$

Proof. By using the Hadamard product (1.4) and the integral convolution (1.5) , the transformation (1.20) can be rewritten as:

$$
Q[f](z) = f(z) * \left(z + \sum_{n=2}^{\infty} \frac{z^n}{n}\right) = f \otimes \left(z + \sum_{n=2}^{\infty} z^n\right) = (f \otimes K)(z).
$$

Case (3.1). Suppose that $f \in N_{\delta}(I)$ with δ satisfying (3.1). Then it is easy to see, that for all $h \in \mathcal{B}$ and for all $z \in \mathcal{U}$ we have:

$$
\left| \frac{(Q[f] * h)(z)}{z} \right| \ge 1 - \left| \frac{[(f - I) \otimes K * h](z)}{z} \right|
$$
\n
$$
\ge 1 - \sum_{n=2}^{\infty} \frac{|a_n||c_n|}{n} |z|^{n-1} > 1 - (k+1) \sum_{n=2}^{\infty} |a_n|
$$
\n
$$
\ge 1 - (k+1)\frac{\delta}{2} \ge 0.
$$
\n(3.4)

The assertion and the above give that $\frac{(Q[f] * h)(z)}{z} \neq 0$ and, consequently, $Q[f] \in k\text{-}ST$.

Case (3.2). Assuming $h \in \mathcal{G}$ and $f \in N_{\delta}(I)$ with δ satisfying (3.2) and applying the estimation (1.10), we have

$$
\left|\frac{(Q[f] * h)(z)}{z}\right| \ge 1 - \sum_{n=2}^{\infty} \frac{|a_n||c_n|}{n} |z|^{n-1} > 1 - (k+1) \sum_{n=2}^{\infty} n|a_n| \ge 1 - (k+1)\delta.
$$

The above is nonnegative, so that $Q[N_\delta(I)] \subset k$ - \mathcal{UCV} is valid.

Case (3.3). By the relation $Q[k\text{-}ST] = k\text{-}UCV$ and (1.16) we immediately
tain $Q[N_{1/(4(k+1))}(k\text{-}UCV)] \subset k\text{-}UCV$. obtain $Q[N_{1/[4(k+1)]}(k\text{-}UCV)] \subset k\text{-}UCV$.

Acknowledgment. The authors wish to thank the referee for his valuable suggestions.

References

- [1] Bednarz, U., Kanas, S. Generalized neighbourhoods and stability of convolution for the class of k-uniformly convex and k-starlike functions, Folia Sci. Univ. Tech. Resov. 175, Ser. Math. 23 (1999), 29–38.
- [2] Bshouty, D., A note on Hadamard products of univalent functions, Proc. Amer. Math. Soc. 80 (1980), 271–272.
- [3] Hayman, W. K., On the coefficients of univalent functions, Proc. Cambridge Philos. Soc. 55 (1959), 373–374.
- [4] Kanas, S., Wiśniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327–336.
- [5] Kanas, S., Wiśniowska, A., Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov. 170 (1998), 65–78.
- [6] Kanas, S., Wisniowska, A., Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl. 45(3) (2000), 647-657.
- [7] Kanas, S., Stability of convolution and dual sets for the class of k-uniformly convex and k -starlike functions, Folia Sci. Univ. Tech. Resov. **170** (1998), 51–64.
- [8] Nezhmetdinov, I. R., Stability of geometric properties of convolutions of univalent functions, Russian Math. (Iz. VUZ) 37(11) (1993), 27–34.
- [9] Pólya, G., Schoenberg, I. J., Remarks on de la Vallée-Poussin means and convex conformal maps of the circle, Pacific J. Math. 8 (1958), 295–334.
- [10] Rahman, Q. I., Stankiewicz, J., On the Hadamard products of schlicht functions, Math. Nachr. 106 (1982), 7–16.
- [11] Ruscheweyh, S., *Duality for Hadamard product with applications to extremal prob*lems, Trans. Amer. Math. 210 (1975), 63–74.
- [12] Ruscheweyh, S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521–527.
- [13] Ruscheweyh, S., Sheil-Small, T., Hadamard product of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.
- [14] Robertson, M. S., Applications of a lemma of Fejér to typically real functions, Proc. Amer. Math. Soc. 1 (1950), 555–561.
- [15] Stankiewicz, J., Neighbourhoods of meromorphic functions and Hadamard products, Ann. Polon. Math. 46 (1985), 317–331.
- [16] Stankiewicz, J., Stankiewicz, Z., Some classes of regular functions defined by convolution, Analytic functions, Błażejewko 1982 (Błażejewko, 1982), Lecture Notes in Math. 1039 (1983), Springer, Berlin, 400–408.

