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Abstract. In this paper, we investigate a class of hyperbolic differential
equations of neutral type
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%[u + c(t)u(z, t — 7)) = ao(t) Au + a1(t) Au(z, t — p)
Zy (E)

- q(=@ 6, ulr, gt ldu(§),  (z,1) € AxRy =G,

a
and obtain some new sufficient conditions of the oscillation for such
equations satisfying boundary condition
ou

8W + l/(ZE,t)u =0, (QT,t) € 0 x Ry. (B)
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1. Introduction

In this paper, we consider the following hyperbolic differential equations
of neutral type

82
@[u + c(t)u(z,t — 7)] = ap(t) Au + a1 (t) Au(z, t — p)
b (E)
- [ et ule, 9. Odu(). (.)€ xRy =G,
and satisfying the boundary condition of the following type
Ju +v(z,t)u=0, (z,t)€ 0N xRy, (B)

ON

where € is a bounded domain in R™ with a piecewise smooth boundary 0f2,
Ry = [0,00), u = u(z,t), A is the Laplacian operator in R"™, 7 > 0 and
p > 0 are constants, N is the unit exterior normal vector to 9Q. v(x,t) is
a nonnegative continuous function on 92 x R.

The oscillation theory for partial differential equations has an intensive
development in the last decades. For the study of hyperbolic differential
equations of neutral type, we mention here the literatures by Bainov and
Mishev [1], Kreith, Kusano and Yoshida [3], Mishev and Bainov [7], Yoshida
[11], Lalli, Yu and Cui [4]-[5], Bainov, Cui and Minchev [2], Liu and Fu
[6], Wang and Yu [8], Wang [9]-[10] and references cited therein. The ob-
jective of this paper is to obtain some general oscillatory criteria of solu-
tions of boundary value problem Equations (E), (B) by introducing general
weighted function H(t,s), and by choosing different H(t, s), we can obtain
various corollaries, namely various conditions under each of which boundary
value problem (F), (B) has oscillatory solution. The results generalize some
known ones in the literatures.

We assume throughout this paper that the following conditions (H) hold.

(H1) ¢(t), ao(t), ar(t) € C(Ry, Ry);
(H2) q(x,t,£) € C(G x [a,b], Ry);

(Hs) g(t,&) € C(Ry X [a,b],R) is nondecreasing with respect to ¢ and &
respectively, g(¢,&) <t for £ € [a,b], and liminf {g(¢,&)} = oo;
t—o00, £€[a,b]
(Hy) p(§) € ([a,b],R) is nondecreasing, integral of of equation (E) is a
Stieltjes one.

Definition 1. A function u(z,t) € C?(Qx[t_1,00), R)NCH(Qx[t_1,00),R)
is called a solution of the boundary value problem (E), (B), if it satisfies
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equation (F) in the domain G and boundary condition (B) on 99 x R.
Where t_1 = min{—7, —p, g(0,a)}.

Definition 2. A solution u(x,t) of the boundary value problem (E), (B)
is called oscillatory in the domain G if for each positive number ¢,, there
exists a point (xo,t9) € Q x [t,,00) such that the condition u(xg,ty) = 0
holds.

2. Main results

Next, we give the main results of this paper.
Let Q(t,&) = min 5{q(xz,t,§)}. With each solution u(z,t) of the bound-
ary value problem (E), (B), we associate a function U(t) defined by

U(t):/gu(:r,t)dx, £ 0. (1)

d
Theorem 1. Assume that 0 < c(t) < 1, and there exist %g(t, a) and func-

tion H(t,s) € C1(D;R), h(t,s) € C(D;R), in which D = {(t,s)|t > s >
to > 0} satisfying

(Hs) H(t,t) =0, t >ty >0; H(t,s) >0, t > 5>ty > 0;

(Hg) H{(t,s) >0, H.(t,s) <0, and —H.(t,s) = h(t,s)\/H(t,s), (t,s) € D.

If there exists a function p(t) € CY (R, (0,00)), for tg > 0, satisfying

2
. Lt [ s)p(s) = VHE )P ()]
im0 )9 (5, a) de<oo, 0

1
limsup ——— H t,s) 1—c[g(s, d ds=o00, (3
mawp s | 0(6) [ @Uss 1 ~clto. N0 G
then each solution u(a:,t) of the boundary value problem (E), (B) is oscil-
latory in the domain G.

Proof. Assume that the boundary value problem (E), (B) has a nonoscil-
latory solution wu(z,t). Without loss of generality, assume that u(z,t) > 0,
(x,t) € Q@ x Ry (u(x,t) < 0 can be considered in same method). From (H3),
there exists a t; > 0 such that u(z,t—7) > 0, u[z, g(¢,&)] > 0, u(x,t—p) > 0
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for t > t; and £ € [a,b]. Integrating with respect to x over the domain §2,
for t > t1, we obtain

d2

g [ /Q uda + () /Q u(x,t—T)dx] + /Q / " gt €l gt O)du(€)d
= ao(t) /Q Audz + a1 (t) /Q Au(z,t — p)d, (4)

It is clear that

b b
/ / a(z.t, )l g(t, €)]du(E)de = / / a(e.t, )ule, g(t, €)]dedu(€)
QJa a Q

b
> [ Qo) [ ule.gtt.dzduco) 5)
From Green’s formula and boundary condition, we have
ou
Audr = —dw = —/ vudw < 0, 6
/Q o0 ON o9 ©)
and
/ Au(x,t — p)dr = —/ v(z,t — p)u(z,t — p)dw <0, (7)
Q o0

where dw is the surface integral element on 9€2. Combining (1), (5)—(7), for
t > t1, it follows that from (4)

d2
dt?
Set

b
[U(t) + c()U(t —7)] +/ Qt,OU[g(t,§)ldu(&) <0, t=t.  (8)

Y(t)=U({t)+ct)U(t—71), 9)

then, Y(¢) > U(t) > 0, Y"(t) <0, t > t;, and we can claim that Y’(¢) > 0,
t > t1. In fact, assume the contrary, that there exists a to > t; such that
Y'(t1) < 0. In view of Y'(t) is monotone decreasing, there exists a t3 > to
such that Y'(t3) < 0 and Y'(¢t) < Y'(t3) < 0, ¢t > t3. Integrating from t3 to
t, we have Y (t) < Y (t3) + Y'(t3)(t — t3), which implies lim;_~ Y (t) = —o0,
this contradicts Y (¢) > 0. From (8) and (9), we have

b
0> Y"(t)+ / Qt, ©)ULg(t, &)l dp(€)

b
— Y1) + / QO gt )] — clo(t. E)UTg(t, &) — 7}du(e).  (10)



FURTHER RESULTS ON OSCILLATION 121

In view of Y'(t) > 0, and Y(t) > U(t), t > t1, we have Y[g(t,§)] >
Yig(t,§) — 7] = Ulg(t,§) — 7], thus

Yt / QUL — gt ONY[g(t, ldu(€) < 0, > 1. (1)

Furthermore, in view of g(t,£) is nondecreasing with respect to &, we have
Yg(t,a)] < YIg(t,€)], thus

b
Y'(t) + Y[g(t,a)]/ Q{1 — clg(t, O)}du(§) < 0, t >t (12)
Let

Z(t) = (13)

d
then Z(t) > 0. In view of —g

t,a) exists, we have
dt

Vlg(t. ) = G- ot a)

and in view of g(¢,&) is nondecreasing with respect to &, g(t,&) < t for
¢ € [a,b], we obtain Y'(t) < Y'[g(t,a)]. Thus
Yi(t)  Y'()Y'[g(t,a)]g'(t,a)
Yig(t,a)] Y2[g(t,a)]
b
- [ QO - clalt.Ndu©) - gt Z0), 1zt

Integrating by parts for any ¢ > 7" > t;, and using the conditions (Hs5) and
(Hﬁ) we have

Z'(t) =

(14)

Hts /ng {1 — clg(s, )] }dp(&)ds

< H(t, 5)p(s) 2/ (5)ds t CH(t, 9)o(s)g/(5,0)Z2(s)ds

— H(tt)p(t) Z(t) — / VE3)[h(t, 5)p(s) — V(L )9 (5)) Z(s)ds

H(t,s)p(s)g (s, a)Z%(s)ds. (15)

t1

Furthermore, we have

syt /ng{l—c[ (5, )] }dpu(€)ds
< H(t,t)p(t) Z(t)

t
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i / , [t 5)p(s) — HE)0/(5)]
Vo) s, ) H (t, 5) Z(s) + ds
t1 2 p(S)g/(S,CL)

ds

2
1t B 9)(s) = VHE ) (5)]
"1 / ()9 (5 )

t S S)— s ,S 2
<H(t,0)p(h)Z(0)+ | / (Rt )p(pzsm/(ffj 40)

From ( 6), for t > t1 > to, we have

H(tto Hts)p /Q {1 — clg(s, )]} du(€)ds

—tto[/+/] (.90 /@ 1~ clo(s, | du(€)as

<H(tt0/ /Q {1 — clg(s, )]} du(€)ds
: gg;g;pwm g [ e VT wel,,
in view of H/(t,s) < 0, we have
s g [ H(9006) [ QUs,€)1 — o paute)is
<L+ ihﬁiﬁp H(tl, - /t [h(t,s)p(z)(;g/(fii, S)pl(S)]st, )

where L = p(t1)Z(t1) + ft f Q(s,&){1 — clg(s,&)]}du(&)ds. Thus, in
view of condition (2), we obtaln

t

liﬂgpﬂ(ih)) H(t,s)p / Q(s, {1 — clg(s, )] du(§)ds < oo,

which contradicts (3) Therefore, the proof of Theorem 1 is completed. [J

In Theorem 1, by choosing p(s) = 1, we have the following corollary.

Corollary 1. Assume that the conditions of Theorem 1 hold, and

t b
hgiségpﬂ(ito) [ H.s | Q. t1=ca(s. O aue)ds = oo, (13)
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1 L R2(t, s)
lim su / " ~ds < oo, 19

o’ H(t,t0) Sy ¢'(s,0) (19)
then each solution u(x,t) of the boundary value problem (E), (B) is oscil-
latory in the domain G.

From Theorem 1 and Corollary 1, we can obtain various oscillatory cri-
teria by means of the choices of weighted function H(t,s). For example,
Choosing H(t,s) = (t — s)™ !, t > s > tg, in which m > 2 is an integer,
then h(t,s) = (m — 1)(t — s)(m=3)/2 ¢ > s > ty. From Corollary 1, we have

d
Corollary 2. If there exists a %g(t,a) and an integer m > 2 such that

t b
fimsup g [ (=" [ QU O{1-clo(s Odul€)ds = 0. (20

t—oo to

1 t -1 2 t— m—3
lim sup il / (m = 1)(t —5) ds < 00, (21)
t—oo Ty 9'(s,a)

then each solution u(x,t) of the boundary value problem (E), (B) is oscil-
latory in the domain G.

When

lim sup

¢ b
" H it to) H{t, s)p(s)/a Q(s, {1 — clg(s, &) }du(&)ds
=0 (22)

we have the following result.

Theorem 2. Assume that the conditions of Theorem 1 and (22) hold. If
H{(t,s) is nondecreasing, and there exists a function p(t) € C([tg,00),R)
satisfying

. 1 t b
it o / [H<t,s>p<s> / Q(s, €){1 — elg(s,€)]}pu(€)
2

[(t,5)p(s) = v/H{E5)0/(5)]

_ S U U (23)
W90 st

L1 [THEe) (s a9 (s)

tl—>ooH(t,t0) /to p(s) ds =00, (24)

+(s) = max{e(s), 0},

then each solution u(x,t) of the boundary value problem (E), (B) is oscil-
latory in the domain G.
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Proof. Assume that the boundary value problem (E), (B) has a nonoscil-
latory solution wu(z,t). Without loss of generality, assume that u(z,t) > 0,
(x,t) € @ xRy (u(x,t) < 0 can be considered in same method). Then
proceeding as in Theorem 1, there exists a t; > u > tg such that

t b
/mmmﬂ@&mu@wWMWs

2
1/¢huﬁw@w— H(E, )0/ (5)]
4 Ju p(s)g' (s, a)
Furthermore, for ¢t > u > tgy, we have

Héa)/'[ /‘Q €)1 — clgls, )] }p(€)

B {h(t s)p(s) — /H(t,s)p'(s )} J 25
)96, ’ ()

< H(t,u)p(u)Z(u) + ds. (16)

H(t,u)
< H(t7t0)p(U)Z(U)-

In view of (23) and (Hg), we have

o) < s [ [H006) [ Q5,901 el O

[t 5)p(s) - H@sW(ﬂ ] .
T heea ’ 20)

H(t, u)
<
- H(t, to)
which implies that

p(u)Z(u) < p(u)Z(u),

2 (u) < p*(u) Z%(u). (27)
Let

/ VH(t,s) |h(t,s) H(t, s)p/(s)] Z(s)ds
t to
1
w(t) =——
( ) H(t, t()) t1
then, in view of (15), we have

i et Z(o) (29)

H(t s)p(s)g'(s,a) 2% (s)ds,

v(t) +w(t) <
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1 t
~ e [ s /'ng {1 = clg(s, )] }dp(€)ds

from (23), we have

lim inf ——— /Hts /@ {1 — clg(s, &)]}dpu()ds > p(u),
t—o0 H t t(]
furthermore, we obtain

lﬁﬁmém H(t,5)p /Qsﬁvd@@wm>

2
t |h(t,s)p(s) — /H(t,s)p (s
lim inf 1 / [ (2)ets) ()t )} ds > p(t1). (29)

— limin H{t, to) 4p(s)g'(s,a)

In view of (22) and (29), we have

ds < 0.

L e - VAESG)]
e H(t to) / 4p(s)g'(s, a)

Thus, there exists a sequence {¢,}5° in [t1,00) such that lim, . t, = 00
and satisfying

T

which implies that
lim sup{v(t) +w(t)} < p(t1)Z(t1)
t—o0

2
b [Bt $)p(5) — v/ F(Ems 90 (5)
(ti to)/ [ ] ds < o0, (30)

4p(s)g' (s, a)

~liminf —— H £ s)p / Qs, {1 — clg(s, )] du()ds

t—o0 H(t to)
< p(t1)Z(t1) — <P(751) £ M. (31)
Then, for any sufficiently large n, we have
u(ty) + v(tn) < My, (32)

where My > M, M and M; are constants. In view of definition of w(t), we
have

ty
from H/(t,s) is nondecreasing, and (Hg), we have w'(t) > 0, thus, w(t) is
increasing, and lim;_,o w(t) = [ exists, where [ is finite or infinite. In the
case of [ = oo, then lim,, o w(t,) = oo, which implies that from (32)

lim v(t,) = —o0, (33)

n—oo
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and v
t
o(tn) 1< —1
w(ty) w(ty)
thus, for any 0 < € < 1 and sufficiently large n, we have
t
o) g <, (34)
w(tn)
On the other hand, by using the Schwartz inequality, for ¢ > t;, we obtain

0 < v3(t,) = m { tln V H(tn,s) [h(tn,s)p(s)

—/ H (tn, s)pl(s)} Z(s)ds}2

) /tn [t )0(5) —~ V/E G 530/ (5)]

Htn 10) o 59 (5, ) s

= w(ty) ds.

1 tn [h(fna $)p(s) — /H (tn, S)PI(S)} 2
H(tn, to) /tl p(s)g'(s,a)
Then

2

v (t) 1 tn [h(tn,s)p(s) - H(tn,s)p/(s)}
< 5 < Hw o9 (5,a)

It follows that from (30)

ds. (35)

lim
n—oo w(ty,

3

1

8
8\
£
|

then

2 !
im CUn) gy, 200)0 () > 2 lim v(ty)(e — 1) = oo,

N—00 w(tn) n—00 w/(tn) n—o0o

which contradicts (36). Thus, we have lim; o w(t) = | < co. Furthermore,
in view of (27), we have

1 /t H(t,s)g'(s,a)¢% (s)

lim ds
s Ht to) Jy, o(s)
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t
< tll}/& m " H(ta S)p(s)g,(sa a)Z2(S)dS = tllglow(t) < o0, (37)
which implies that
1 / 5,6 a)@i(S) ;
t—o0 H(t to)

2 g |, /J B

Js, am( )
= / o(5)

which contradicts (24). Therefore, the proof of Theorem 2 is completed. [

S

ds + lim w(t) < oo,
t—o00

In Theorem 2, by choosing p(t) = 1, we have the following result.

Corollary 3. Assume that the conditions of Theorem 1 and (22) hold. If
H{(t,s) is nondecreasing, and there exists a function p(t) € C([tg,o0),R)
satisfying

1 h2(t, s)
hrgégf H(ttg/ [ (t,s / Q(s, {1 — clg(s, )] }du(§) — 1g/(s, a)
> @( )7 (38)

t
lim — H(t,s)g (s,a)> (s)ds = o,
=00 H(t,to) " ( ) ( ) +( ) (39)

i(s) = g§§{¢(8), 0},

then each solution u(x,t) of the boundary value problem (E), (B) is oscil-
latory in the domain G.

Similarly as for Corollary 2, we can obtain the following corollary from
Corollary 3.

Corollary 4. Assume that the conditions of Theorem 1 hold, %g(t, a) ex-
ists, and
t b
fimsup o [ (=" [ Qs (1 —cly(o (s < 0. (40)
— 00 0 a

If there exists an integer m > 2 and function ¢(t) € C([tp,0),R) satisfying

1 [t P
imint g [0 [ @9 - cts O ante)

t—oo
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~(m—1) (t —s)m=3 . "
e R O] (41)
t
tli%lo ym—1 /to (t— S)m_lgl(sﬁ a)(pi_(s)ds =, (42)

pi(s) = 1811;}?{@(8), 0},

then each solution u(x,t) of the boundary value problem (E), (B) is oscil-
latory in the domain G.

(1]
2]

[10]
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