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Abstract. We present reasons for developing a theory of forcing no-
tions which satisfy the properness demand for countable models which
are not necessarily elementary sub-models of some (H(χ),∈). This
leads to forcing notions which are “reasonably” definable. We present
two specific properties materializing this intuition: nep (non-elementary
properness) and snep (Souslin non-elementary properness) and also the
older Souslin proper. For this we consider candidates (countable models
to which the definition applies). A major theme here is “preservation
by iteration”, but we also show a dichotomy: if such forcing notions pre-
serve the positiveness of the set of old reals for some naturally defined
c.c.c. ideal, then they preserve the positiveness of any old positive set
hence preservation by composition of two follows. Last but not least, we
prove that (among such forcing notions) the only one commuting with
Cohen is Cohen itself; in other words, any other such forcing notion
make the set of old reals to a meager set. In the end we present some
open problems in this area.
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ANNOTATED CONTENT

Section 0: Introduction We present reasons for developing the theory of forcing no-
tions which satisfy the properness demand for countable models which are not necessarily
elementary submodels of some (H(χ),∈). This will lead us to forcing notions which are
“reasonably” definable.

Section 1: Basic definitions We present two specific properties materializing this
intuition: nep (non-elementary properness) and snep (Souslin non-elementary proper-
ness). For this we consider candidates (countable models to which the definition applies),
and we also consider the older Souslin proper. We end by a criterion for being “explicitely
nep”.

Section 2: Connections between the basic definitions We point out various
implications (snep implies nep, etc.). We also point out how much the properties are
absolute.

Section 3: There are examples We point out that not just the reasonably definable
forcing notions in use fit our framework, but that all the general theorems of Ros lanowski
and Shelah [19], which prove properness, actually prove the stronger properties introduced
earlier.

Section 4: Preservation under iteration: first round First we address a point
we ignored earlier (it was not needed, but is certainly part of our expectations). In the
definition of “q is (N,Q)-generic” predensity of each I ∈ pd(N,Q) was originally designed
to enable us to say things on N [G

˜
Q], i.e. N [GQ] ∩ H(χ)V = N , but we should be careful

saying what we intend by N [GQ] now, so we replace it by N〈G
˜
Q〉. The preservation

Theorem 4.8 says that CS iterations of nep forcing notions have the main property of
nep. For this we define p〈〈N〉〉 if N |=“ p ∈ Lim(Q̄) ”. We also define and should consider
(4.4) the “K-absolute nep”.

Section 5: True preservation theorems We consider three closure operations of
nep forcing notions (cl1, cl2, cl3), investigate what is preserved and what is gained. The
main result is a general preservation theorem for nep (5.18). This is done for the “straight”
version of nep, which however is a further restriction on the definition of the forcing but not
really on the forcing itself (as proved there). We then deal with restricting the iteration to
a subsequence (of the sequence of forcing notions) and conclude that such iteration tend
not to add an intersection to families of Borel sets from the ground model. In particular,
considering iterating nice forcing notions, what a countable length iteration cannot do,
iteration of any length cannot do.

Section 6: When a real is (Q, η
˜

)–generic over V We define the class K of pairs
(Q, η

˜
), in particular when η

˜
is the generic real for Q, and how nice is the subforcing Q′ of

Q generated by η
˜

. We then present FS iterations of c.c.c. forcing notions satisfying: each
elements is ord-hc such that this holds also for the limit of the iteration.

Section 7: Preserving a little implies preserving much We are interested in
the preservation of the property (of forcing notions) “retaining positiveness modulo the
ideal derived from a c.c.c. nep forcing notion”, e.g. being non-null (by forcing notions
which are not necessarily c.c.c.). Concerning such preservations, [25, Chapter VI, §1, §2]
dealt with cases such that “every new real belong to some perfect set of reals from the old
universe which is small (according to a definition we choose for the specific application)”,
§1 there deal with the framework whereas §2 there deal mainly with several examples.;
and [25, §3, Chapter XVIII, §3] replace perfect by Fσ with some price including dealing
mainly with the limit case. Our main aim is to show that for “nice” enough forcing
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notions we have a dichotomy: retaining the positiveness of any X ⊆ ωω is equivalent to
retaining every positive Borel set. This implies preservation of the property above under,
e.g., CS-iterations (of proper forcings).

Section 8: Non-symmetry We start to investigate for c.c.c. nep forcing: when do
we have “if η0 is (Q0, η

˜
0)-generic over N and η1 is (Q1, η

˜
1)-generic over N [η0] then η

˜
1

is (Q
˜ 0
, η
˜

0)-generic over N [η1]”? This property is known when both are Cohen reals and
when both are random reals above.

Section 9: Poor Cohen commutes only with himself We prove that commuting
with Cohen is quite rare. In fact, c.c.c. Souslin forcing which adds η

˜
, a name of a new

real which is (absolutely) nowhere essentially Cohen does not commute with Cohen. So
such forcing makes the set of old reals meager. This continues [24]. Papers continuing
this are [21] and [22].

Section 10: Some absolute c.c.c. nicely defined forcing notions are not so
nice We define such forcing notions which are not essentially Cohen as long as ℵ1 is
not too large in L. This shows that “c.c.c. Souslin” cannot be outright replaced by
“absolutely c.c.c. nep”.

Section 11: Open problems We formulate several open questions. Continued in
[21], [22], [28].

0. Introduction

The theme of [23], [25] is:

Thesis 0.1. It is good to have general theory of forcings, particularly for
iterated forcing.

Some years ago, Haim Judah asked me some questions (on inequalities
on cardinal invariants of the continuum). Looking for a forcing proof the
following question arises:

Question 0.2. Will it not be nice to have a theory of forcing notions Q
such that:
(⊕) if Q ∈ N ⊆ (H(χ),∈), N a countable model of ZFC− and p ∈ N ∩Q,

then there is q ∈ Q which is (N,Q)-generic?

Note the absence of ≺ (i.e. N is just a submodel of (H(χ),∈)), which is
the difference between this property and “properness”, and is alluded to in
the name of this paper. This evolved to “Souslin proper forcing” (see 1.13)
in Judah and Shelah [13], which was continued in Goldstern and Judah [12].

There are still some additional desirable properties absent there:
(a) not all “nicely defined” forcing notions satisfy “Souslin proper”, in

fact quite many and not so esoteric ones: the Sacks forcing, the Laver
forcing (the “reason” being that incompatibility is not Σ1

1); we like to
have all of them;
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(b) actual preservation by CS iteration was not proved, just the desired
conclusion (⊕) hold for Pα when 〈Pi,Q

˜ j
: i ≤ α, j < α〉 is a countable

support iteration and i < α ⇒ `Pi“ Q
˜ i

is a Souslin proper forcing
notion”;

(c) to prove for such forcing notions better preservation theorems when
we add properties in addition to properness.

Martin Goldstern asked me some years ago on the inadequacy of Souslin
proper from clause (a). I suggested a version of the definition of nep, and
this was preliminarily announced in Goldstern [11].

The intention here is to include forcing notions with “nice definition”
(not ones constructed by diagonalization like e.g. Baumgartner’s “every
ℵ1-dense sets of reals are isomorphic” [3] or the forcing notions constructed
for the oracle c.c.c., see [23, Chapter IV], or forcing notions defined from an
ultrafilter).

Our treatment (nep/snep) in a sense stands between [25] and Ros lanowski
and Shelah [19]. In [25] we like to have theorems on iterations Q̄, mainly CS,
getting results on the whole Lim(Q̄) from assumptions on each Qi, but with
no closer look at Qi – by intention, as we would like to cover as much as we
can. In Ros lanowski and Shelah [19] we deal with forcing notions which are
quite concrete, usually built from countably many finite “creatures” (still
relative to specific forcing this is quite general).

Here, our forcing notions are definable but not in so specific way as in
[19], which still provides examples (all proper ones are included), and the
theorems are quite parallel to [25]. So we are solving the “equations”

x/theory of proper forcing [23],[25]/
theory of forcing based on creatures [19]
=
“theory of manifolds” /general topology/
theory of manifolds in R3.

Thesis 0.3. “Nice” forcing notions which are proved to be proper, normally
satisfy (even by same proof) the stronger demands defined in the next sec-
tion.

We finish commenting on some subsequent works. Zapletal’s memoir [29]
looks at definable forcing notions from other point of view. Kellner and
Shelah [15] continue Section 7, dealing with random reals. There has been
a breakthrough relevant to the problems concerning random reals, see [24].

History: The paper is based on the author’s lectures in Rutgers Uni-
versity in Fall 1996, which results probably in too many explanations. An-
swering Goldstern’s question was mentioned above. A version of §8 (on
non-symmetry) was done in Spring of ’95 aiming at the symmetry question.
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The rest was developed in the Summer and Fall of ’96. The material was
revised in Fall 2000 (in the Mittag-Leffler Institute) and again in fall 2001,
spring 2002. I thank the audience of the lectures for their remarks and
mainly Andrzej Ros lanowski for correcting the paper. Moreover, I thank
the two referees and Jakob Kelner for detecting many unclarities and mis-
takes and asking for details, and I thank the logic group in Helsinki and
particularly Jouko Vaananen for their generous help.

The reader may be helped by a list of defined notions at the end.

Notation: We try to keep our notation standard and compatible with
that of classical textbooks on Set Theory (like Bartoszyński and Judah [2]
or Jech [14]). However in forcing we keep the older/Cohen tradition that a
stronger condition is the larger one.

For a regular cardinal χ, H(χ) stands for the family of sets which are
hereditarily of size less than χ. Tcord(x), the hereditary closure relative to
the ordinals, is defined by induction on rk(x) = γ as follows:

1. if γ = 0 or x is an ordinal then Tcord(x) = ∅
2. if γ > 0 and x is not an ordinal then

Tcord(x) =
⋃
{Tcord(y) : y ∈ x} ∪ x.

The collection of all sets which are hereditarily countable relatively to κ,
i.e., Tcord(x) is countable and Tcord(x) ∩Ord ⊆ κ, is denoted by H<ℵ1(κ),
equivalently H<ℵ1(κ) = {x ∈ Vκ : Tcord(x) is countable and Ord ∩ Tc(x)
is a bounded subset of κ}. Let “x is an ord-hc-set” (or sometimes hc-set,
abusing our notation) mean that x is a member of H<ℵ1(κ) for some κ. Let
“x is a strict ord-hc set” mean that x is an ord-hc set but is not an ordinal.

We say that a set M ⊆ H(χ) is ord-transitive if

x ∈M & x is not an ordinal ⇒ x ⊆M.

So every set of ordinals (e.g., any ordinal) is ord-transitive and for any non-
ordinal x, we have: x is ord-transitive iff Tcord(x) = x. Clearly for every
model M ⊆ (H(χ),∈) satisfying exstensionality for non-ordinals there is a
model M ′ ⊆ (H(χ),∈) ord-transitive and isomorphic to M over M ∩Ord.

We should consider the ordinals as urelements, i.e., ω 6= {n : n < ω}; the
disadvantage is that this is not standard hence we have tried to avoid it,
but it is closer to the spirit of the paper. Without this, a Borel operation
giving {xn : if yn is true } may be the ordinal α instead of being the set
{β : β < α} and if a candidate N “thinks” that ω1 is countable, then
B(x1, . . . , y1, . . . ) = z is not absolute from N to V.
WARNING: So ∅ is not the ordinal 0 !

Notation 0.4. We will keep the following rules for our notation:
1. α, β, γ, δ, ε, ξ, ζ, i, j . . . will denote ordinals.
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2. θ, κ, λ, µ, χ . . . will stand for cardinal numbers, infinite if not said oth-
erwise, sometimes we use them for ordinals.

3. a tilde indicates that we are dealing with a name for an object in a
forcing extension (like x

˜
).

4. a bar above a name indicates that the object is a sequence, usually X̄
will be 〈Xi : i < `g(X̄)〉, where `g(X̄) denotes the length of X̄.

5. For two sequences η, ν we write ν C η whenever ν is a proper initial
segment of η, and ν E η when either ν C η or ν = η. The length of a
sequence η is denoted by `g(η).

6. A tree is a non empty family of finite sequences closed under initial
segments. For a tree T the family of all ω–branches through T is
denoted by lim(T ).

7. The Cantor space ω2 and the Baire space ωω are the spaces of all
functions from ω to 2, and to ω, respectively, equipped with natural
(Polish) topology.

8. The fixed “version” ZFC−∗ normally is such that the forcing theorem
holds and for any large enough χ, the set of (B, ϕ̄, θ)–candidates (de-
fined in 1.1) is cofinal in {N : N ⊆ (H(χ),∈) and N is countable}
and in the scheme of ZFC−∗ we allow some extra relation (from B etc)
and whatever else we shall use (fully see 1.15). Usually, dealing with
the simple case, we can restrict ourselves to (H<ℵ1), which follows by
collapsing N to an ord-transitive model.

9. C, B . . . will denote models (with some countable vocabulary). For a
model C, its universe is denoted |C| and its cardinality is ‖C‖. Usually
C’s universe is an ordinal α(C) and κ(B) ⊆ |B| ⊆ H<ℵ1(κ(B)), κ(B)
a cardinal (or an ordinal).

Let ∆ denote a subset of Lω1,ω(τ∆), (usually closed under subfor-
mulas but this is not required) and B1 ≺∆ B2 mean that for any
ϕ(x̄) ∈ ∆, ā ∈ `g(ā)B1 and B1 |= ϕ(ā) implies that B2 |= ϕ(ā); simi-
larly for C.

10. K will denote a family of forcing notions including the trivial one (so
a K–forcing extension of V is V[G] when G ⊆ P ∈ K is generic over
V) and we demand `P“ Q

˜
∈ KVP ” ⇒ P ∗ Q

˜
∈ K. Usually K is

the class of (set) forcing notions; as we need to say “Q
˜
∈ KN” clearly

K is a definition of such a family.

Definition 0.5. We define “the family of ord-hc Borel operations” to be
the minimal family F of functions such that the following conditions are
satisfied:

(a) Each B ∈ F is a function with ≤ ω places and with a designation of
the possible results as ord-hc sets or strict ord-hc sets or as ordinals
or as truth values.
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(b) For every B ∈ F , each place of B is designated to an ord-hc-set or to
an ordinal or to a truth value or to strictly ord-hc sets. We also allow
a sequence of ordinals of length ≤ ω or a sequence of truth values of
given length ≤ ω.

(c) F contains the following atomic functions (with obvious interpreta-
tions):
(α) ¬x for truth value x;
(β) x1 ∨ x2 for truth values x1 and x2;
(γ)

∧
i<α xi for α ≤ ω and truth values xi;

(δ) the constant values true and false;
(ε1) for all α ≤ ω and xn varying on truth values and for all yn varying

on hc- sets (or on ordinals or on strict ord-hc sets) for n < ω:
• if xn but not xm for m < n then yn;
• if ¬xn for every n < α then yα;

(ε2) similarly for ordinals,
(ζ) {yi : i < α, xi is true}, where α ≤ ω and each yi varies on ord-hc-

sets or on ordinals, xn on truth values;
note that by our conventions this is always a strict ord-hc set,
never an ordinal.

(η) the truth value of “x is an ordinal” where x vary on ord-hc-sets,
(d) F is closed under composition (preserving the designation to [strict]

ord-hc-sets, ordinals and truth values).

Observation 0.6. The family of ord-hc Borel operations is closed under
the following perations:
• countable unions;
• set difference;
• definitions by cases + default;
• every such B(....) with values ord-hc-sets and variable ordinals can be

represented as

{B1
n(y0, . . . , yk, . . . ;x0, . . . , x`, . . . )k<α,`<β : n < ω and

B2
n(y0, . . . , yk, . . . ;x0, . . . , x`, . . . )k<α,`<β is true }.

where α, β ≤ ω and y` vary on ordinals and xn vary on truth values;
• if N is an hc-ord model (i.e., {x : x ∈ N} ∈ H<ℵ1(Ord)), then |N | as

well as each relation (and function) first order definable in N possibly
with parameters from N can be represented as an ord-hc Borel function
with variable ordinals operating on any list of N ∩Ord;
• for every such B1(x̄), B2(x̄) with values ord-hc-sets, there are B3(x̄),

B4(x̄) with values truth values, such that:
B3(x̄)=true iff B1(x̄) = B2(x̄); and
B4(x̄)=true iff B1(x̄) ∈ B2(x̄).

Similarly if one or two of them has values ordinals.
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Definition 0.7. We say that “I is a predense antichain above p in Q” if

p 
Q “ I ∩G
˜
Q has exactly one element ”.

So when we write {pn : n < ω} instead I we mean that p 
Q ∃!n(pn ∈ G
˜
Q).

In order to allow {pn : n < ω} to enumerate also finite sets, we may use the
constant value false or {pn : n < α} for some α ≤ ω. Note that we allow
q ∈ I which are incompatible with p but they have little influence.

1. Basic definitions

Let us try to analyze the situation. Our intuition is that: looking at Q
inside N we can construct a generic condition q for N , but if N � (H(χ),∈),
then Q∩N might be arbitrary. So let Q be a definition. What is the meaning
of, say, N |=“r ∈ Q”? It is N |=“r satisfies ϕ0(−)” for a suitable ϕ0. It
seems quite compelling to demand that inside N we can say in some sense
“r ∈ Q”, and as we would like to have

q ` “ G
˜
Q ∩QN is a subset of QN generic over N ”,

we should demand

(∗)1 N |=“ r ∈ Q ” implies V |=“ r ∈ Q ”.

So ϕ0 (the definition of Q) should have this amount of absoluteness. Simi-
larly we would like to have:

(∗)2 if N |=“p1 ≤Q p2” and p2 ∈ GQ, then p1 ∈ GQ.

So we would like to have a ϕ1 (or <ϕ1) (the definition of the partial order
of Q) and to have the upward absoluteness for ϕ1.

But before we define this notion of properness without elementaricity, we
should define the class of models N to which it applies.

We may have put in this section the “straight nep” (see 5.13) and/or
“absolute nep” (see 4.4).
Advice: The reader may believe in the “nice” names, that is concentrate
on the case of correct explicit simple and good nep forcing notions which
are normal and local for K the class of set forcing notions (see Definitions
1.3(11), 1.3(2), 1.3(5), 1.15(1), 1.3(1), 1.15(4) 1.11, 1.3, respectively), reme-
ber that politeness is always assumed (see 1.1(4)).

The intention is that our forcing Q is a subset of H<ℵ1(κ). To find a
witness for “p ∈ Q”, we consider general structures B such that κ ⊆ B ⊆
H<ℵ1(κ).

The Easy Life / The Lazy Man Plan
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�1 (a) B and C denote models with vocabularies ⊆ H(ℵ0) such that their
universes are ordinals (usually cardinals) denoted by κ(B) and α∗(C)
respectively (C may code very general information, B may code an
iteration).

(b) ZFC−∗ is a weak set theory extending ZC− (which tells us what (H(χ),∈
) with χ > ℵ0 satisfies, i.e., ZFC without power set and without re-
placement but with comprehension) with individual constants for B,
C, and for an ordinal θ saying:
(α) both iω(|θ|) and iω(||B||+ ||C||) exist.
(β) If P is a forcing notion and iω(|P|) exists then forcing with P

preserves ZFC−∗ .
(γ) B and C are models as in (a) (ZFC−∗ does not require more on

them).
The reader may add the power set axiom.

(c) A candidate is a countable model N of ZFC−∗ such that ∈N=∈� N ,
OrdN = OrdV ∩ N , BN = B � N,CN = C � N (or at least BN ,CN
are submodels of B,C resp.) and for every x, N |= “x is countable”
implies that x ⊆ N and for every x ∈ N , N “think” that x is an
ordinal iff it is.

We assume that ZFC−∗ is recursive or at least definable in C � ω
This is in order to make “N |= [N ′ is a candidate]” well defined. Note
that:

if N |= “N ′ is a candidate” and the candidate N is ord-
transitive, then N ′ is a candidate.

Also
if N |= [N ′ is an ord-hc candidate ] and N is a candi-
date, then N ′ is a candidate.

Without ord-transitivity, this only almost follows, mainly as the im-
plication N |= “x is countable” ⇒ x ⊆ N may fail.

(d) Q is a forcing, or more exactly, a definition of a forcing using B and
θ (and possibly C), such that Q ⊆ H<ℵ1(θ) (i.e., simple), ϕ is the
definition of it, and for all p, q we have p ≤Q q holds iff some relevant
candidate “thinks” so (i.e., correctness).

An Alternative Plan
�2 (a) χ0 is a strong limit cardinal1. Note that χ0 serves also as an individual

constant.
(b) χ1 = iω+2(χ0)+ and ZFC−∗ is ZC− together with the following de-

mand:
“χ0 is as in (a) and the class H(iω+1(χ0)) exists”.

(c) C just “codes κ”.
1Why? Then forcings of cardinality < χ0 preserve the theory ZFC−∗ .
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(d) θ < χ, κ < χ.
(e) all the Q, Q̄ we shall consider are from H(χ′), for some χ′ < χ0 (i.e.,

a definition of such an object inside H(χ′)). Each Q, Qi is a creature
forcing as in §3 from [19] or the limit of a CS-iteration of such forcing
notions defined so that lg(Q̄) < θ and Q ⊆ H<ℵ1(θ).

(e)+ So all the forcings we use are provably (in ZFC−∗ ) nep.
(f) B codes CS iteration of such forcing notions withQi

˜
defined by (ϕ̄i,Bi),

objects and not names for simplicity. The universe of B is θ and B
has a countable vocabulary. p is trivial.

(g) Candidates are countable N ⊆ (H(χ0),∈) such that they are models
of ZFC−∗ = ZC, the relations of B and C together with “x ∈ θ” and
“x ∈ κ = B ∩ Ord” are allowed as predicates, and for every x, N |=
“x is countable” implies that x ⊆ N .

(h) We concentrate on ord-transitive ones, so when we use N ≺ (H(χ) ∈)
then we replace it by its ord-transitive collapse.

Hence we get all the good properties, and enough absoluteness.
NOW ( assuming �1 or �2)
(α) Glance at 1.1, 1.3, 1.15, pipe at §3 (containing lots of examples and

1.18.1) to see that the plan fits.
(β) Read 7.18 (and 7.17) if you like to know how to quote preservation

theorems on CS-iterations of nice forcings,
(γ) Read §6, §7 if you like to know why (β) holds using only η

˜
∈ ωω.

(δ) Read §8, §9 if you like to know how special is Cohen forcing among
nice c.c.c. forcings.

(ε) Read §4 if you like to know that CS-iterating nep forcing preserves its
main properties.

(ζ) Read §5 if you like to know that CS-iterating nep gives you nep.
(η) Read §10 if you like to know the reason of some limitations.
(θ) Read 5.39 if you like to know when iteration of nice forcing, does not

add a real in the intersection of some family of pregiven Borel sets, in
particular if short iteration add no real to the intersection then also
long ones does not; (and read 5.28–5.39 if you like to understand why).

If you like to do (α)—(θ) you may consider just reading.

When we consider “preservation by iteration”, it is natural to define the
following:

Definition 1.1. 1. Let C denote a model with universe α∗(C) (an infinite
ordinal) and vocabulary τC ⊆ H(ℵ0), where the equality = is one of
the relation symbols (for the notational convenience).

Let ∆1 denote a countable subset of Lω1,ω(τC) which includes the
atomic formulas and is closed under subformulas (e.g., first order or
quantifier free).
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2. Let B denote a model whose vocabulary τB is a countable subset
of H(ℵ0) so that equality = is one of the relation symbols. More-
over, suppose that for some ordinal κ(B) (possibly a cardinal) we
have κ(B) ⊆ |B| ⊆ H<ℵ1(B).

Let ∆ = ∆2 be a countable subset of Lω1,ω(τB), which is closed
under subformulas.

3. A pre-semi-candidate or a pre-semi (C,∆1,B,∆2)-candidate is a model

N = (|N |,∈N ,OrdN ,BN ,CN ),

where (note that we write N instead of |N |):
(a) N is a set with ω + 1 ⊆ N ;
(b) ∈N=∈� N is a two place relation;
(c) OrdN = Ord ∩N is a unary relation;
(d) CN is a unary relation on N defined in the following way:

a tuple (R, a1, . . . , an) is in CN iff R is an n–place predicate2 in
τC, (a1, . . . , an) ∈ RC, and a1, . . . , an are in |CN |, where |CN | is
some set (not necessarily belonging to N though included in |N |)
which is closed under the functions of C and which satisfies that
|CN | ⊆ OrdN is an initial segment of OrdN . Additionaly, CN is a
≺∆1–submodel of C whose universe is a subset of N , and ∆1 ∈ N
(recall that τC ⊆ H(ℵ0) hence ∆1 ⊆ H(ℵ0) and τC ∈ N).
So essentially C � |CN | is defined in the model N .
We may omit C if it is clear from the context.

(e) Similarly for BN and ∆2, except that x∈B implies x∈H<ℵ1(Ord)N

and if they are not present, BN is the empty unary relation (in
order to fix the vocabulary).

4. N is called polite if OrdN = Ord ∩ N , and we keep polite company
here.

5. K denotes a definition of a family of forcing notions.
6. ZFC−∗ is an appropriate version of the set theory, if

(a) it is in the vocabulary of a pre-semi-candidates;
(b) it contains the axioms of ZC−; so ω exists, this does not include the

power set axiom, but in the subset schema we allow all formulas
in the vocabulary, including τB, τC;

(c) it cannot say more on B (we may allow saying more on C).
7. For given C, B, ZFC−∗ , we say that N is a semi class candidate (or a

(C,B,ZFC−∗ )–candidate) if:
(a) N is a pre-semi (C,B)-candidate;
(b) N is a model of ZFC−∗ ;
(c) for all x, N |= “ x is countable ” implies x ⊆ N .
We may say B-candidate if C and ZFC−∗ are clear from the context.

2We treat “F (x1, . . . , xn) = xn+1” as an n+ 1–place predicate.
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8. We omit “semi” if N is countable. We replace class by set if N |= “BN

is a set”. If neither set nor class appear we mean set.
9. N1 is a strong sub candidate of N2, written N1 ≤ N2, if N1 ⊆ N2

(see part (16) below), and CN1 and BN1 are definable in N2 (with
parameters).

10. We say that (B,p, θ) is a frame if:
(a) B is as above;
(b) θ is a cardinal (or ordinal);
(c) p is a finite sequence (usually a sequence of formulas).

11. We say that N is a [semi] [class] (B,p, θ)-candidate (with C and ZFC−∗
understood from the context) if:
(a) N is a [semi] [class] B-candidate;
(b) θ ∈ N , moreover N |= “ the set H<ℵ1(θ) exists” but in the class

case, we allow also θ = Ord and N |= x ∈ θ means x ∈ OrdN ;
(c) p ∈ N , ususally p is ϕ̄, a finite sequece of formulas with parameters

in H<ℵ1(θ).
12. κ′ = α∗(C) ∪ κ(B) ∪ θ and κ′′ = κ′ + ||B||.
13. We say that a formula ϕ is upward absolute for (or from) [class]

(B,p, θ)-candidates when:
if N1 is a [class] (B,p, θ)-candidate, N1 |= “ϕ[x̄]”, N2
is a [class] (B,p, θ)-candidate or it is (H(χ),∈), for χ
large enough, and N1 ≤ N2 (see part (9)),
then N2 |= ϕ[x̄].

We say above “through [class] (B,p, θ)-candidates” if N2 is demanded
to be a [class] (B,p, θ)-candidate (i.e., we omit the second possibility).

If B, p, and θ are clear from the context, we may forget to say “for
[class] (B,p, θ)-candidates”.

14. We say that “ϕ defines X absolutely through (B,p, θ)-candidates” if
(α) ϕ = ϕ(x) is upward absolute from (B,p, θ)-candidates,
(β) X =

⋃
{XN : N is a (B,p, θ)-candidate }, where XN = {x ∈ N :

N |= ϕ(x)}.
If only clause (α) holds then we add “weakly”.

15. We say that N is ord-hereditary if |N | = Tcord(|N |). Hence if in
addition N is a candidate (not only a semi-candidate), then |N | ⊆
H<ℵ1(Ord), moreover N ∈ H<ℵ1(Ord).

16. For candidates N1 and N2 let N1 ⊆ N2 mean that
(a) |N1| ⊆ |N2|;
(b) CN1 ≺∆1 CN2 ;
(c) BN1 ≺∆2 BN2 .
So we allow that |CN1 | 6= |CN2 | ∩ |N1|. (The reason is that when we
collapse some N to an ord-hereditary N ′, maybe N ′ ∩B 6= N ∩B \
Hℵ1(κ(B)).)
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Discussion 1.2. 1. Should we prefer |B| = α an ordinal (here α = θ) or
|B| ⊆ H<ℵ1(α)? The former is more convenient when we “collapse
N over θ” (see 2.12). Also then we can fix the universe, whereas for
|B| = H<ℵ1(α) this is less reasonable as it is less absolute. On the
other hand, when we would like to prove preservation by iteration the
second is more useful (see §5). To have the best of both we use B,C.

2. Note that, for most of the properties listed, we know that we can
usually assume all of them. But even though both standard and
ord-hereditary are desirable, they are contradictory. A plus for ord-
hereditary N is that if N |= “Q is a small forcing” (e.g., set forcing is
the nice case) and G ⊆ (PN,≤PN) is generic over N , then N [G] is well
defined and it is a candidate (see more later). A plus for standard is
the normality (see Definition 1.16).

This motivates (nep abbreviates “non–elementary properness”):

Definition 1.3. 1. Let ϕ̄ = 〈ϕ0, ϕ1〉 and B be a model as in 1.1, κ =
κ(B), of course of countable vocabulary ⊆ H(ℵ0), the formulas ϕ`
are first order in the vacabulary of pre-semi (C,∆1,B,∆2)-candidates
+ a predicate for θ. We say that ϕ̄ or (ϕ̄,B) is a temporary (κ, θ)–
definition, or (B, θ)–definition, of a nep-forcing notion3 Q if, in V:
(a) ϕ0 defines the set of elements of Q and ϕ0 is upward absolute from

(B, ϕ̄, θ)–candidates,
(b) ϕ1 defines the partial (or quasi) ordering ofQ, also in every (B, ϕ̄, θ)–

candidate, and ϕ1 is upward absolute from (B, ϕ̄, θ)–candidates,
(c) if N is a (B, ϕ̄, θ)–candidate and p ∈ QN , then there is q ∈ Q such

that p ≤Q q and

q ` “ G
˜
Q ∩QN is a subset of QN generic over N ”

where, of course, QN = {p : N |= ϕ0(p)}. Of course, “G is a
subset of QN or (QN , <NQ ) generic over N” means that: G ⊆ QN
is ≤NQ -directed and N |= “I ⊆ Q is dense in (QN , <Q) implies
G ∩ IN 6= ∅”.
We omit the “nep” when omitting clause (c).

2. We add the adjective “explicitly” if ϕ̄ = 〈ϕ0, ϕ1, ϕ2〉 and additionally
(b)+ we add: ϕ2 is an (ω + 1)-place relation, upward absolute from

(B, ϕ̄, θ)–candidates and ϕ2(〈pi : i ≤ ω〉) ⇒ “{pi : i ≤ ω} ⊆ Q
and {pi : i < ω} is predense antichain above pω”, not just in V
but in every (B, ϕ̄, θ)–candidate which satisfy ϕ2(〈pi : i ≤ ω〉); in
this situation we say: {pi : i < ω} is explicitly predense antichain
above pω,

3So in the normal case (see 1.15(3), 1.17), ϕ̄ defines Q.
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(c)+ we add to clause (c): if N |= “I ⊆ Q is a predense antichain above
p” (so I ∈ N) then for some list 〈pi : i < ω〉 of I ∩ N we have
ϕ2(〈pi : i < ω〉_〈q〉). We then say “q is explicitly 〈N,Q〉–generic
above p”.

(2A) We add the adjective “class” if we allow ourselves (in clauses (b),
(c) of part (1) and (c)+ of part (2)) class (B, ϕ̄, θ)–candidates N ;
so in clauses (c), (c)+, I is a class of N ; i.e. first order definable
with parameters from N , and use the weak version of absoluteness.

3. For a class (B, ϕ̄, θ)–candidate N we let pd(N,Q) = pdQ(N) = {I :
I is a class of N (i.e. defined in N by a first order formula with
parameters from N) and is a predense subset of QN}. If N is a set
candidate, it is {I ∈ N : N |=“I is predense subset of Q ”}, i.e., note
that N thinks that pdQ(N) is a set if it is a set candidate and ZFC−∗
say that the power set of Q exists; we also let

pdac(N,Q) = {I : N |= “ I is a maximal antichain in Q ”}.
In part (2) to allow {pi : i < ω} to be finite we allow pi to be false
(i.e., 0 in the Boolean algebra terminology). Similarly,

pdac(p,N,Q) = pdac(p,N,Q) =
{I : N |= “ I ⊆ Q is a predense antichain above p ”}.

4. We replace “temporary” byK if the relevant proposition holds not only
in V but in any forcing extension of V by a forcing notion P ∈ K. If
K is understood from the context (normally: all forcing notions we
will use in that application) we may omit it.

5. We say that (ϕ̄,B) is simple [explicitly] K–(κ, θ)–definition of a nep–
forcing notion Q, if:
(α) (ϕ̄,B) is [explicitly] K–definition of a nep-forcing notion Q,
(β) Q ⊆ H<ℵ1

(θ); i.e., P ∈ K implies `P “if ϕ0(x) then x ∈ H<ℵ1
(θ)”,

moreover this holds for any (B, ϕ̄, θ)–candidate,
(γ) B, κ, θ and possibly some elements of B are the only parameters of

ϕ̄ (meaning there are no others, but even B, κ, θ do not necessarily
appear).

(δ) ϕ is absolute between H(χ) and V for χ large enough, hence
(ε) if N is a Q-candidate and M is the ord-hereditary collapse of N ,

then: M is a candidate, QM <MQ are the images of QN , <NQ and q
is (N,Q)-generic iff q is (M,Q)-generic, etc.

6. We add “very simple” if in addition:
(δ) Q ⊆ ωθ.

7. We may say “Q is a nep-forcing notion”, “N is a Q-candidate” abusing
notation. If not clear, we write Qϕ̄ or (Qϕ̄)V. Conversely, we write
(B, ϕ̄, θ) = (BQ, ϕ̄Q, θQ) and ZFCQ for the relevant (B, ϕ̄,Q) and
ZFC−∗ .
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8. We say “I ⊆ QN is explicitly predense antichain over pω” if ϕ2(〈pi :
i ≤ ω〉) for some list {pi : i < ω} of a subset of I.

9. If we use (B,p, θ) we mean ϕ̄ is an initial segment of p.
10. We say (B, ϕ̄, θ) (or abusing notation, Q) is a class=set frame if every

class (B, ϕ̄, θ)–candidate is a set (B, ϕ̄, θ)–candidate.
11. In 1.3(1) we add the adjective “correctly” (and we say that (B, ϕ̄, θ)

is correct) if, for a large enough regular cardinal χ:
(a) the formula ϕ0 defines the set of members of Q absolutely through

(B, ϕ̄, θ)–candidates from H(χ), that is

Q =
⋃
{QN : N is a (B, ϕ̄, θ)–candidate, and N ⊆ H(χ)},

recalling QN = {x : N |= ϕ0(x)},
(b) the formula ϕ1 defines the quasi order of Q absolutely through

(B, ϕ̄, θ)–candidates, that is

≤Q=
⋃
{(≤Q)N : N is a (B, ϕ̄, θ)–candidate},

where (≤Q)N = {(p, q) : N |= ϕ1(p, q)}.
12. Similarly when we add “explicitly”, (see 1.3(2)).

Convention 1.4. 1. So for correct frames, abusing our notation, we can
ignore (H(χ),∈) |= ϕ`(x) and just ask for satisfaction in suitable can-
didates. So in particular in 1.3(1)(a),(b) it is equivalent if we replace
“absolute from” by “absolute through”. (Note: being correct is less
relevant to snep.) Alternatively, use the “absolutely through” version
rather then the “absolutely from”, but this seem to just “move the
dirt”.

2. We may say “Q is . . . ” when we mean “(B, ϕ̄, θ) is . . . ” or “(B,p, θ)
is . . . ”, and more fully adding ZFC−∗ .

Remark 1.5. The main case for us is candidates (not class ones), etc; still
mostly we can use the class version of nep. Also we can play with various
free choices.

Discussion 1.6. 1. Note: if x ∈ I ∈ N , N |=“ I ⊆ Q”, possibly x /∈ Q,
x /∈ IN and so those x’s are not relevant (e.g., though α < κ(B) have
a special role).

2. We think of using CS iteration Q̄ = 〈Pi,Q
˜ i

: i < δ〉, each Q
˜ i

has a
definition ϕ̄i and we would like to prove things on Pα for α ≤ δ. So
the relevant family Ki of forcing notions we really should consider for
ϕ̄i is {Pβ/Pi : β ∈ [i, δ)}, (in VPi), at least this holds almost always
(maybe we can look as help in other extensions).
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3. Note that a significant fraction of iterated forcing of proper forcing
related to reals are forcing notions informally called “nice” in the in-
troduction; the proof that they are proper usually gives more and we
think that they will be included even by the same proof.

4. If K is trivial, (i.e., has only the trivial forcing notion as a member)
this means we can replace it by “temporarily”.

5. See also 4.4 for “K-absolutely”.
6. Note a crucial point in Definition 1.3, the relation “{pn : n < ω} is

predense antichain above p” is not demanded to be absolute; only a
“dense” family of cases of it is demanded (in our definition other im-
portant relations are not required to be upward absolute, e.g., ¬ϕ0(x),
¬ϕ1(x, y), that is, x /∈ Q, x 6≤Q y). This change may seem technical,
but is central being the difference between including not few natural
examples and including all those we have in mind.

7. Note that the demand described in ϕ2 is close to implying “incompat-
ibility is upward absolute from N”, but not quite.

Discussion 1.7. A variant of explicitly nep from Definition 1.3(2) is explic-
itly’ nep: in (b)+ replace

pω 
Q “ G
˜
Q ∩ {pn : n < ω} has one and only one element ”

by
pω 
Q “ G

˜
Q ∩ {pn : n < ω} 6= ∅”.

We may ask ourselves: What is the difference?
Then in clause (c)+ it does not matter if we use I ∈ pdac(p,N,Q) or

I ∈ {I∗ : N |= I∗ ⊆ Q is predense above p}. Now in the definition as it
stands we have the fact below, but if we use explicitly’ nep this is not clear.
The problem is that possibly p, q are incompatible in QN but not in Q (so
if q ` “G

˜
∩QN is ≤NQ -directed”, then all is OK).

Fact 1.8. If p ∈ QN , and N is a Q-candidate, and p <Q q ∈ Q and ϕ2(p, q)
for some list p of IN for every I ∈ pdac(p,N,Q) then q is (N,Q)–generic.

Proof. Easy (as if p1, p2 ∈ QN , then there is I ∈ N such that N |= “I
is a predense antichain above p, and if r ∈ I then r is above p′ or r is
incompatible with p′ for every p′ ∈ {p, p1, p2}”). 1.8

Let us consider a more restrictive class, where the absoluteness holds
because of more concrete reasons, the usual ones for upward absoluteness,
the relevant relations are Σ1

1, or more generally, κ–Souslin.
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Definition 1.9. 1. We say that T̄ is a temporarily (κ, θ)–definition of
a snep–forcing notion Q if (the temporary mean just in the present
universe):
(a) T̄ = 〈T0, T1〉 where T0 ⊆ ω>(θ × κ) and T1 ⊆ ω>(θ × θ × κ) are

trees (i.e., closed under initial segments, non-empty)
(b) the set of elements of Q is

proj0(T0) def= {ν ∈ ωθ : for some η ∈ ωκ we have

ν ∗ η def= 〈(ν(n), η(n)) : n < ω〉 ∈ lim(T0)},
(c) the partial order of Q, {(p0, p1) : Q |= p0 ≤ p1} is

proj1(T1) def= {(ν0, ν1) : ν0, ν1 ∈ Q and for some η ∈ ωκ we have

ν0 ∗ ν1 ∗ η
def= 〈(ν0(n), ν1(n), η(n)) : n < ω〉 ∈ lim(T1)},

(d) for a large enough regular cardinal χ, if N ⊆ (H(χ),∈) is a
(BT̄ , θ)–candidate (on BT̄ see below) and p ∈ QN , then there
is q ∈ Q such that p ≤Q q and

q ` “ G
˜
Q ∩QN is a generic subset of QN over N ”,

where BT̄ is the model with universe H<ℵ0(κ) and the relations
“x ∈ T`”.

2. We add “explicitly” if T̄ = 〈T0, T1, T2〉 (so x ∈ T` is a relation of B)
and we add

(a)+ also T2 ⊆ ω>(θ × θ × κ) and we let

proj2(T2) def=
{
〈νi : i ≤ ω〉 : for some η ∈ ωκ we have ν ∗ νω ∗ η ∈ lim(T2)

where ν = code(〈ν` : ` < ω〉) is the member
of ωθ satisfying ν

((
`+k+1

2

)
+ `
)

= ν`(k)
}

and 〈νi : i ≤ ω〉 ∈ proj2(T2) implies {νi : i ≤ ω} ⊆ Q (even in
candidates; the natural case is that witnesses are coded).

(d)+ we add: q is T̄–explicitly (N,Q)–generic, which means that
if N |= “I is a predense antichain above p in Q”
then for some list 〈pn : n < ω〉 of IN we have 〈pn : n < ω〉_〈q〉 ∈
proj2(T2),

(e)+ if νi ∈ Q for i ≤ ω and for some η ∈ ωκ we have code(ν0, ν1, . . . ) ∗
νω ∗η ∈ lim(T2), then {ν0, ν1, . . . } ⊆ Q is predense antichain above
νω (and this holds in (B, θ)–candidates too).

3. We will also say “Q is a snep-forcing notion”, “N is a Q–candidate”,
etc.

4. We say η is a witness for ν ∈ Q if ν ∗ η ∈ lim(T0); similarly for T1, T2.
We say that I is explicitly predense antichain over pω if code(〈pi : i ≤
ω〉) ∈ proj2(T2) for some list {pi : i < ω} of I.
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Remark 1.10. In clause (a)+ we would like the proj2(T2) to be an (ω+1)–
place relation on Q, but we do not like the first coordinate to give too much
information so we use the above coding, but it is in no way special. Note:
we do not want to have one coordinate giving 〈ν`(0) : ` < ω〉.

Another possible coding is code(ν0, ν1, . . . ) ∼= 〈〈ν` |̀ i : ` ≤ i〉 : i < ω〉, so
T ⊆ ω>(ω>(ω>θ)× θ × κ).

Definition 1.11. 1. Let Q be explicitly snep. We add the adjective
“local” if in the “properness clause, i.e., 1.9(2)(d)+” we add:
(⊗) the witnesses for “q ∈ Q”, “〈pIn : n < ω〉 is Q–explicitly predense

antichain above q” are from ω(N ∩ κ).
2. Let Q be explicitly nep. We add the adjective “K-local” if in the

“properness clause, i.e., 1.3(2)(c)+” we add:
for each candidate N which is ord–transitive we have
(⊕) for some K–extension N+ of N (see below), we have: N+ is a

Q–candidate (in particular a model of ZFC−∗ ) and N+ |= “QN is
countable” and for every p ∈ QN there is q ∈ N+, N+ |= “p ≤Q q
and for each I ∈ pdac(p,N,Q), IN is explicitly predense over q”.

(Note that BN+
= BN ).

3. If K is the family of set forcing notions Q for which every in(Q) exists,
or constant understood from the context, we may omit K.

4. Assume N1, N2 are candidates and N1 |= “Q a forcing notion from K”,
and G ⊆ QN1 is generic over N1. We say N2 = N1[G] if this is true in
N2, so |N1| ⊆ |N2|, OrdN1 = OrdN2 , N2 |= “x ∈ y”, y ∈ N1 ⇒ x ∈ N1,
CN1 = CN2 , BN2 = BN1 (so if Q ∈ N1 then G ∈ N2) and if we use
Mostowski collapse MosN2 then Mos(N2) = (Mos(N1))[Mos(G)]. It is
more natural here to use the transitive collpase over the ordinals. In
this case we say “N2 is a K-extension of N” (on the existence see §2).

Discussion 1.12. 1. Couldn’t we fix θ = ω? Well, if we would like to have
the result of “the limit of a CS iteration Q̄ of such forcing notions is
such a forcing notion”, we normally need θ ≥ `g(Q̄). Also κ > ℵ0 is
good for including Π1

2–relations.
2. We may in Definition 1.11 have two versions of ZFC−∗ , one before

the forcing and one after. Helpful mainly if we are interested in such
theories not implying “in(|Q|) exists for each n”.

3. In “Souslin proper” (starting with [13]) the demands were as in Defi-
nition 1.13 below.

Definition 1.13. A forcing notion Q is Souslin proper if (Q ⊆ ωω and)
it is proper and: the relations “x ∈ Q”, “x ≤Q y” are Σ1

1 and the notion
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of “incompatibility in Q” is Σ1
1 (noting that, of course, the compatibility

relation is Σ1
1). So really we have (ϕ0(x), ϕ1(x, y), ϕ2(x, y)).

Remark 1.14. This makes “{pn : n < ω} is predense antichain over pω”
a Π1

1–property4, hence an ℵ1–Souslin one. So we can get the “explicitly”
cheaply, however possibly increasing κ. Note that for a Souslin proper
forcing notion Q, also p ∈ QN ⇔ p ∈ Q & p ∈ N and similarly for p ≤Q q.

∗ ∗ ∗
If you like to be more pedantic on the ZFC−∗ , look at the following defini-

tion, if not go directly to 1.16–1.18. Normally there is no problem in having
ZFC−∗ as required and we are assuming enough goodness.

Definition 1.15. 1. We say ZFC−∗ is a K–good version [with parameter
C, possibly “for (B,p, θ)” for B,p, θ as in 1.3 from the relevant family]
if :
(a) ZFC−∗ contains ZC−; i.e., Zermelo set theory without power set [as

in 1.1(6) the axioms may speak on relations of C, only through the
axiom schemes (of comprehension, also of cases of replacement if
used), i.e, we allow to substitute formulas with relations of C (and
of B, we may also restrict the use of the relations of B, no lose as
at present)]

(b) C is a model with countable vocabulary (⊆ H(ℵ0)) (given as a well
ordered sequence) and its universe |C| is an ordinal α∗(C),

(c) for every χ large enough, if X ⊆ H(χ) is countable then for some
C–candidate (or (B,p, θ)–candidate) N ⊆ (H(χ),∈), we have X ⊆
N . If we have the “for Q” then for every countable set X there is
candidate N extending it such that
(α) X ⊆ N
(β) X ∩Q ⊆ QN
(γ) ≤Q� X ⊆≤NQ
(δ) if |= ϕ2[〈pi : i < ω〉_〈p〉] and 〈pi : i < ω〉, 〈p〉 ∈ X, then

N |= ϕ2[〈pi : i < ω〉_〈p〉].
We may need a substitute for the “bare” nep with explicitly.
In the simple case (which is the main one), we may restrict
the assumption to the case N ⊆ H<ℵ1(χ) and add to the
conclusion ⊆ H<ℵ1(χ).

(d) ZFC−∗ satisfies the forcing theorem5 (see e.g. [25, Chapter I]) at
least for forcing notions in K,

4We express it as: ∀q [if q, pω are compatible then
W
n

(q, pn are compatible)].
5That is: if N |= ZFC−∗ and N |=“P is a (set) forcing notion in K”and G ⊆ PN is

generic over N thus N [G] is a model of ZFC−∗ if we do not need to prove the existence of
a candidate N2 = N [G], we can ignore V and think on N only, recall that BN [G] = BN ,
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(e) those properties are preserved by forcing notions in K (if P ∈ K,
G ⊆ P generic over V[G] then KV[G] will be interpreted as {Q

˜
[G] :

P ∗Q
˜
∈ K}), so after forcing with Q ∈ K we still have a model of

ZFC−∗ , and we normally allow, e.g., Levy(ℵ0, 2|Q|),
(f) ZFC−∗ as well as ∆1,∆2 are recursive or at least definable in say

C |̀ω (this6 to enable us to say “N is a candidate”).
2. If K is the class of all (set) forcing notions P such that ZFC−∗ says that
in(|P|) exists for each n, we may omit it. If K = {∅}, we replace K
by “temporarily”.

3. We say ZFC−∗ is normal7 [for (B,p, θ)] if for χ large enough any
countable N ≺ (H(χ),∈) to which C [as well as (B,p, θ)] belongs is
OK (for clause (1B)(c) above).

4. We say ZFC−∗ is semi-normal for Q [that is for (B, ϕ̄, θ)] if for χ large
enough, for any countable N ≺ (H(χ),∈) to which C, ϕQ,BQ, θ (∈
H(χ)) belong, for some P ∈ N such that N |=“P is a forcing notion”
we have:
(∗) if N ′ is countable N ⊆ N ′ ⊆ (H(χ),∈), N ′ ∩ χ = N ∩ χ and

(∀x)[N ′ |= “x is countable ” ⇒ x ⊆ N ′],
and N ′ is a generic extension of N for PN ,
then N ′′ = (N,∈ |̀N ′,OrdN ,B |̀N) is (Q,C |̀N)–candidate and

QN ′ |̀N = Q |̀N, ϕN
′

2 |̀N = ϕN2 |̀N.
We say “K–semi-normal” if we demand N |=“P ∈ K”.

5. We say ZFC−∗ is weakly normal for (B, ϕ, θ) if clause (c) of part (1)
holds; similarly weakly K-normal is defined.

6. In parts (4), (5) we can replace (B,p, θ) by a family of such triples
meaning N is a candidate for all of them.

7. In parts (4), (5), (6) if (B,p, θ) = (BQ, ϕ̄Q, θQ) we may replace
(B,p, θ) by Q.

Discussion 1.16. 1. What are the points of parameters? E.g., we may
have κ∗ an Erdös cardinal, C codes every A ∈ H(χ) for each χ < κ∗,

CN [G] = CN , see Definition 1.11(3)]. So this is an axiom scheme. We can weaken the
demand if we use more than one set theory, and we say that ZFC−2 > ZFC−1 if the forcing
theorem for ZFC−1 belongs to ZFC−2 , but the gain seems meager. In addition for 7.10 we
need: if P,Q are forcing notions, G

˜
is a P–name for a subset of Q such that `“ G

˜
is a

generic subset of Q ”, and q ∈ Q ⇒ 6`P“q /∈ G
˜

” then for some Q–name R̃ of a forcing
notion, Q ∗ R̃, P are equivalent.

6We may say “ZFC−∗ , as a set of sentences belong to every candidate or even better put
this demand in the definition of a (B,P, θ)-candidate, but we can just make it definable
by having the set (⊆ H(ℵ0)) appearing in P or as a relation of C or B.

7If we use nice ZFC−∗ (see Definition 4.5), then it would be natural to restrict ourselves
to strong limit uncountable χ.
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ZFC−∗ = ZFC−+ “κ∗ is an Erdös cardinal, C as above”, K = the
class of forcing notions of cardinality < κ∗. Then we have stronger
absoluteness results to play with.

2. On the other hand, we may use ZFC−∗ = ZFC−+ (∀r ∈ ω2)(r# exists)
+ “i7 exists”. This is a good version if V |= (∀r ∈ ω2)(r# exists) so
we can, e.g., weaken the definition snep (or Souslin-proper or Souslin-
c.c.c.).

3. What is the point of semi-normal? E.g. if we would like ZFC−∗ ` CH,
whereas in V the Continuum Hypothesis fails. But as we have said in
the beginning, the normal case is usually enough.

Proposition 1.17. 1. Assume ZFC−∗ is {∅}–good. Then the clause (c)+

of 1.3(2) follows from clause (c) + (∗), where
(∗) if p ∈ Q and In is predense antichain above p (for n < ω) and

each In is countable,
then for some q, p ≤ q ∈ Q, and for some sequence 〈pn` : ` < ω〉
such that In = {pn` : ` < ω} we have ϕ2(〈pn` : ` < ω〉_〈q〉).

2. If ZFC−∗ is normal for (B,p, θ) then in Definition 1.3(1), (2) there is
no difference between “absolutely through” and “weakly absolutely”.

3. If Q is a definition of a forcing (so clauses (a), (b) of Definition 1.3(1)
apply) and M is a Q-candidate and M |= “p, q ∈ Q are compatible ”,
then p, q ∈ Q are compatible (in Q, that is in V).

4. If Q is explicitly nep, M is a Q-candidate and M |= “p ∈ Q, I ⊆
Q is countable ”, and in V, I is a predense antichain above p then
also in M this holds.

5. If Q is explicitly nep, and p ∈ Q, In is a predense antichain in Q
above p for each n < ω, then for some q we have p ≤Q q and, for each
n < ω, some countable subset of In is an explicitly predense antichain
above q.

Proof. (1) So given a Q-candidate M , and p ∈ QM we can find q ∈ Q
which forces that GQ ∩ QN is generic over N . Now, if I ∈ pdac(p,N,Q),
then necessarily q 
“G

˜
Q∩I has one and only one element”. Let 〈In : n < ω〉

list pdac(p,N,Q) so q, 〈INn : n < ω〉 are as in the assumption of (∗) for p and
〈In : n < ω〉 hence there is r such that Q |= q ≤ r, and ϕQ2 (〈pni : i < ω〉_〈r〉)
where {pni : i < ω} = INn . So r, 〈pni : i < ω〉 are as required in (c)+.
(2) Easy.
(3) As otherwise for some r we have M |= “p ≤Q q ≤Q r”, hence this holds
also in V, contradiction.
(4) If the set I is not a predense antichain above p in M , then we can find
q such that

M |= “q ∈ Q, p ≤Q q, and q is incompatible with every member of I”.
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Let q∗ ∈ Q be such that q ≤Q q∗ and

q ` “G
˜
∩QM is a generic subset of (QM ,≤NQ )”.

Now easy contradiction.
(5) By part (2), it suffices to prove (∗). So assume p and 〈pni : i < ω〉 for
n < ω are as there. By the weak normality (see 1.15(6)) which we assume
(see 1.15(1)), there is a Q–candidate M satisfying clauses (β), (γ), (δ) of
1.15(1) and {p} ∪ {pni : i < ω} ⊆ QM . Now, by part (4) for each n the set
{pni : i < ω} is predense antichain above p in M . Using clause (c)+ of 1.3(2)
we get q as required. 1.17

Proposition 1.18. Assume ZFC−∗ is normal for (B, ϕ̄, θ) and Q (= Qϕ)
is (temporarily) nep then Q is proper.

Discussion 1.19. We may wonder: is normality necessary for 1.18? Yes.
Consider:

(a) V satisfies CH,
(b) ZFC−∗ is ZC−+“2ℵ0 > ℵ1”,
(c) Q is {p: p is a function from some countable ordinal α = Dom(p) into
Hℵ1(θ) such that for every limit δ ≤ α, Rang(p |̀ δ) is a model of ZFC−∗
+ “2ℵ0 exists and is > ℵ1”}

ordered by inclusion.
Now
(d) ZFC−∗ is semi normal,
(e) Q is explicitly nep (in fact for any Q-candidate N1 any subset of QN1

generic over N1 determine G
˜ Q
∩N and has an upper bound),

(f) forcing with Q make |(ω2)V| ≤ |ωV
1 | and even |H<ℵ1(θ(ℵ3)V| ≤ |ωV

1 |
(g) forcing with Q collapse ℵ1 (why? if η̄ = 〈ηi : i < ω1〉 list ω2 in V,

G ⊆ Q generic, f =
⋃
{p : p ∈ G}, if ℵV[G]

1 = ℵ1 then {δ < ω1 :
Rang(f |̀ δ) ∩ ω2 = {ηi : i < δ}} should be a club, but it is disjoint to
some club of ω1 from V).

A sufficient condition for replacing pdac(p,N,Q) by pd(N,Q) is (this
splits “In is an explicitly predense antichain” into two components):

Observation 1.20. Assume that Q is nep. A sufficient condition for its
being explicitly nep is that for some ϕ′2, ϕ2 we have
(∗)1 ϕ′2(x, y, z) is an upward absolute formula for Q-candidate and it defines

incompatibility (i.e., the three have no common upper bound in V and
in Q-candidates).



PROPERNESS WITHOUT ELEMENTARICITY 191

(∗)2 ϕ2(x0, x1, . . . , xω) is upward absolute for Q-candidate and ϕ2(〈pi : i <
ω〉, pω) implies {pi : i < ω} ⊆ Q is predense above pω in Q; this holds
in candidates too.

(∗)3 If N is a Q-candidate, p ∈ QN , then for some q ∈ Q we have p ≤ q, q is
(N,Q)-generic and for every I ∈ pd(N1,Q) for some p0, p1, . . . ∈ IN
(not necessarily listing it) we have ϕ2(p0, p1, . . . , pω).

Proof. Easy.

A sufficient condition for explicitly nep is given by the following observa-
tion (and used in Section 3).

Observation 1.21. 1. Assume
(a) ϕ0(x) is a Borel definition of a set, say a subset of P(H(ℵ0)), the

set of elements of Q.
(b) ϕ1(x, y) is a Borel quasi order on {x : ϕ0(x)} defining ≤Q.
(c) B = 〈Bn : n < ω〉, each Bn a Borel function from Q to Q such

that p ≤Q Bn(p) for every p ∈ Q.
(d) if N is a Q-candidate, so ϕ0, ϕ1 ∈ N , N a model of appropriate

ZFC−∗ , and p ∈ QN ,
then there is q ∈ QN such that:

I ∈ pdac(p,N,Q) ∧ q ≤Q r ∈ Q ⇒
∨
n<ω

∨
p′∈I[N ]

p′ ≤Q Bn(r).

Then for some ϕ2 (a relation which is the conjunction of a Π1
1 and a

Σ1
1 formula), Q is explicitly nep (temporarily and absolutely when the

conditions, mainly clause (d) are absolute)
2. We can8 in (d) replace ≤Q in r ≤Q Bn(r) by any Σ1

1-relation guaran-
teeing compatibility.

Proof. Straightforward using 1.20, note that incompatibility being a Π1
1

relation, is upward absolute from candidates. 1.21

Observation 1.22. 1. Assume
(a) ϕ0(x) is a Σ1

1-formula defining a subset of P(H(ℵ0)), this is mem-
bership in Q.

(b) ϕ1(x, y) is a Σ1
1-formula defining a quasi order on {x : ϕ0(x)},

this is x ≤Q y.
(c) B̄ = 〈Bn : n < ω〉 is a sequence of Borel functions satisfying

ϕ0(x)⇒ x ≤Q Bn(x).

8Useful, e.g., in preserving the measured creature forcing of [16].
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(d) If N is a Q-candidate, p ∈ QN , then there is q such that p ≤Q q
and: for every I ∈ pd(N,Q) we can find 〈qIn : n < ω〉 such that:
q ≤Q qIn for n < ω, (∀n)(∃r ∈ IN )(r ≤Q qIn) and for every r we
have q ≤Q r ⇒ (∃n < ω)(qIn ≤Q Bn(r)).

Then the conclusion of 1.21 holds.
2. In the clause (d) we can replace ≤Q in qIn ≤Q Bn(r) by any Σ1

1 (or
just absolute for Q-candidates) relation implying ≤Q–compatibility.

Proof. Easy, really the same proof work.

2. Connections between the basic definitions

We first give the most transparent implications: we can omit “explicitly”
and we can replace snep by nep (this is 2.1) and the model B can be
expanded, κ, θ increased, (see 2.2). Then we note that if κ ≥ θ + ℵ1 and
we are in the correct simple nep case, we can get from nep to snep because
saying “there is a countable model N ⊆ (H(χ),∈) such that . . . ” can be
expressed as a κ–Souslin relation (see 2.3) and comment on the non-simple
case. Then we discuss how the absoluteness lemmas help us to change the
universe (in 2.4), to get the case with a class K from the case of temporarily
(2.7) and to get explicit case from snep or from Souslin proper (in 2.9).

Proposition 2.1. 1. If (ϕ̄,B) is explicitly a K–definition of a nep-for-
cing notion Q, then ϕ̄ |̀ 2 is a K–definition of a nep-forcing notion Q
(of course for the same C,ZFC−∗ , so we normaly do not mention this).

2. If T̄ is explicitly a K-definition of a snep-forcing notion Q, then (T̄ |̀ 2)
is a K–definition of an snep-forcing notion Q,

3. If T̄ is [explicitly] a K–(κ, θ)–definition of a snep-forcing notion Q,
and B any model with universe κ coding the T`’s and ϕ` is defined
as proj`(T`) and ZFC−∗ is natural (e.g., ZC+“B exists (as a set)”+
“in(κ) exists for each n”), then (ϕ̄,B) is correctly very simple [explic-
itly] K–(κ, θ)–definition of a nep forcing notion Q (and let B = BT̄ ,
ϕ̄ = ϕ̄T̄ ).

4. Very simply implies simply (see 1.3(5), 1.3(6)).

Proof. Read the definitions.

Proposition 2.2. 0. If we increase ∆1 we essentially just have fewer
candidates; fully, assume ∆1 ⊆ ∆′1 ⊆ Lω1,ω(τC) and C codes the set ∆1,
e.g., by quantifier free formulas, then every candidate in the new sense
is a candidate in the old sense, all relevant properties being preserved
except ZFC−∗ being nice (see Definition 4.5 below) and semi-normal
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(but normal is included). Hence if Q is [explicitly] nep in the old sense
it will be so in the new sense [and all relevant desirable properties are
preserved].

1. Assume ∆′ ⊆ Lω1,ω[τB′ ] and B is definable in B′ (that is, every R ∈
τB including the equality, has a definition ϑR ∈ Lω,ω[τB′ ]) and ∆ ⊆
{ψ ∈ Lω,ω[τB′ ]: making the substitution R 7→ ϑR in ψ (and restrict
ourselves to {x : ϑ=(x, x)}) we get ψ′ ∈ ∆′}.

Assume further that ϕ̄ is as in 1.3 and ϕ̄′ is gotten from ϕ̄ when
we make the substitution R 7→ ϑR (and restrict ourselves to {x :
ϑ=(x, x)}). Lastly assume that ∆′2,∆2 are naturally related (see 2.1(1)
or just B |̀ H(ℵ0) simply codes them).
(a) If N is a (B′, ϕ̄′, θ′)–candidate, then N is also a (B, ϕ̄, θ)–candi-

date; pedantically
(a’) Assume N ′ is a (B′, ϕ̄′, θ′)–candidate, for ∆′1 of course; so N ′ =

(|N ′|,∈N ′ ,OrdN
′
,BN ′ ,CN ′) and we let

N = (|N ′|,∈N ′ ,OrdN
′
, (B′)N

′
,CN

′
),

where9 (B′)BN′
= B′ � |BN ′ |.

Then N is a (B, ϕ̄, θ)–candidate for ∆1, of course.
2. Assume that (ϕ̄,B) is [explicitly] a K–definition of a nep-forcing no-

tion and B is definable in B′ (and change ∆2 accordingly to the in-
terpretation as done in the previous part).
Then (ϕ̄,B′) is [explicitly] a K-definition of a nep-forcing notion;
moreover, if B is the only parameter of the ϕ`, we can replace it by
B′ (changing trivially the ϕ`’s).

3. Hence we can increase κ and θ and/or add “simply” (to the assumption
and to the conclusion of the previous part); we may also add “very
simply”.

Proof. Straightforward.

A converse to 2.1(1)+(2) is the following.

Proposition 2.3. 1. Recall that κ′′ = θ+ℵ1 + ‖B‖+α∗(C) and assume
(⊕) (ϕ̄,B) is a correct very simple [explicit] K–(κ, θ)–definition of a

nep forcing notion Q.
Then some T̄ codes the relevant relations (∈ Q, ∈Q and “explicit pre-
dense antichain”). If every BT̄–candidate is a Q–candidate, then T̄
is an [explicitly] K–(κ′′, θ)–definition of a snep forcing-notion Q (the
same Q as a forcing notion).

9If we allow more complicated situations than BN = B � |BN | we have to say more
here.
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2. If κ = θ = κ′ = ℵ0 we get a similar result with the ϕ` being Π1
2-sets.

3. If in clause (⊕) of 2.3(1) we replace very simple by simple (so we
weaken Q ⊆ ωθ to Q ⊆ H<ℵ1(θ)), then part (1) still holds for some Q′
isomorphic to Q.

Proof. 1) This is, by now, totally straight; still we present the case of ϕ0
for part (1) for completeness; for simplicity assume that C is interpretable
in B, say by quantifier free formulas and ∆1 = ∆2. If in Definition 1.1(2),
clause (e) we use ≺, let 〈ψ1

n(y, x0, . . . , x`n−1) : n < ω〉 list the first order
formulas in the vocabulary of B in the variables {y, x` : ` < ω}, (so in ψ1

n

no x`, ` ≥ n appears, but some x`, ` < n may not appear); if we use ≺∆
let it list the ψ1 such that ∃yψ1 is a subformula of member of ∆. Similarly
〈ψ2

n(y, x3, . . . , xkn−1) : 4 ≤ n < ω〉 for the vocabulary of set theory plus
that of B. Let us define T0 by defining a set of ω-sequences Y0, and then
we will let T0 = {ρ |̀n : ρ ∈ Y0 and n < ω}. For α < ω1 let {βα,` : ` < ω}
list {β : β ≤ α}.

Now let Y0 be the set of ω-sequences ρ ∈ ω(θ × κ′′) such that for some
(B, ϕ̄, θ)–candidate N ⊆ (H(χ),∈) (so you can concentrate on the case
B, θ, κ belong to N , e.g., in the normal case) and some list 〈an : n < ω〉 and
ω–sequences ν, η we have: ρ = ν ∗ η; i.e., ρ(n) = (ν(n), η(n)) and

(i) a0 = B, a1 = θ, a2 = κ, a3 = ν, and |N | = {a` : ` ∈ [3, ω)}
(ii) {n : n ≥ 3 and N |= an ∈ κ′} = {η(8n+ 1) : 0 < n < ω},
(iii) every η(8n+ 2) is a countable ordinal such that:

N |= “ rk(an) < rk(am)” iff η(8n+ 2) < η(8m+ 2) < ℵ1 ≤ κ′,

(iv) if B |= (∃y)ψ1
n(y, a0, . . . , an−1) then B |= ψ1

n[aη(8(n+1)+3), a3, . . . ,
a`n−1],

(v) N |= ϕ0[ν]; i.e. N |= ϕ0[a3],
(vi) N |=“ a` ∈ am ” iff η(8(

(
`+m+1

2

)
+ `) + 4) = 0,

(vii) if n ≥ 4 and N |= (∃y)ψ2
n(y, a3, . . . , akn−1),

then N |= ψ2
n[aη(8n+5), a3, . . . , akn−1] and η(8n+ 6) = 1,

(viii) if N |=“an is a countable ordinal” and ak = βan,`,
then η(8(

(
`+n+1

2

)
+ `) + 7) = k.

(ix) N |= ψ2
n(a3, a3, . . . , akn−1) iff η(8n+ 8) = 0

Let T0 = {ρ |̀n : ρ ∈ Y0, n < ω}.

Claim 2.3.1. 1. Y0 is a closed subset of ω(θ × κ).
2. Q = {ν ∈ ωθ : (∃η)(η ∈ ω(κ′) & ν ∗ η ∈ Y0(= lim(T0))} = proj0(T0).

Proof of the claim: 1) Given ν ∗ η ∈ lim(T0) we can define a model N ′

with set of elements say {a′n : 3 ≤ n < ω} such that N ′ |= “a′n` ∈ a
′
m” iff

η(8(
(
`+m+1

2

)
+ `) + 4) = 0, that is according to clause (vi). We similarly
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define BN ′ . Now η(8n+8) = 0 iff N ′ |= ψ2
n(a′3, a

′
3, . . . , a

′
kn−1); we can prove

this by induction on the formula ψ2
n starting with atomic, the first a′3 is

just to save another list of ψ’s; during the induction we use clause (vii) for
the existential quantifier. So N ′ is a model of ZFC−∗ by clause (vii) (and
the demand N |= ZFC−∗ ), it is well founded by clause (iii) (and the earlier
information).

We start to define an embedding h of N ′ intoH(χ) and we put h(a′0) = B,
h(a′1) = θ, h(a′2) = κ (in the case we demand that B, θ, κ belong to V our
candidates) and h(a′n) = η(8n+1) if N ′ |= a′n ∈ a′2, n ≥ 3. Then let h(a′3) ∈
ωθ be such that h(a′3)(`) = γ iff letting n be such that ψ2

n ≡ [y = x3(`)], so
necessarily N ′ |=“a′3(`) = a′η(8n+5)”, we have η(8(n+ 5) + 1) = γ (see clause
(vii)).

Lastly we define h(a′n) for the other a′n by induction of rkN
′
(a′n), note that

we should add to h(a′n) when N ′ |= “a′n is an ordinal” and n /∈ η(8m+ 1) :
0 < m < ω} dummy elements to retain Rang(h) ∩ κ = {η(8(n + 1) + 1) :
n < ω}.

The model h[N ′] above should be built in such a way that it is ord–
transitive. This (and clause (viii)) will ensure that the clause (g) of the
demand 1.1(2) is satisfied.

Note that, actually, the coding (of candidates) which we use above does
not change when passing to the ord–collapse.
2) Should be clear from the above noting: p ∈ Q iff for some N as above,
N |= ϕ0(p) [as⇐ holds by the definition and⇒ holds as there are countable
N ≺ (H(χ),∈) to which p,B, θ, κ belong]. 2.3.1

Continuation of the proof of 2.3.
This finishes the proof of the claim and so the proof that there is ϕ0 as
required; we can similarly define ϕ1 and prove the other statement in the
first part of the proposition.
(2), (3) Easy. 2.3

What if in 2.3 we omit “the only parameters of ϕ̄ are B, θ, κ”; so what do
we do? Well, the role of B is assumed by the transitive closure of 〈ϕ̄,B, θ, κ〉,
which we can then map onto some κ∗ ≥ κ we can use p instead.

Now we look at the connection in the situations in two universes.

Proposition 2.4. 1. Assume ZFC−∗ is {∅}-normal for (B, ϕ̄, θ) (see Def-
inition 1.15(3)), and, in V, ϕ̄ is a (B, θ)–definition of an [explicit]
nep forcing notion. Then we get “correctly” (see Definition 1.3(11)).
For this, semi {∅}-normal and even weakly {∅}-normal (see Definition
1.15) suffice.
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2. Assume ϕ̄ is a K–(B, θ)–definition of a forcing notion Q (“nep” part
is not needed). Let V′ be a transitive class of V such that
(i) ϕ̄ and B belong to V′ (and of course C),
(ii) Q is correct in V′.
Then:
(a) if V′ |=“p ∈ Q” (i.e., ϕ0(p)) then V |=“p ∈ Q”,
(b) if V′ |=“p ≤Q q” (i.e., ϕ1(p, q)) then V |=“p ≤Q q”,
(c) if in V′, N is a (B, ϕ̄, θ)–candidate then also in V, N is a (B, ϕ̄, θ)–

candidate; this does no require assumption (ii).
2a. Assume ϕ̄ is a K − (B, θ)–definition of a forcing notion Q; let V′ be

a transitive class of V such that
(i) ϕ̄ and B belong to V′ (as well as C, of course),
(ii) Q is correct in V.
Then
(a) if p ∈ H<ℵ1(θ)V′ and V |=“p ∈ Q”, then V′ |=“p ∈ Q”,
(b) (i) if p, q ∈ H<ℵ1(θ)V′ and V |=“p ≤Q q”, then V′ |=“p ≤Q q”,

and
(ii) if p, q ∈ H<ℵ1(θ) and V |= “p, q are compatible in Q”, then

V′ |= “p, q are compatible in Q”,
(c) if N ∈ V and N ∈ H<ℵ1(κ)V′ and V |=“N is a (ϕ̄,B)–candidate”

then V′ |=“N is a (ϕ̄,B)–candidate”; note that here assumption
(ii) is not used. (it’s natural to assume that Q is simple in V)

3. If in (2) we add “explicitly” (including the “correct”), then
(d) if 〈pn : n < ω〉 and pω belong to H<ℵ1(κ)V and V′ |= ϕ2(〈pi : i ≤

ω〉), then V |= ϕ2(〈pi : i ≤ ω〉),
(e) if in V′, N is a (ϕ̄,B)–candidate and q is explicitly (N,Q)–generic,

then this holds in V.
3a. Similarly for (2a).

That is
(d) if 〈pn : n < ω〉 and pω belong to H<ℵ1(κ)V′ and V |=“{pn :

n < ω} is an explicitly predense antichain over pω (in Q)”, then
V′ |=“{pn : n < ω} is an explicitly predense antichain over pω (in
Q)”.

4. If in (2) we add “ϕ̄ is a temporary explicit correct (B, θ)–definition
of a nep forcing notion” (in V), then also in V′, ϕ̄ is a temporary
explicit correct (B, θ)–definition of a nep-forcing notion.

5. If in (4) we add “local” to the assumption, then also in V′, ϕ̄ is a tem-
porary explicit correct (B, θ)–definition of a local nep-forcing notion.

Discussion 2.5. Note that in parts (2), (2a) there is no implication between
the two versions of clause (ii), for V and for V′. The reason is that possibly,
e.g., V′ satisfies CH while V satisfies its negation and ZFC−∗ decide it.
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Proof. 1) Straightforward.

2) For clauses (a), (b), by the correctness in V′ (i.e., assumption (ii)) there
is a witness in V′ which continues to be so in V (using upward absoluteness).
Clause (c) is immediate.

2a) For clause (c) note that N ∈ H<ℵ1(χ)V′ is required as there may be
a ∈ N , a * N , a is countable in V but not in V′; anyhow clause (c) is
immediate.

For clauses (a), (b) there is a candidate N in V witnessing the relevant
fact hence (see 2.12 below), we can find M ⊆ H<ℵ1(χ)V isomorphic to N
over N ∩H<ℵ1(χ)V (in particular, M ∩Ord = N ∩Ord, M ∩B = N ∩B).
Now use Shönfield-Levy absoluteness lemma.

3), 3a) Straightforward.

4) We concentrate on the main point: clause (c)+ in 1.3(2). Suppose that

V′ |= “ N is a (ϕ̄,B)–candidate and p ∈ QN ”.

In V′, let 〈In : n < ω〉 list the Is such that N |=“I is a predense antichain
above p in Q”. We know (by 2.4(2)(c)) that N is a candidate in V. Hence,
in V, there are q, 〈pn` : ` < ω, n < ω〉 such that:

(i) 〈pn` : ` < ω〉 lists In ∩N ,
(ii) p ≤Q q ∈ Q,
(iii) ϕ2(〈pn` : ` < ω〉_〈q〉) for each n < ω.

So in V there is a (B, ϕ̄, θ)–candidate N1 such that N ∈ N1, 〈pn` : ` <
ω〉 : n < ω〉, q and 〈In : n < ω〉 belong to N1, and N1 |=“p ≤Q q”, and
N1 |= ϕ2(〈pn` : ` < ω〉_〈q〉) for n < ω (by “correct”). It is enough to find
such N1 ∈ V′, (and q1, 〈〈1pn` : ` < ω〉 : n < ω〉 which follows as in 2.7 below.
(We use an amount of downward absoluteness which holds as V′ is a tran-
sitive class including enough ordinals).

5) Similar proof. 2.4

Proposition 2.6. Assume that T̄ is in V a temporary (κ, θ)–definition of
a snep forcing notion which we call Q. Let V′ be a transitive class of V
containing T̄ (and all ordinals or just (κ′)+) and satisfying ZFC−∗ . Then:

(a) if V′ |=“p ∈ Q” then V |=“p ∈ Q”,
(b) if V′ |=“p ≤Q q” then V′ |=“p ≤Q q”,
(c) if in V′, the model N is a (BT̄ , ϕ̄T̄ , κT̄ )–candidate then also in V, N

is a (BT̄ , ϕ̄T̄ , κT̄ )–candidate,
(d) also in V′, Q is snep,
(e) if V |= “p ∈ Q and p ∈ H<ℵ1(θ)V”, then V′ |= “p ∈ Q”,
(f) if V |= “p ≤Q q and p, q ∈ H<ℵ1(θ)V”, then V′ |= “p ≤Q q”,
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(g) if V |= “ϕ2(〈p1 : i ≤ ω〉) and 〈pi : i ≤ ω〉 ∈ H<ℵ1(θ)V′”,
then V′ |= “ϕ2(〈pi : i ≤ ω〉)”.

Proof. By Shönfield-Levy absoluteness lemma; e.g., for clause (d) repeat
the proof of 2.6(4). 2.6

Proposition 2.7. 1. Assume that (ϕ̄,B) is a simple correct local explicit
temporary (κ, θ)–definition of a nep forcing notion Q. Then for any
extension V1 of V this still holds, provided that:

(∗)4 ([κ′′]≤ℵ0)V is cofinal in ([κ′′]≤ℵ0 ,⊆)V1 recalling

κ′′ = κ+ θ + α∗(C) + ||B||.
2. Assume T̄ is a local explicit temporary (κ, θ)–definition of a nep [snep]–

forcing notion Q. For any extension V1 of V, this still holds if (∗)4 of
above holds. So we can replace “temporary” by K = class of all proper
set forcing notions.

Proof. 1) We concentrate on the main point (other ones are similar and
certainly not harder). Let a ∈ [κ′′ ∪B]ℵ0 , and consider the statement
�a if N is a (B, ϕ̄, θ)–candidate satisfying N ∩ (κ′′ ∪B) ⊆ a and p ∈ QN

(i.e., N |= ϕ0[p]),
then there are N ′, a generic extension of N (so have the same ordinals
and N is a class of N ′ and the same B,C, θ) which is a (B, ϕ̄, θ)–
candidate such that10 N ′ |=“P(θ)N is countable” and

N ′ |= “ (∃q)[q ∈ Q & p ≤Q q & q is explicitly (N ∩ P(Q),Q)–generic] ”.

Note: in order to guarantee [x ∈ N ′ ∧N ′ |=“x is countable” ⇒ x ⊆ N ′]
just use a suitable collapse, see 2.12 below.

Now, only (N,α)α∈a/ ∼= and the choice (inside N) of the forcing notion
are important and we can codeN as a subset of a (as all three are countable).
Also the issue of saying “N ′ is well founded” does not arise as N ′, N have
the same ordinals. Thus the statement �a is essentially

(∀N)[(N is not well founded (or not B |̀ (N ∩ a) ≺∆ B, etc.)∨
∨(∃N ′)(N ′ as above)].

As in V, the set a is countable, it can be treated as ω so this is a Π1
2

statement, hence it is absolute from V to V1. Now recalling in particular
the definition of local (1.11(2)), both in V and in V1 the statement “Q is
simply, locally, explicitly nep” is equivalent to (∀a ∈ [κ′′ ∪B]ℵ0)�a, which
is equivalent to S = {a ∈ [κ∪B]ℵ0 : �a} is cofinal in [κ′′∪B]ℵ0 . But by the
previous paragraph it suffices to prove that S[V] is cofinal in S[V1]. Now
(∗)4 gives the needed implication.

10Note that P(θ)N is countable in V.
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2) Similarly. 2.7

Remark 2.8. 1. So for the local version, we can replace “temporary”
by “for the class of proper forcing (or just preserving “([κ′′]≤ℵ0)V is
cofinal in [κ′′]≤ℵ0”)”.

2. We can replace this assumption (i.e., (∗)4 of 2.7) by enough absolute-
ness (so large enough cardinals). If those are strong enough, we can
omit “local”. The problem with local (even when κ = θ = ℵ0) is that
we have to say “N ′ is well founded” arriving to Π1

3.

Proposition 2.9. If Q (i.e. 〈ϕ0, ϕ1〉) is a Souslin proper forcing notion (see
1.13) and B codes the parameter (so has universe κ = ℵ0 and let θ = ℵ0)
and the parameter of a Σ1

1–relation equivalent to incompatibility, then (ϕ̄,B)
is a simple explicit temporary (κ, θ)–definition of the nep-forcing notion Q;
in fact it is locally (ℵ0,ℵ0)–snep.

Proof. Straightforward.

Definition 2.10. Assume that (ϕ̄,B) is a temporary (κ, θ)–definition of a
nep forcing notion Q, and N is a Q–candidate. We say that a condition
q′ ∈ Q is essentially explicitly (N,Q)–generic if for some candidate N ′,
N ⊆ N ′, N ∈ N ′, q′ is explicitly (N ′,Q)–generic and for some q0 ∈ QN ′ ,
q0 ≤Q q′ and N ′ |=“q0 is (N,Q)–generic”. We say “over q” if we can choose
q0 = q.

Note: if Q is a snep-forcing for T̄ , this relation is (κ + θ + ℵ1)–Souslin,
too.

Proposition 2.11. Assume Q is an explicitly nep-forcing notion, say by
(ϕ̄,B) and ZFC−∗ is weakly normal for Q.

1. If q is (N,Q)–generic, then for some q′ we have

q ≤ q′ ∈ Q and q′ is essentially explicitly (N,Q)-generic above q.

2. If q′ is essentially explicitly (N,Q)–generic (or just explicitly (N,Q)–
generic), then q′ is (N,Q)–generic.

3. In 1.17 we can add: and every essentially explicitly (N,Q)–generic is
explicitly (N,Q)–generic (changing ϕQ2 slightly).

Proof. 1) Let N ′ ⊆ H(χ) be a countable Q–candidate satisfying

{N, q} ∈ N ′.
Such N exists by clause (c) of definition 1.15. By our assumptions there is
q′ such that: q ≤ q′ ∈ Q and q′ is explicitly (N ′,Q)–generic.
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2), 3) Easy. 2.11

The following claim tell us that asking about being nep looking for [ex-
plicitly] (N,Q)–generic, we may restrict ourselves to ord-hereditary Q can-
didates.

Proposition 2.12. 1. If N is a (B, θ)–candidate, so in particular11

[N |= “α < κ′”] ⇒ α ∈ θ ∨ α ∈ α∗(C) ∨ α ∈ κ(B)

then there is one and only one hereditary over κ′ model N ′ ∼= N ;
that is: there are N ′ = Mosκ′′(N) and f such that (recalling κ′ =
κ ∪ θ ∪ α∗(C)):
(a) f is an isomorphism from N onto N ′,
(b) f(α) = α if N |= “α < κ′” and f(y) = β if N |= “(y is an

ordinal) ∧ (y ≥ κ′)” and β = κ′ + otp({x : N |= “(x an ordinal
< y) ∧¬(x < κ′)”),

(c) if x ∈ N\OrdN then f(x) = {f(y) : N |=“y ∈ x”},
(d) N ′ is a B–candidate.

2. Note that if N |=“x ∈ H<ℵ1(κ′)” then f(x) = x (but B ∩ N = BN

does not necessarily implies B ∩N ′ = BN ′).
3. For N,N ′ as above and q ∈ Q we have: q is [explicitly] (N,Q)–generic

iff q is [explicitly] (N,Q)–generic.

Proof. Easy but by a request we give details:
1) We try to define by induction on i < ω1 a function fi with domain
⊆ N , increasing continuous with i.
Case 1: i = 0
Let Dom(f0) be the set ordinals which belong12 to N and f0(α) is α if
α ∈ N ∩ κ′ and is N ∩ κ′ + otp(N ∩ α\κ′) otherwise (so f0(κ′) = κ′ if
κ′ ∈ N); we are using clause (f) of Definition 1.1(4).
Case 2: i is a limit ordinal
fi =

⋃
{fj : j < i}

Case 3: i = j + 1
Let

Dom(fi) = {x ∈ N : x ∈ Dom(fi) or (∀y)(y ∈ N ∧ y ∈ x→ y ∈ Dom(fj)}.
For x ∈ Dom(fi) let fi(x) = fj(x) if x ∈ Dom(fj) and fi = {fj(y) : y ∈
N, y ∈ x} otherwise.
So we can carry out the induction. As 〈Dom(fi) : i < ω1〉 is an increasing
(not necessarily strictly) sequence of subsets of N that is, of |N | which is

11As in some other place “ordinals are urelements” simplifies this.
12As we are assuming politeness; otherwise use OrdN = {x : N |= “x is an ordinal ”}.
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countable, it is necessarily eventually constant, say for i ∈ [i(∗), ω1)). As ∈
is well founded, by the definition of fi(∗)+1 necessarily Dom(fi(∗)) = N . So
let f = fi(∗) and define N ′ by |N ′| = {f(x) : x ∈ N}, and ∈N ′=∈� |N ′|,
BN ′ = f(BN ), CN ′ = f(CN ).

Now we prove by induction on i that fi is one to one. For i = 0 check
the definition, for i limit trivial, for i = j + 1, use “fj is one to one and N
satisfies the comprehension axiom”. So f = fi(∗) is one to one. Clearly f

is the identity on |CN | and also on BN , as we can prove this for x ∈ BN

by induction on the rank: if x is an ordinal then x < κ′ hence f(x) = x,
if x is not an ordinal, recall that |BN | ⊆ H<ℵ1(κ) and by the definition
of a candidate, x ⊆ |N |, so f(x) = {f(y) : y ∈ x} = {y : y ∈ x} = x.
We can prove similarly by induction on i that x, y ∈ Dom(fi) ⇒ [x ∈
y ≡ fi(x) ∈ fi(y)]. So f is an isomorphism from N onto N ′. This (and
the definition) suffice for proving clause (a), (b), (c) in part (1) which we
are proving. As N ′ ∩ κ′ = N ∩ κ′ clearly N ′ |̀κ = N |̀κ, N ′ |̀ θ = N |̀ θ,
N ′ |̀α∗(C) = N |̀α∗(C) and x ∈ N ∩ H<ℵ1(κ′) implies f(x) = x recalling
clause (c) of Definition 1.1(7). This implies that N ′ |̀B = N |̀B ≺∆2 B as
κ ⊆ |B| ⊆ H<ℵ1(κ) ⊆ H<ℵ1(κ′), similarly for C. Now it should be clear
that clause (d) holds too, i.e., N is a B–candidate.

This proves there is one and by the proof it is clear that there is only
one. 2.12

Fact 2.13. 1. In the definition of nep (or snep) in the “properness”
clause, it is enough for each N to restrict ourselves to a family I of
dense subsets I of Q (in the sense of N) such that:
(*) if I ∈ pdac(N,Q)

then for some J ∈ I we have N |= (∀p ∈ I ∩N)(∃q ∈ J )(p ≤Q q).
2. For the explicit version we should speak of “predense antichains above
p” (or use a variant as in 1.17).

3. We can in (*) use I ∈ pdac(p,N,Q) for the p ∈ QN in clause (c) of
1.3.

Proof. Straight.

Moving from nep to snep (and inversely) we may ask what occurs to
“local”. It is usually preserved.

Proposition 2.14. 1. Assume T̄ defines an explicit (κ, θ)–snep forcing
notion. Let ϕ̄ = ϕ̄T , B = BT̄ (see 2.1(3) and ZFC−∗ as there). If QT̄
is local, then Qϕ̄ is local, in fact as in Definition 1.11(2).
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2. If (ZFC−∗ is K–good and) ZFC−∗ says that it is preserved by collapsing
2|Q| and that (B, ϕ̄, θ) is explicitly nep, and ϕ̄ is correct, then (Bϕ̄, ϕ̄, θ)
is explicitly nep and local.

Proof. 1) The point is that ifN ′ ⊆ (H(χ,∈) “thinks” a tree T is countable
and has no ω–branch, this is true as N ′ “thinks” it has ω1.
2) Straight. 2.14

3. There are examples

In this section we show that a large family of natural forcing notions
satisfies our definition. Later we will deal with preservation theorems but
to get nicer results we better “doctor” the forcing notions13 but this is
delayed to the next section.

In fact all the theorems of Ros lanowski and Shelah [19], which were de-
signed to prove properness, actually give one notion or another from §1
here (confirming the thesis 0.3 of §0). We will prove them without giving
the definitions from [19] and give a proof of (hopefully) well known specific
cases, indicating why it works.

Lemma 3.1. 1. Suppose that Q is a forcing notion of one of the follow-
ing types:
(a) Qtree

e (K,Σ) for some finitary tree-creating pair (K,Σ), where e = 1
and (K,Σ) is 2-big or e = 0 and (K,Σ) is t-omittory (see [19, §2.3];
so, e.g., this covers the Sacks forcing notion),

(b) Q∗s∞(K,Σ) for some finitary creating pair (K,Σ) which is grow-
ing, condensed and of the AB–type or omittory, of the AB+–type
and satisfies ⊕0,⊕3 of [19, 4.3.8] (see [19, §3.4]; this captures the
forcing notion of Blass–Shelah [4]),

(c) Q∗w∞(K,Σ) for some finitary creating pair which captures single-
tons (see [19, §2.1])

(d) Q∗f (K,Σ) for some finitary, 2-big creating pair (K,Σ) with the
Halving Property which is either simple or gluing and an H-fast
function f : ω × ω −→ ω (see [19, §2.2]).

Then Q is an explicit ℵ0–snep forcing notion, moreover, it is local.
2. Assume that Q is a forcing notion of one of the following types:

(a) Qtree
e (K,Σ) for e < 3 and a tree-creating pair (K,Σ), which is

bounded if e = 2 (see [19, §2.3]; this includes the Laver forcing
notion),

13Alternatively, we can directly prove that they are very straight, see Definition 5.13
below.
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(b) Q∗∞(K,Σ) for a finitary growing creating pair (K,Σ) (see [19,
§2.1]; this covers the Mathias forcing notion).

Then Q is an explicit ℵ0–nep forcing notion, moreover, it is local.

Proof. Actually it should be immediate if you know [19] (and 1.20+ our
present definition) particularly if using 1.21; that is let 〈Bn : n < ω〉 list
{Bt : t is the root of some p ∈ Q} and we let Bt(p) be p[t], that is p when
we restrict ourselves to increasing the root to t (and no more) and is p if
this is impossible. Without this you can use 1.20 to justify ignoring the
“antichain” part in what follows.

As usual we concentrate on the main point, the properness clause. Let
N be a Q-candidate and p ∈ QN . Let 〈Jn : n < ω〉 list pdac(p,N,Q). Then
there is a sequence 〈(pn, In) : n < ω〉 such that pn, In ∈ N , N |= pn ≤ pn+1,
In is a countable set such that for some function fn from In into Jn we
have r ∈ In ⇒ fn(r) ≤Q r, 〈pn : n < ω〉 has an upper bound in Q and In
is predense antichain above pn+1, moreover, in an explicit way as described
below (see the respective subsections in [19]). Moreover,

(∗)1 if r1 6= r2 are in In then for some k and In,r1,r2 predense in an explicit
way above pn (as above), for each r ∈ In,r1,r2 in an explicit way,
{r1, r2, pn} has no common upper bound, (this happen to hold, but is
not so needed),

(∗)2 in part (1) of 3.1 cases (a)+(c), In is finite and moreover, we can say
“In is predense above pn+1” in a Borel way.

For example for the Sacks forcing notion: for some k < ω, In = {p[η]
n+1 : η ∈

pn+1, `g(η) = k}, so In corresponds to a front of pn+1, which necessarily is
finite. This property serves as ϕ2 (compare with more detailed description
for the Laver forcing below).

In part (1) case (b) (e.g., the forcing notion from Blass–Shelah [4]) In
is countable. We do not know which level will be activated, but if in the
generic, we use the n–th creature in lim〈p` : ` < ω〉, then we get into In, so
In is countable but the property (i.e., the ϕ2) is Borel not just Π1

1.
Similarly in part (1) cases (c), (d).
Now, in part (2), In is countable and again it corresponds to some front

A of pn+1 in an appropriate sense. So In = {p[η]
n+1 : η ∈ A}, but to say

“A is a front” is Π1
1 (in some instances of 2(a) we have e-thick antichains

instead of fronts, but the complexity is the same), but we may have more
“explicite” front A.

Recall that for a subset T ⊆ ω>ω,A ⊆ T is a front of T if

(∀η ∈ lim(T ))(∃n)(η |̀n ∈ A)

(usually members of A are pairwise incomparable).
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Specifically, for the Laver forcing notion, we can guarantee In = {p[η]
n+1 :

η ∈ A}, where A is a front of pn+1. Now being a front is a Π1
1–sentence (see

the definition above) which is upward absolute and this is our choice for ϕ2.
Let us write this formula in a more explicit way (for the case of the Laver
forcing notion):

ϕ2(〈pi : i ≤ ω〉) ≡ each pi is a Laver condition and∧
i∈ω

(∃!η)(η ∈ pω & p2i = p
[η]
ω )

[call this unique η by ηi] and∧
i 6=j

ηi 5 ηj (incomparable) & (∀ρ ∈ lim(pω))(
∨
n

∨
m
ρ |̀n = η2m)

[this is: {pi : i ∈ ω} is explicitly predense above pω].

So it is Π1
1 (of course, Σ1

2 is okay, too.)
Note that even for the Sacks forcing notion, “p, q are incompatible” is

complete Π1
1. So “{pn : n ∈ ω} is predense above p” will be Π1

2. For Laver
forcing we cannot do better. Now, generally Π1

2 is not upward absolute from
countable submodels, whereas Π1

1 is. 3.1

Proposition 3.2. All the forcing notions Q defined in [19], [18], are simple
correct, very straight (see Definition 5.13) and we can use ZFC−∗ = ZC−

which is good and normal (see 1.15). Also the relation “p, q are incompatible
members of Q” is upward absolute from Q–candidates (as well as p ∈ Q,
p /∈ Q, p ≤ q, and “p, q are compatible”).

Proof. Just check.

4. Preservation under iteration: first round

We give here one variant of the preservation theorem, but for it we need
some preliminary clarification. We have said “there is q which is (N,Q)–
generic”; i.e. q `Q“ G

˜
Q ∩QN is a generic subset of QN over N”. Note that

we have said QN and not Q ∩ N as we intended to demand QN ⊆ Q ∩ N
rather than QN = Q ∩N , in other words

N |= “ r ∈ Q ” ⇒ V |= “ r ∈ Q ”

rather than

r ∈ N ⇒ [N |= “r ∈ Q ” ⇔ V |= “ r ∈ Q ”]

(the version we use is, of course, weaker and so better). A trivial example
of the possible non equality is the following:
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Example 4.1. let ϕ0(x) say x = 〈ηi : i < α〉, α < ω1, ηi ∈ ω2 and
i < j ⇒ ηi ∈ Lα[ηj ] for some countable α; ϕ1(x, y) is x�y. So if η0 ∈ L[η1],
but N |=“ η0, η1 ∈ ω2, η0 /∈ L[η1] ”, then 〈η0, η1〉 ∈ Q ∩N \QN ; clearly we
can find such N, η0, η1 (using generic extensions of countable models inside
V).

Now, using properness we usually use N [G] (e.g., when iterating). But
what is N [G] here? In fact, what is the connection between N |=“τ

˜
is a

Q–name” and V |=“τ
˜

is a Q–name”? Because [x ∈ Y ∈ N ; x ∈ N ], there
is (in general) no implication between the two statements.

For our purpose, the usual N [G] = {τ
˜

[G] : τ
˜
∈ N is a Q-name} is not

appropriate as it is not clear where being a Q-name is defined. We use
N〈G〉 which is N [G ∩ QN ] when we disregard objects in V\N . Of course,
if the models are ⊆ H<ℵ1(Ord) life is easier; but we may lose the case
N ≺ (H(χ),∈) (see Definition 1.1(15)), which is not so bad by 2.12.

We then prove (in 4.8) the first version of preservation by CS iteration.
We aim at proving only that Pα = Lim(Q̄) satisfies the main clause, i.e.
clause (c) of Definition 1.3(1) (but did not say that Pα is nep itself). For
this we need again to define what is N〈G〉. The second treatment (in §5)
depends just on Definition 4.4 from this section.

A reader who is not happy with Definition 4.4, may restrict himself to
ord-transitive candidates consoling ourselves with Proposition 2.12. Also,
instead of changing the Q’s we may use free iterations instead of CS ones,
see [25, Chapter IX], and cl3(Q) in §5; the two are quite related.

Definition 4.2. 1. We define P-names and their ranks for a forcing no-
tion P slightly different than usual. We define by induction on the
ordinal γ what it means for τ

˜
to be a P-name of rank ≤ γ, and for

G ⊆ P generic over V what τ
˜

[G] mean
(a) γ = 0, τ

˜
= x̌ and τ

˜
[G] = x,

(b) γ > 0, τ
˜

is {(pi, τ
˜
i) : i < i∗}, and τ

˜
[G] = {τ

˜
i[G] : i < i∗& pi ∈ G}

where pi ∈ P, τ
˜
i are P-names of rank < γ. (Pedantically, we may

use x̌ = 〈0, x〉 in (a) and τ
˜

= 〈γ, {(pi, τi
˜

) : i < i∗}〉 in clause (b)
but we normaly forget to use this).

2. For a regular cardinal κ we define when τ
˜

is (< κ)-hereditary14 by
induction on the rank γ: if γ = 0 always, if γ > 0, τ

˜
= {(pi, τ

˜
i)} : i <

i∗} then each τ
˜
i is and i∗ < κ.

Definition 4.3. 1. Assume N |=“Q is a nep-forcing notion” and G ⊆
QN is generic over N . We define N〈G〉 = N〈G ∩ QN 〉 “ignoring V”

14In §1.2 hereditary countable mean over the ordinals but the notions are different.
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and15 letting BN〈G〉 = BN (and of course CN〈G〉 = CN and OrdN 〈G〉 =
OrdN ) for the relevant B (and C). In details,

N〈G〉 def= {τ
˜
N 〈G〉 : N |= “ τ

˜
is a Q–name ”},

where τ
˜
N 〈G〉 is defined by induction on rkN (τ

˜
) (see above in Definition

4.2):
(a) if for some p ∈ G ∩ QN and x ∈ N we have N |= [p `Q“τ

˜
= x”]

then τ
˜
N 〈G〉 = x,

(b) if not (a) then necessarily N |=“τ
˜

has the form {(pi, τ
˜
i) : i <

i∗}, pi ∈ Q, τ
˜
i a Q–name of rank < rk(τ

˜
)”; now we let τ

˜
〈G〉 be

τ
˜
〈G,N〉 (see below) if τ

˜
〈G,N〉 /∈ Tc(|N |) and be (τ

˜
〈G,N〉)∪{|N |}

if τ
˜
〈G,N〉 ∈ Tc(|N |), where

τ
˜
〈G,N〉 = {(τ

˜
′)N 〈G〉 : τ

˜
′ ∈ N and for some p ∈ G ∩QN

we have (p, τ
˜
′) ∈ τ

˜
∩N}.

2. If N |=“τ
˜

is a Q–name” we define a Q–name τ
˜
〈N〉 as follows: it is

implicitly defined in part(2)), assuming G ⊆ Q is generic over V and
G ∩QN is generic over N .

3. We say “q is 〈N,Q〉–generic” if q `Q“G
˜
Q∩QN is a subset of (QN , <QN )

generic over N”; see Definition 1.3(1).

A relative of 1.3(4) is

Definition 4.4. 1. Replacing “temporarily” by “K–absolutely” in Def-
inition 1.3(1) means:
(a) if V1 is a K–extension of V (i.e., a generic extension of V by a

forcing notion from KV), then
(i) V |=“x ∈ Qϕ̄” ⇒ V1 |=“x ∈ Qϕ̄”,
(ii) V |=“x <Qϕ̄ y” ⇒ V1 |=“x <Qϕ̄ y”,
(iii) in the explicit case we have a similar demand for ϕ2; otherwise,

if N is a Qϕ̄–candidate in V, q ∈ Qϕ̄ is 〈N,Q〉–generic (see
4.3(3)) in V, then16 q is 〈N,Q〉–generic in V1,

(b) if V1 is a K–extension of V, then the relevant part of Definition
1.3 and clause (a) here holds in V1,

(c) if V`+1 is a K–extension of V` for ` ∈ {0, 1}, V0 = V then V2 is
a K–extension of V1.

2. We omit K when we mean: any set forcing.

15If N is ord-hereditarily countable, this is the usual N [G], as forcing add no ordinals,
recalling that the ordinals are ureelements.

16So the explicit nep case seems not to imply the nep case.
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Note that (a)(i) + (ii) of 4.4 is automatic for explicitly snep, also (a)(iii).
One can make “absolutely nep” to the main case.

The following is natural to assume.

Definition 4.5. 1. We say ZFC−∗ is nice if ZFC−∗ says ZC (so that the
power set axiom holds) and ZFC−∗ is preserved by forcing by set forcing
notions.

2. We say Q is nice (or ZFC−∗ nice to Q) if (it is a set definition and) for
every axiom ϕ of ZFC−∗ , ZFC−∗ ` “ `Levy(ℵ0,P(Q)) ϕ ”.

3. We say Q is weakly nice (for ZFC−∗ ) if:
(a) in(κ′) exists for each n < ω,
(b) ZFC−∗ is K–good for for K = {R : R is a forcing notion of cardi-

nality at most in(κ′) for some n < ω}.

Remark 4.6. An alternative is: We say17 ZFC−∗ is χ-nice if χ is a strong
limit uncountable cardinal, which is > θ, κ(B), α∗(C), and χ serves as indi-
vidual constant of ZFC−∗ , which say that it is strong limit, ZFC−∗ says that
it is preserved by forcing by forcing notions of cardinality < χ.

Claim 4.6.1. 1. If ZFC−∗ is nice, Q a (definition of a) set forcing, then
ZFC−∗ is nice to Q.

2. Assume ZFC−∗ is nice to Q and
(a) Q is explicitly nep,
(b) ZFC−∗ `“Q is explicitly nep”.
Then
(α) Q is local for ZFC−∗
(β) Q is absolutely local explicit (θ, κ)–definition nep forcing for ZFC−∗ .

Proof. Straight.

Proposition 4.7. If N is a Q–candidate, Q is a nep-forcing notion, G ⊆ Q
is a subset of (QV, <VQ ) generic over V and GQ ∩ QN is generic over N
then:

(a) If N |=“τ
˜

is a Q-name” and N is ord-hereditary (see Definition 1.1(15))
or just N |= “τ

˜
is ord-hc ”, then τ

˜
N 〈G〉 = τ

˜
〈N〉[G] = τ

˜
[G].

(b) N〈G〉 is a model of ZFC−∗ and moreover it is a Q–candidate and is
a forcing extension of N for QN , provided that the forcing theorem
applies, i.e., ZFC−∗ is K–good, Q ∈ K (see Definition 1.15).

(c) N〈G〉 ∩ κ′ = N ∩ κ′, so N〈G〉 ∩ θ = N ∩ θ, moreover N〈G〉 ∩ Ord =
N ∩Ord.

17For natural C’s we have in mind it is natural to omit α∗(C) < χ, but then we have
to prove a suitable absoluteness lemma; so we avoid the issue here.
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(d) If N ′ is the ord-collapse of N (see 2.12) and MosN is the isomorphism
from N onto N ′ and G′ = Mos′′N (G ∩QN ), i.e., G′ = {MosN (p) : p ∈
QN}, then
(α) G′ is a subset of (QN ′ , <N ′Q ) generic over N ′,
(β) MosN〈G〉 extends MosN and is an isomorphism from N〈G〉 onto

N ′〈G〉.
(e) Assume that Q is simple (the main case anyhow). Then in clause (d)

we can add
(γ) QN = QN ′ and MosN |̀QN is the identity,
(δ) N ′〈G ∩N〉 = N ′[G],
(ε) q ∈ Q is (N,Q)–generic iff q is (N ′,Q)–generic.

Proposition 4.8. Assume
(a) Q̄ = 〈Pi,Q

˜ j
: i ≤ α, j < α〉 is a CS iteration,

(b) for each i < α

`Pi “ (ϕ̄i,Bi) is a temporary (κi, θi)–definition
of a simple nep-forcing notion Q

˜ i
”,

so C is a constant and for simplicity ∆Bi
2 is quantifier free and the only

parameter of ϕ̄i is Bi, so we are demanding 〈(ϕ̄i,Bi) : i < α〉 ∈ V,
and for simplicity Bi has universe κi (rather than H<ℵ1(κi)),

(c) B is a model with the universe18 κ∗, or including κ∗ and included in
H<ℵ1(κ∗), where κ∗ ≥ α, κ∗ ≥ κi = κ(Bi), κ∗ ≥ θi (for i < α) and
κ∗ ≥ α∗(C) and B codes 〈(Bi, ϕ̄i, θi) : i < α〉 (see below) and the
functions α− 1, α+ 1,

(d) ZFC∗− is nice.
We can use a vocabulary ⊆ {Pn,m : n,m < k∗(≤ ω)}, where Pn,m is an
n-place predicate to code 〈Bi : i < α〉: let

PB
n+1,2m = {〈i, x1, . . . , xn〉 : 〈x1, . . . , xn〉 ∈ PBi

n,m},
PB

2,1 = {(α, α+ 1) : α+ 1 < α∗}

(and ∆B
2 is the set of first order formulas).

Then: if N ⊆ (H(χ),∈) is an ord-hereditary (B, κ)–candidate, p ∈ PNα ,
then some condition q ∈ Pα is 〈N,Pα〉–generic (in particular Pα is defined
from B) which is defined below, and it satisfies

q `Pα “ if β ∈ Dom(p) then p(β)〈GPβ 〉 ∈ GQ
˜
β

”.

Definition 4.9. Under the assumptions of 4.8, inside N we have a defini-
tion of the countable support iteration Q̄ = 〈Pi,Q

˜ j
: i ≤ α, j < α〉. We

define by induction on j ∈ N ∩ (α+ 1) when q ∈ Pj is 〈N,Pj〉–generic:
18No real need for κ∗ to be a cardinal.
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(~) if q ∈ Gj ⊆ Pj and Gj is generic over V, then G
〈N〉
j is a generic subset

of PNj over N , where

(a) G〈N〉j
def= {p : N |= “p ∈ Pj ” and p〈〈N〉〉 ∈ Gj},

(b) p〈〈N〉〉 is a function with domain Dom(p)N , and p(γ) is the following
Pγ–name: if p(γ)〈N〈G˜ γ∩N〉〉 ∈ Q

˜ γ
, then it is p(γ); if not, then it is

∅Q
˜ γ

.

Remark 4.10. The major weakness of 4.8 is that Pα is not proved to be
in some of our classes (nep or snep). We get the “main original property”
without the “support team”, i.e., the Q

˜ i
are nep, but on Pα we just say it

satisfies the main part of nep. A minor one is that Bi is not allowed to be
a Pi–name in any way, both are dealt with in Section 5. In later theorems
(in the next section), we use P′α ⊆ Pα consisting of “hereditarily countable”
names.

Note: inside N , if “N |= p ∈ Pα” then Dom(pα) ∈ [α]≤ℵ0 in N ’s sense
hence (see Definition 1.1(7)(c)) Dom(pα) ⊆ N and similarly the names are
actually from N , members outside N do not count, they may not be in Pα
at all.

Proof of 4.8. We imitate the proof of the preservation of properness. So
we prove by induction on j ∈ (α+ 1) ∩N that:

(∗)j if p ∈ PNα , i ∈ j ∩ N , q ∈ P is 〈N,Pi〉–generic, and q `Pi“(p |̀ i)〈N〉 ∈
G
˜
Pi”,

then we can find a condition r ∈ Pj such that r is 〈N,Pj〉–generic,
Dom(r) \ i ⊆ N , and r |̀ i = q, and r `Pj“ (p |̀ j)〈N〉 ∈ G

˜
Pj”.

Case 0: j = 0.
Left to the reader.

Case 1: j = j1 + 1.
So j1 ∈ N (why? use P2,1 and 1.3(2)(e)), and by the inductive hypothesis
and the form of the conclusion without loss of generality i = j1. Let q ∈
Gi ⊆ Pi, Gi generic over V. So N〈G〈N〉i 〉 ∩ κ∗ = N ∩ κ (by 4.7), and hence
B |̀N〈G〈N〉i 〉 = B |̀N ≺∆1 B. But i ∈ N , so this applies to Bi, too. So

V[Gi] |=“ N〈G〈N〉i 〉 is a Bi–candidate”. Also N〈G〈N〉i 〉 |=“ p(i)〈N〈G
〈N〉
i 〉〉 ∈

Qi” because G〈N〉i is a generic subset of PNi = {x : x ∈ N , N |=“ x ∈ Pi ”}
over N and use the property of Qi.
Case 2: j is a limit ordinal.
As in the proof for properness (see [25, Chapter III, 3.2]). 4.8
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Remark 4.11. Note that if N |=“w is a subset of α” then we can deal with
Pw, see later in §5.

5. True preservation theorems

Let us recall that Q is nep if “p ∈ Q”, “p ≤Q q” are defined by upward
absolute formulas for models N which are Q-candidates so N = (|N ′|,∈�
|N |,BN ,CN ) where (|N |,∈� |N |) ⊆ (H(χ),∈) countable, BQ ∈ N a model
on some κ (or H<ℵ1(κ)), BQ |̀N ≺∆2 BQ, N model of ZFC−∗ and for each
such model we have the properness condition. Usually Q ⊆ ωθ, or Q ⊆
H<ℵ1(θ) or so. We would like to prove that CS iteration preserves “being
nep”, but CS (countable support) iteration may give “too large” names of
conditions (of Q

˜ i
, i > 0) depending say on large maximal antichains (of

Pi). Note: if Q0 is not c.c.c., typically it has maximal antichains which
are not absolutely maximal antichains: start with a perfect set of pairwise
incompatible elements and extend it to a maximal antichain. Then whenever
a real is added, the maximality is lost. Finally, c.c.c. is normally lost in
Pω. So we will revise our iteration so that we consider only hereditarily
countable names (as in 4.7 above).

But in the iteration, trying to prove a case of properness for a candidate
N and p ∈ PNα+1, considering q ∈ Pα which is 〈N,PNα 〉–generic, we know that
in V[GPα ] (if q ∈ GPα), there is q′ ∈ Q

˜ α
[GPα ] which is 〈N [GPα ],Qα[Gα]〉–

generic. But under present circumstances, we have no idea where to look
for q′, so no way to make a name of it, q

˜
′, which is hereditarily countable,

without increasing q ∈ Pα. Except when Q is local (see 1.11), of course; it is
not unreasonable to assume it but we prefer not to and even then, we just
have to look for it in, essentially, a copy of the set of reals. The solution is
to increase Qi insubstantially so that we will exactly have the right element
q′, essentially it is:

p(α) &
∧

I∈pdQ(N)

∨
p∈I[N ]

p,

as explained below. We give two variants. That is, toward the iteration
Theorem 5.18 the derivation of the first variant of the forcing is done in
5.2, 5.3, 5.4, and the second is done in 5.7, 5.8. But Definition 5.10 +
Proposition 5.12 dealing with hc-names are essential, as well as 5.13, 5.14
being straight and very straight in particular. Those are stronger properties
for the ϕ̄ though not for Q, as we deduce to be the case in 5.14(3) for the
first variant and in 5.14(4) if you use the second variant. Being straight will
be clear if you recall Observation 1.22.
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Notation 5.1. Let

pdQ(N) = pd(N,Q) = {I : N |= “ I is a predense subset of Q ” },

and I[N ] = IN = I ∩N and

pdacQ(p,N) = pdac(p,Q, N) =
{I : N |= “ is a predense antichain of QN above p ” },

and similalry without p. Let

doQ(N) = do(N,Q) = {I : N |= “ I is dense open subset of Q ” };

note that I is here a set and not a definition, as we are dealing with set
candidates.

Definition 5.2. Let Q be an explicitly nep-forcing notion. Then we define
Q′ = cl(Q); this depend on our choice of the family of the candidates, e.g.,
on (ZFC−∗ ,C,B), as follows:

(a) the set of elements 19 is

Q ∪ {p &
∧

I∈pdac(p,N,Q)

∨
r∈I[N ]

r : p ∈ QN and N is a Q–candidate
}

[we are assuming no incidental identification] but
(α) code them in any reasonable way, if Q is simple, as members of
H<ℵ1(θ),

(β) for snep (or very simple) Q we work slightly more to code them
as members of ωθ, pedantically easier in ω(θ + ω),

(b) the order ≤Q′ is given by q1 ≤Q′ q2 if and only if one of the following
occurs:
(α) q1, q2 ∈ Q, and q1 ≤Q q2,

(β) q1 ∈ Q, q2 = p &
( ∧
I∈pdac(p,N,Q)

∨
r∈I[N ]

r

)
and q1 ≤Q p,

(γ) q1 = p &
( ∧
I∈pdac(p,N,Q)

∨
r∈I[N ]

r

)
and q2 ∈ Q, p ≤Q q2 and if

I ∈ pdac(N,Q), then

(∃q′ ∈ Q)(∃〈pn : n ∈ ω〉)(q′ ≤Q q2 & ϕQ2 (. . . , pn, . . . , q′) &
{pn : n < ω} ⊆ IN ),

19The sentence p &
V

I∈pdac(p,N,Q)

W
r∈I[N ]

r is not accurate, our intension would be

better served by adding p &
V

I∈pdac(p,N,Q)

V
r1 6=r2∈I[N ]

ψ¬(r1∧r2∧p) but anyhow we do not

really use the meaning. We could have used can(p,N ′), N ∼= N ′, N ′ is hc-ord (“can” for
canonical explicitly generic) and, e.g., OrdN ⊆ κ′ + ω1.
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(δ) q` = p` &
( ∧
I∈pdac(p,N`,Q)

∨
r∈I[N`]

r

)
(for ` = 1, 2) and: q1 = q2 or

q1 ≤ p2 by clause (γ).

Remark 5.3. 1. In [25, Chapter III], for a hereditarily countable name,
instead of

p &
∧

I∈pdacp(N,Q)

∨
r∈I[N ]

r

we use the first member of Qi
˜

which forces this. Simpler, but when we
ask whether this guy is ≤ q (for some q ∈ Q) we run into uncountable
antichains.

2. We may weaken the demand on N being a candidate, by demanding
less than ZFC−∗ . Anyhow at present we are not sensitive to the exact
choice of ZFC−∗ so using two such versions of set theory as done in 5.4
suffices. We can consider there ZFC−∗ = ZFC−∗∗ but it will be somewhat
artificial: in some Q candidates, N we will have (Q′)N = QN .

3. We could allow q is p &
∧

I∈pdac(N,Q′)
∨

r∈I[N ]
r but the gain is small — if

there are canonically 〈N,Q〉–generic we do not have to increase p.

Proposition 5.4. 1. Assume Q is explicitly nep. Then:
(a) in Definition 5.2, Q′ is a (quasi) order,
(b) ≤Q′ |̀Q =≤Q,
(c) Q is a dense subset of Q′.

2. Assume in addition:
(�2) for some suitable versions of set theory ZFC−∗∗ we have

(α) Q is explicitly nep for ZFC−∗∗,
(β) ZFC−∗ ` ZFC−∗∗,
(γ) ZFC−∗ ` “ZFC−∗∗ is weakly normal for Q′, Q is explicitly nep

for ZFC−∗∗”,
(�3) Q′ = cl(Q) is defined20 as in Definition 5.2 for ZFC−∗∗,
(�4) ZFC−Q′ is ZFC−∗ and BQ′ are defined inside the proof.

Then:
(d) if N is a Q′–candidate, and N |=“p ∈ Q′”,then for some q ∈ N

we have N |=“ p ≤Q′ q & q ∈ Q ”,
(e) Q′ is explicitly nep (with the same BQ and parameters),
(f) if N is a Q′-candidate, p ∈ QN and

q = p &
∧

I∈pd(N,Q)

∨
{r : r ∈ IN}, then q is (N,Q′)–generic.

(g) Q′ is correct if Q is correct.

20We could have alternatively change B, but this seems more straightforward.
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3. We can replace above (in the assumption and conclusion) nep by snep,
or nep by simple nep; similarly for K–absolutely.

Remark 5.5. The definition of “local” (in 1.11(1)) can be handled a little
differently. We can (in 1.11(2)) demand less on N ′ (it is not a Q–candidate),
just have some of its main properties and in �3 of 5.4(3), ZFC−∗ says that
P(θ) is a set (so has a cardinality) and is a Q–candidate. So we may consider
having ZFC−` for several `’s, ZFC∗` speaks on χ0 > . . . > χ`−1 and the
generic extensions of a model of ZFC∗`+1 for the forcing notion Levy(ℵ0, χ`)
is a model of ZFC−` . Similar remarks hold for §7. But, as we can deal
with the nice case (see Definition 4.5 above), we may start with a countable
N ≺ (H(iω),∈) (or even better (H(iω1),∈) so that “countable depth can
be absorbed”), we ignore this in our main presentation.

Proof of 5.4. 1) Clause (a): Assume q1 ≤ q2 ≤ q3; we have 23 = 8
cases according to truth values of q` ∈ Q:
Case (A): q1, q2, q3 ∈ Q.
Trivial (as ≤Q is transitive).
Case (B): q1, q2 ∈ Q, q3 /∈ Q.
Check (i.e., q1 ≤Q q2 and clause (β) of Definition 5.2(b) apply to q2 ≤ q3,
so letting

q3 = p3 & (
∧

I∈pdac(p3,N,Q)

∨
r∈I[N ]

r)

we have q2 ≤Q p3; but q1 ≤Q q2 so q1 ≤Q p3 so q1 ≤ q3 by clause (b)(β) of
Definition 5.2.)
Case (C): q1 /∈ Q, q2, q3 ∈ Q.
Check (similar to case (B), using clause (b)(γ) of Def 5.2, using the same
witness q′ for any I ∈ pdac(p1, N,Q).
Case (D): q1 ∈ Q, q2 /∈ Q, q3 ∈ Q.
Let q2 = p2 &

∧
I∈pdac(p2,N,Q)

∨
r∈I[N ]

r, hence q1 ≤Q p2 (because q1 ≤ q2 by

5.2(b)(β)) and p2 ≤Q q3 (because q2 ≤ q3 by 5.2(b)(γ)). Hence q1 ≤Q q3
follows.
Case (E): q1 ∈ Q, q2 /∈ Q, q3 /∈ Q.
Let q` = p` &

∧
I∈pdac(p`,N`,Q)

∨
r∈I[N`]

r for ` = 2, 3. So q1 ≤Q p2 (because

q1 ≤Q q2 by 5.2(b)(β)) and p2 ≤Q p3 (because q2 ≤Q q3 by 5.2(b)(γ), (δ)).
Hence q1 ≤Q p2 (as ≤Q is transitive) and so q1 ≤ q3 (by 5.2(b)(β)).
Case (F): q1 /∈ Q, q2 /∈ Q, q3 ∈ Q.
Let q` = p` &

∧
I∈pdac(p`,N`,Q)

∨
r∈I[N`]

r for ` = 1, 2 and suppose that q1 6= q2
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(otherwise trivial). Then, by 5.2(b)(δ), q1 ≤ p2 and by 5.2(b)(γ), p2 ≤ q3
so by the previous case (C), q1 ≤ q3 as required.

Case (G): q1 /∈ Q, q2 ∈ Q, q3 /∈ Q.
Let q` = p` &

∧
I∈pdac(p`,N,Q)

∨
r∈I[N ]

r for ` = 1, 3. Now, by 5.2(b)(β), q2 ≤ p3

and by the previous case (C), q1 ≤ p3 and hence, by 5.2(b)(β), q1 ≤ q3 as
required.

Case (H):
∧̀
q` /∈ Q.

Let q` = p` &
∧

I∈pdac(p`,N,Q)

∨
r∈I[N ]

r for ` = 1, 2, 3. If q1 = q2 or q2 = q3

then the conclusion is totally trivial. So assume not. Thus

q1 ≤ p2 (by clause 5.2(δ) a case defined in 5.2(γ))
q2 ≤ p3 (by clause 5.2(δ)).

Hence p2 ≤ p3 ≤ q3 (see clause 5.2 (γ)), so the previous case (G) applies.
This finishes the proof of the clause (a) of 5.4(1).

Clause (b): Totally trivial.

Clause (c): Let q ∈ Q′; if q ∈ Q, then there is nothing to do; otherwise
for someQ–candidateN and p (∈ QN ) we have q = p&

∧
I∈pdac(p,N,Q)

∨
r∈I[N ]

r

and use nep (i.e., clause (c) of 1.3(1)) on the Q–candidate N and p (∈ QM )
and 5.2(b)(γ) from the definition of the order on Q′.
2) Assume (�2).
Clause (d): Proved inside the proof of clause (e).

Clauses (e), (f), (g): We have to define

ϕQ
′

0 , ϕ
Q′
1 , ϕ

Q′
2 ,B

Q′ , θQ′

and then prove the required demands for a Q′–candidates. We let BQ′ =
BQ, θQ′ = θQ, the formulas will be different, but with the same parameters.
But recall that the versions of set theory are different, so we know only that
every Q′–candidate is a Q–candidate, but not inversely. We say that M is
an str Q–candidate if M is a Q-candidate and

M |= “ Q is nep and weakly normal ”;

clearly ZFC−∗ implies that every countable set is included in a strQ-candidate.
What is ϕQ

′

0 ? It is

ϕQ0 (x) ∨ “ x has the form p &
∧

I∈pdac(p,M,Q)

∨
r∈I[M ]

r, where

M is a str Q-candidate (so countable) and M |= ϕQ0 (p)”.
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Why is “M is a str Q–candidate” expressible in the relevant language? As
we can define ZFC−∗∗ (see definition 1.15(1) clause (f)), and the way we have
phrased Definition 1.1.

Clearly if Q is correct then ϕQ
′

0 defines Q′ through Q′–candidates so cor-
rectness is preserved, i.e., clause (g). Note that if N is a Q′–candidate
(or even just Q-candidate) and N |=“M is a Q–candidate”, then we have
M ⊆ N , because N |= “{x : x ∈ M} is countable”, also M |=“x is count-
able”, implies x ⊆ M ⊆ N ; hence M is really a Q–candidate, similarly for
str Q-candidate. Consequently, ϕQ

′

0 is upward absolute for Q′-candidates
and it defines the set of elements of Q′. So clause (a) of Definition 1.3(1)
holds.

Now we pay our debt proving clause (d). Let N be a Q′–candidate and
assume N |=“p ∈ Q′”, i.e., N |= ϕQ

′

0 (p). By the definition of Q′, either
N |=“p ∈ Q” and we are done, or for some p′,M ∈ N we have

N |= “M is a Q–candidate, p′ ∈ QM , and

p =
(
p′ &

∧
I∈pdac(p′a,M,Q)

∨
r∈I[M ]

r
)
”.

By clause (γ) of the assumption (�2), for some q ∈ QN we have

N |= “ q is explicitly 〈M,Q〉–generic ”

and N |=“p′ ≤Q q”. By Definition 1.3(2) for some

〈〈rI,` : ` < ω〉 : I ∈ pdac(p,M,Q)〉 ∈ N

we have:
• N |=“ {rI,` : ` < ω} enumerates I[M ] ”, and
• N |=“ ϕQ2 (rI`,0, rI,1, . . . , q) ”.

It follows from the definition of Q′ that N |=“p ≤Q′ q”, so q is as required.
Now clause (f) follows easily.
What is ϕQ

′

1 ? Just write the definition of p ≤Q′ q from clause (b) of 5.2.
Clearly also ϕQ

′

1 is upward absolute for Q′–candidates and it defines the
partial order of Q′ (even in Q′–candidates and even in Q–candidate). So
clause (b) of Definition 1.3(1) holds.

What is ϕQ
′

2 ? Let it be:

ϕQ
′

2 (p0, p1, . . . , pω) def= [ϕQ2 (p0, . . . , pω) or
“there are M,p, q such that: M is a str Q–candidate and
p ∈ QM and q =

(
p &

∧
I∈pdac(p,M,Q)

∨
r∈I[M ]

r
)

satisfying q ≤Q′

pω and pn ∈ (Q′)M and for m < n < ω, in M |= “p, pn, pm
has no common upper bound” and for some
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J ∈ pdac(p,M,Q), if r ∈ J [M ] then there is ` such that
M |= “p` ≤Q′ r]”.

To show that ϕQ
′

2 is upward absolute for Q′–candidates suppose that N is
a Q′–candidate and N |= ϕQ

′

2 (p0, p1, . . . , pω). Then, in N , if ϕQ2 (p0, . . . , pω)
holds we are done easily so assume the second clause in the definition of
ϕQ
′

2 holds, say for M , p, q. So in particular, in N , M is a str Q—candidate,
p ∈ Q, q ∈ Q′ and for some J ∈ pdac(p,M,Q) we have:

if r ∈ J [M ], then there is ` such that p` ≤Q′ r.

By the known upward absoluteness all those statements hold in V too, and
in any Q′-candidate N ′ satisfying N ⊆ N ′. Next we prove that

(�) ϕQ
′

2 (p0, p1, . . . , pω) implies {p0, . . . } is a predense antichain in Q′ above
pω, inside N ′, where N ′ is a Q′–candidate or N ′ is V.

So assume (ignoring the trivial case) that ϕQ
′

2 (p0, p1, . . . , pω) holds as wit-
nessed by N and p, q ∈ QN and J ∈ pdac(p,N,Q).

Let G′ ⊆ Q′ be generic over V or just G′ ⊆ (Q′)N ′ generic over N ′, such
that pω ∈ G′. Let G be G′ ∩ QN ′ . Now clearly G′ is a subset of QN ′ , and
by part (1) (which holds also in every ZFC−∗ –candidate) we know that G
is ≤QN′ -directed, and moreover is generic over N ′. Similarly, as pω ∈ G′

hence pω ∈ G, and clearly there is q′ ∈ G such that pω ≤Q′ q′. But q ≤Q′ pω
(by the choice of N, p, q,J ). As ≤Q′ is transitive, clearly q ≤ q′ for ≤Q′ ,
and so (by clause (b) (γ) of Definition 5.2 of the quasi order ≤Q′) there is
q′′ ∈ Q such that q′′ ≤Q q′ and q′′ is explicitly 〈N,Q〉–generic. As q′′ ≤Q q′,
q′ ∈ G and G is a subset of QN generic over N , clearly q′′ ∈ G. So G ∩QN
is generic over N and of course p ∈ G ∩QN .

Now

(∗) if q′∗ ∈ G′ ∩ (Q′)N , then for some q∗ ∈ G∩QN we have N |= q′∗ ≤Q′ q∗.

[Why? If q′∗ ∈ QN we let q∗ = q′∗, and we are done. So we may assume that
for some M,p∗ we have

N |= “ q′∗ =p∗&
∧

I∈pdac(p,M,Q)

∨
r∈I[M ]

r and M is a Q–candidate and

p∗ ∈ QM” .
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In N we can define

J = {r ∈ Q : r satisfies one of the following:
(a) r, p∗ are incompatible (by ≤Q),
(b) p∗ ≤ r and for some I ∈ pdac(p∗,M,Q) we have

r 
Q |G
˜
Q ∩ IM | 6= 1

(c) for some r′, p∗ ≤Q r′ ≤Q r′′ ≤Q r and for some
Q–candidate M ′∗ we have r′,M ∈M ′∗ and
M ′∗ |= “ p∗ ≤ r′ and r′ is 〈M,Q〉–generic and is above p∗ ”
and r′′ is explicitly 〈M ′∗,Q〉–generic}

Clearly N |= “J is a dense open subset of Q” (recalling that N is a str Q–
candidate). But G∩QN is generic over N and hence there is r∗ ∈ IN ∩G, so
r∗ satisfies (a) or (b) or (c). If it satisfies clause (a), then p, r∗ ∈ G∩QN but
G ∩QN is generic over N , so they are compatible in QN , a contradiction.

If r∗ satisfies clause (b) say for I, then

N |= r∗ 
Q “G
˜
∩ IM is not a singleton ”,

hence N〈G ∩ QN 〉 |= “(G ∩ QN ) ∩ IM is not a singleton”. Therefore (by
absoluteness) N ′[G] |= “G ∩ IM = (G ∩QN ) ∩ IN is not a singleton”. But
q′∗ ∈ G ∩ QN , so we may easily show that “G ∩ QM ⊆ QM is generic over
M”, a contradiction.

So necessarily r∗ satisfies clause (c), say for r′, r′′,M ′∗. Now as r∗ ∈ G
and

N |= “ r′′ is explicitly 〈Q,M ′∗〉–generic above r′ ”

and G ∩ QN is generic over N , and r′ ≤Q r′′ ≤Q r∗ ∈ G, clearly G ∩ QM
is generic over M . Moreover, N |= q′∗ ≤Q′ r∗ because pdac(p∗,M,Q) ⊆
pdac(r′,M ′∗,Q) (and read clause (b)(γ) of Definition 5.2), so r∗ is as required
and (∗) holds.]
(∗∗) If I ∈ pdac(p,Q′, N), then G′ ∩ IN is a singleton.
[Why? In N define

I0 = {r ∈ Q : r is incompatible with p, or r is above p and
above some member of I},

so N |=“ I0 ⊆ Q is dense open ”, so there is a maximal antichain I1 ⊆ I0 of
Q′ in N . Choose such I1 so G∩IN1 is a singleton say {r∗}. As “G∩QN is a
subset of QN generic over N”, clearly r∗ cannot be incompatible with p (in
N sense), hence r∗ (by the definition of I0) is above p∗ and r∗ is, in N , ≤Q′–
above some member r of IN , so G′∩IN ⊇ {r} 6= ∅. If also r′ ∈ G′∩IN \{r}
we can find r2, r′ ≤NQ r2 ∈ QN ∩ G′ = QN ∩ G. Similarly we can find r3

such that p ≤NQ r3 ∈ QN ∩G′ = QN ∩G. So p, r3, r∗ ∈ QN ∩G′ = QN ∩G,
but there is no common upper bound in QN (as in (Q′)N , r3, r∗ are above
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r′, r ∈ IN and N |= I is a predense antichain above p). But, as said above,
QN ∩G is generic over N , giving a contradiction. Thus (∗∗) holds.]

It follows from (∗∗) that G′ ∩ (Q′)N is generic over N .
(∗ ∗ ∗) {pn : n < ω} ∩G′ is a singleton.

[Why? The intersection has at most one member as for any n < m < ω,

N |= “{p, pn, pm} has no common upper bound in Q′ ”,

so as G′ ∩ (Q′)N is generic over N we are done. The intersection has at
least one member as by the definition of ϕQ

′

2 there is J ∈ pdac(p,N,Q)
witnessing this so in particular each member of JN is above (by ≤NQ′) some
pn, but

JN ∩G′ 6= ∅ & G′ ∩ (Q′)N is ≤NQ′–downward closed (and ≤NQ′-directed).

Together we are done.]
We are left with clause (c)+ but its proof is actually included in the proof

of (b)+.

3) Similar proof. �5.4

Discussion 5.6. The closure from 5.2 is somewhat artificial and we cannot
express in it Borel compositions of conditions, i.e., we may like to be closer
to the free limit of [25, IX, §1]; a natural closure is Q̂ from part (3) of
Definition 5.7 below. Note that there: cl1(Q) cannot serve as a forcing
notion as it contains “false” (e.g., the empty disjunction), cl2(Q) is the
reasonable restriction, and cl3(Q) has the same elements but more “explicit”
quasi order. We do not define a quasi order on cl1(Q), but it is natural to
use the one of cl2(Q) adding: ψ ≤ ϕ if ϕ ∈ cl1(Q) \ cl2(Q). No harm
in allowing in the definition of cl1(Q) also ¬ (the negation). The previous
cl(Q) is close to cl3(Q).

Definition 5.7. Let Q be a forcing notion.
1. Let cl1(Q) be the closure of the set Q by conjunctions and disjunctions

over sequences of members of length ≤ ω [we may add: and ¬ (the
negation)]; wlog there are no incidental identification and Q ⊆ cl1(Q).

2. For a G ⊆ Q (possibly outside V) and ψ ∈ cl1(Q) let ψ[G] be the truth
value of ψ under G where for ψ = p ∈ Q, ψ[G] is the truth value of
p ∈ G. (We will use t for “true”.)

3. Q̂ = cl2(Q) = {ψ ∈ cl1(Q) : for some p ∈ Q we have p `“ψ[G
˜
Q] =

t”} is ordered by ≤Q̂=≤Q2 defined by:

ψ1 ≤Q̂ ψ2 ⇔ (∀p ∈ Q)[p `Q “ψ2[G
˜
Q] = t” ⇒ p `Q ‘‘ψ1[G

˜
Q] = t”].

4. Let Q be explicitly nep. We let cl3(Q) be the following forcing notion:
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(a) the set of elements is cl2(Q) but now the formula ϕ(x) says that
“there are q, r̄ such that r = 〈rn,` : n < ω, ` < ω〉, for each
n < ω the sequence 〈rn,` : ` < ω〉 is explicitely a predense maximal
antichain above q and they give explicit witnesses for the truth
value of ψ being truth21,”

(b) the order ≤Q̂3 =≤Q3 =≤cl3(Q)
3 =≤cl3(Q) is the transitive closure of ≤Q̂0

which is defined by
ψ1 ≤Q̂0 ψ2 iff one of the following occurs
(i) ψ1, ψ2 ∈ Q and ψ1 ≤Q ψ2,
(ii) ψ1 is a conjunct of ψ2 (meaning: ψ1 = ψ2 or ψ2 =

∧
n<α

ψ2,n,

and ψ1 ∈ {ψ2,n : n < α}),
(iii) ψ2 ∈ Q and there is a sequence r̄ = 〈rn,` : n < ω, ` < ω〉 such

that together with ψ2 witness that ψ1 ∈ Q22.

Proposition 5.8. 1. Q ⊆ Q̂ as sets, ≤Q̂ is a quasi order, and ≤Q̂ |̀Q =
{(p, q) : q `Q“p ∈ G

˜
Q”} and Q is a dense subset of Q̂, and 
Q̂ “G

˜ Q̂
∩Q

is a generic subset”, so if Q is separative, then: ≤Q̂ |̀Q =≤Q.
2. Assume Q is temporarily explicitly nep. Then the two definitions of

the set of elements of cl3(Q) given in clause (a) of Definition 5.7 are
equivalent, and:
(a) Q ⊆ cl3(Q) as sets and ≤Q3 |̀Q ⊇≤Q and ≤Q3⊆≤Q̂,
(b) Q is a dense subset of cl3(Q) and p ∈ cl3(Q) ⇒ p ∈ cl2(Q).

3. Assume in addition
(~3) Q is correctly explicitly nep in V and moreover this holds in every

Q–candidate.
Then
(d) if N is a Q–candidate and N |=“p ∈ cl3(Q)”, then for some q ∈ N

we have N |=“p ≤cl3(Q) q & q ∈ Q”,
(e) cl3(Q) is explicitly nep and correct.

Proof. Straight, e.g.,
(2) The equivalence: The implication “⇐” is trivial. Assume ψ ∈
cl2(Q), so for some p ∈ Q we have p `Q“ψ[G

˜
Q] = t”. There is a Q–

candidate M to which p and ψ belong (as ZFC−∗ is ∅–good). Let p1 be such
21That is, for each subformula ψ′ of ψ for some n(∗) < ω, for every `(∗) < ω, for some

n we have rn(∗),`(∗), 〈rn,` : n = k mod m, ` < ω〉 explicitely witness the truth value of ψ′

is, say, tψ′,n(∗),`(∗), which is naturally defined by induction on formulas. This is done for
variety, as we could have acted as in Definition 5.2.

22If in clause (a) above we have choosen to immitate Definition 5.2, then we would
have said here: ψ2 ∈ Q and there are a Q–candidate M and p such that p, ψ1 ∈ M ,
p ∈ QM , p ≤Q ψ2, ψ2 is explicitly 〈M,Q〉–generic and M |=“p ` ψ1[G

˜
Q] = t”.
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that

N |= “ p1 ∈ Q and [p1 `Q ψ[G
˜

] = true or p1 `Q ψ[G
˜

] = false] ”.

Let q be explicitly 〈M,Q〉–generic satisfying Q |= p1 ≤ q. If N |= “ p1 `Q
ψ[G

˜
] = false ”, let G ⊆ Q be generic over N such that q ∈ G. Then G∩QN is

generic over N , so N〈G〉 |= “ ψ[G] = false ”. But N [G] |= “ ψ[G] = true ”,
contradicting easy absoluteness. Thus N |= “ p1 `Q ψ[G

˜
] = true ”.

Clause (b): Let q be as said in ϕ0 (and I ∈ pdac(p,N,Q) be as required).
By clause (iii) of 5.7(4)(b), we have cl3(Q) |=“ψ ≤ q”, as required.
(3) Clause (d): By the formula defining cl3(Q).
Clause (e): Let ϕ3

0(x) be as in the definition23. Let ϕ3
1(x, y) say the

definition of ≤Q3 . Lastly, ϕ3
2(〈xi : i ≤ ω〉) says that for some 〈yi : i ≤ ω〉 we

have

ϕQ2 (〈yi : i ≤ ω〉), yω ≤Q3 xω (i.e. ϕ3
1(yω, xω)) and

∧
i<ω

∨
j<ω

xj ≤Q3 yi.

5.8

Remark 5.9. Instead of using cl(Q) from 5.2 (or the ones from 5.7) we can
have in ϕ̄, a function which from an ω–list of the elements of N and from p
computes an element of Q having the role of p &

∧
I∈pdac(p,N,Q)

∨
r∈I[N ]

r. The

choice does not seem to matter. Similarly to 4.2 we define:

Definition 5.10. For a forcing notion P and a cardinal (or ordinal) κ, we
define what is an hc-κ-P–name (here hc stands for hereditarily countable),
and for this we define by induction on ζ < ω1 what is such a name of depth
≤ ζ.
ζ = 0: It is α, that is α̌ = (0, α), for some α < κ and α̌[G] = α.
ζ > 0:
(α) It has the form τ

˜
= {〈pi, τ

˜
i〉 : i < i∗}, where i∗ < ω1, pi ∈ cl1(P) from

Definition 5.7(1) and τ
˜
i an hc-κ-P–name of some depth < ζ; that is

for G ⊆ P generic over V, we let

τ
˜

[G] = {τ
˜
i[G] : pi[G] = t and τ

˜
i[G] is defined }.

(β) it has the form τ
˜

= {(pi, τ
˜
i) : i < i∗}, where i∗, pi, τi are as above

and τ
˜

[G] = τ
˜
i[G] if pi[G] is truth and j < i ⇒ pi[G] =false, and is ∅

otherwise, i.e., if j < i⇒ τ
˜

[G] =false.
An hc-κ-P–name is an hc-κ-P–name of some depth < ω1. An hc-κ-P–name
τ
˜

has depth ζ if it has depth ≤ ζ, but not ≤ ξ for ξ < ζ.
23If we have immitated Definition 5.2 we should say that there is a Q–candidate M

such that M |=“x ∈ cl3(Q)”.
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Remark 5.11. 1. Why did we use above p ∈ cl1(Q) and not p ∈ cl3(Q)?
As the membership in cl1(Q) is easier to define and we do not need to
worry if pi is “false”.

2. The undefined case is not necessary as we can add ψi∗ =
∧
i<i∗
¬pi.

Proposition 5.12. 1. If τ
˜

is an hc-κ-P–name and G ⊆ P is generic
over V then τ

˜
[G] ∈ H<ℵ1(κ). If in addition P ⊆ H<ℵ1(κ), then

τ
˜
∈ H<ℵ1(κ).

2. Let ϕ(x0, . . . , xn−1) be a first order formula and τ
˜

0, . . . , τ
˜
n−1 be hc-κ-

P–names. Then there is p ∈ cl1(P) such that for every G ⊆ P generic
over V:(⋃
`<n

Tcord(τ
˜
`[G]),∈

)
|= ϕ(τ

˜
0[G], . . . , τ

˜
n−1[G]) iff p[G] = t.

(So if p /∈ cl2(P), then we get always “false”.)
3. The set of hc-κ-P–names is closed under the following operations as
hc− κ-objects, i.e., recalling ordinals are urelements (see 0.6, 2.12)
(a) difference,
(b) union and intersection of two, finitely many and even countably

many,
(c) definition by cases: for pn ∈ cl1(P) and hc-κ-P–names τ

˜
n (for

n < ω) there is a hc-κ-P–name τ
˜

such that for a generic G ⊆ Q
over V we have

τ
˜

[G] is :


τn
˜

[G] if pn[G] = t &
∧
`<n

¬p`[G] = t

∅ if
∧
`<ω

¬p`[G] = t.

Proof. Straight. 5.12

Definition 5.13. 1. A forcing notion Q (or ϕ̄) is temporarily, explicitly
straight (κ, θ)–nep for B if: all the conditions from Definition 1.3(1),
(2) (for explicitly (κ, θ)–nep) hold but possibly κ ⊂ B ⊆ H<ℵ1(κ); and
(d) Q ⊆ H<ℵ1(θ) (i.e., Q is simple) and ℵ1 + θ ≤ κ,
(e) for ` < 3 the formula ϕQ` (x̄) is of the form

(∃t)[t ∈ H<ℵ1(κ) & t = Tcord(t) & (∃s)((s ∈ t ∨ s = t) ∧ ψQ` (x̄, s))],

where in the formula ψQ` the quantifiers are of the form (∃s′ ∈ s)
and the atomic formulas are “x ∈ y”,“x is an ordinal”, “x < y are
ordinals” and those of BN ,CN , i.e., for BN |= R(x).
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2. In clause (e) of part (1), we call such t an explicit witness for ϕQ` (x̄).
We call t a weak witness, if for every Q–candidate N satisfying x̄ ∈ N ,
if t ∈ N then N |= “ϕQ` (x̄) & t is hc” and Bt ⊆ BN . We call such t
an almost witness if:
(i) ` = 0 and it is an explicit witness, or
(ii) ` = 1 (so x̄ = 〈x0, x1〉) and t gives k, y0, . . . , yk, t0, . . . , tk−1,

s0, . . . , sk such that: s` explicitly witnesses ϕ0(y`), t` explicitly
witnesses y` ≤Q y`+1 and y0 = x0, yk = x1 (so y` ∈ t, s` ∈ t,
x` ∈ t),

(iii) ` = 2 (so x̄ = 〈xi : i ≤ ω〉) and t gives 〈yi : i ≤ ω〉, 〈ki : i < ω〉,
〈mi : i < ω〉, 〈si : i ≤ ω + 1〉 such that sω is a witness as in (i)
or (ii) to yω ≤ xω, sω+1 is an explicit witness to ϕQ2 (〈yi : i ≤ ω〉),
mi 6= mj ⇒ ki 6= kj for i 6= j < ω, si is an almost witness to
xmi ≤Q yki for some ki < ω (so also they all belong to t, as well
as witnesses to xi, yj ∈ Q).

3. We say that Q is very straight if it is straight and in addition
(f) for some ord-hc Borel24 functions B1,B2, if N is a Q-candidate,

ā = 〈ai : i < ω〉 list N , and p ∈ QN , then q = B1(p,N, ā) is
explicitly 〈N,Q〉–generic, and B2(p,N, ā) is a witness.25 For such
q we say it is canonically generic [the main case is as in Definition
5.2, Proposition 5.4].

We can make yB depend on N ∩ Ord, i.e., for each such intersection
we give a different ord–hc Borel function.

4. In part (3) we say that the B1,B2 witness Q is very straight. For
notational simplicity, if not said otherwise they are coded uniformly
by B � ω.

Proposition 5.14.
1. Assume Q is temporarily explicitly straight (κ, θ)–nep for B. Then Q

is temporarily simple explicitly (κ, θ)–nep for B.
2. Assume Q is temporarily correctly simple explicitly (κ, θ)–nep for B

and θ + ℵ1 ≤ κ. Then we can find ϕ̄′ such that
(a) Qϕ̄′ = Q (i.e., same members, same quasi order)
(b) Qϕ̄′ is temporarily straight explicitly (κ, θ)–nep for B and is cor-

rect.
[Nevertheless, “simple” and “straight” are distinct as properties of
(B, ϕ̄, θ), i.e., the point is changing ϕ̄.]

3. In Proposition 5.4, cl(Q) is very straight for ZFC−∗ (not ZFC−∗∗) with
witnesses as in the proof there.

24See Definition 0.5, B1(p,N, v̄) means that B1(x̄), where x̄ is as in 5.17 below.
25That is, it witnesses p ≤ q and ϕ2(〈pI,n : n < ω〉, q) for some sequence 〈pI,n : n < ω〉

of members of IN for every I ∈ pdac(p,N,Q).
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4. Assume that Q is correct , simple and explicitely nep. Then cl3(Q) is
simple, correct and very straight.

Proof. (1) We have to check the demands (α), (β), (γ) in Definition 1.3(5).
Clause (α) is part of preliminary demands in Definition 5.13(1).
Clause (β) holds by (d) of Definition 5.13(1).
Clause (γ) holds by clause (e) of Definition 5.13(1).
(2) Let ϕ′0(x) say that “there is N , a (B, ϕ̄, θ)–candidate, with |N | ∈
H<ℵ1(κ), |N | = Tcord(|N|), N ∩ ω1 ∈ ω1 and N |= ϕ0(x)”. We define
ϕ′1(x, y), ϕ′2 similarly. Now check.
(3), (4) Straightforward. 5.14

Definition 5.15. Let cl′(Q) be defined as in Definition 5.2 but the candi-
dates mentioned are ord-transitive and from26 Hℵ1(κ′(Q) + ω1).

Proposition 5.16. 1. Assume
(a) ZFC−∗ is normal,
(b) Q = (B, ϕ̄, θ) is correct,
(c) Q is simple nep in every K-extension.
Then we can define Q′ = (B′, ϕ̄′, θ) and normal, ZFC−∗∗ such that
(α) Q′,Q are equivalent as forcing notions in every K-extension of V,
(β) ZFC−∗∗ ` “ZFC−∗ and ZFC−∗ is weakly normal for Q′”,
(γ) Q′ as a forcing notion is cl′(Q) from Definition 5.15 above,
(δ) Q′ is correct simple very straight explicitly nep,
(ε) ZFC−∗∗ is normal for Q′,
(ζ) κ(B) = κ′(Q′) + ω1, with little more work κ(B) = κ′(Q) suffices.

2. Similarly for semi-normal.

Proof. Let B′ has universe |B|∪(κ′(Q)+ω1) so κ(Q′) = κ′(Q′) = κ(B′) and
it expand B,C and (κ′(Q) +ω1, <). Let ϕ′0(x) say that x ∈ cl′(Q) where for
p ∈ cl′(Q) a witness is naturally defined. Let ϕ1(x, y) be defined similarly as
in Definition 5.2, i.e., it contains the finite chain of the “easy” cases which
witness x ≤Q y. Let ϕ′2(〈xi : i < ω〉, x) say that for some ord-transitive
Q-candidate M , p ∈ QM , x = p &

∧
I∈pdac(M,Q)

∨
r∈I[M ]

r and {xi : i < ω} is a

list enumerating IM for some I ∈ pd(N,Q). The proof as in 5.4. 5.16

A variant of “straight” (for which a parallel of 5.18 works) is:

Definition 5.17. 1. Q, i.e., (B, ϕ̄, θ) = (BQ, ϕ̄Q, θQ) is real nep when-
ever ϕ̄ = (ϕ0, ϕ1, ϕ2,B), and (Q-candidate means (B, ϕ̄, θ)-candidate):

26may use coding to show κ′(Q) suffices.
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(a) ϕ0 defines the set of elements of Q which is upward absolute for
Q-candidate and for simplicity x ∈ Q⇒ x ∈ H<ℵ1(θ),

(b) ϕ1 defines the quasi order ≤Q and is upward absolute for Q-
candidates,

(c) there is an ord-hc Borel function B such that if N is a Q-candidate
and ā = 〈an : n < ω〉 list of the members of N and x̄ is an ω-list
as below then B(x̄) is (N,Q)–generic where x̄ lists:

(α) a′n =

{
an if N |= an ∈ H<ℵ1(κ′)
∅ if otherwise

,

(β) truth value(an ∈ am),
(γ) (R, ā) such that BN |= R(ā),
(δ) (R, ā) such that CN |= R(ā),

2. We add “explicitly” if we have ϕ2 as usual, B(x̄) is explicitely (N,Q)–
generic and B(x̄) is explicitly given, i.e., we have (BQ, ϕ̄Q, θQ,BQ).

Claim 5.17.1. 1. The forcing notions from §3 are real nep.
2. Real nep implies very straight correct (and more).

Proof. Should be clear.

Definition/Theorem 5.18. We assume (not really necessary but in the
cases we have in mind)

(∗) ZFC−∗ is normal and nice to forcing notion of cardinality ≤ λC (λC

an individual constant of C) and ∆1,∆2 are the set of quantifier free
formulas,

or just
(∗)− ZFC−∗ is nice27 to forcing notion cardinality ≤ λC (an individual con-

stant of C) and ∆1,∆2 are the set of quantifier free formulas.
By induction on the ordinal α we define and prove the following:
(A) [Definition] Q̄ = 〈(Pi,Q

˜ i
, ϕ̄i,B

˜
i,Bi, κi, θi) : i < α〉 is nep–CS–iteration

for ZFC−∗ and C.
(B) [Definition] κQ̄ = κ[Q̄], in short κα abusing notation when α = lg(Q̄).
(C) [Definition] We define BQ̄ and call it in short also Bα when α =

`g(Q̄) and Q̄ is as in clause (A).
(D) [Definition] Limnep(Q̄) = Pα for Q̄ as in clause (A).

So ϕ̄Pα is a temporary (Bα, κα)-definition of a forcing notion (so
BPα = Bα, θPα = κα, ϕ̄Pα = (ϕPα0 , ϕPα1 ) but ϕPα2 is defined later and

27We can replace this by demanding below that for each β, if N is Bβ–candidate,
Gβ ⊆ Pβ generic over V, N |=“R a forcing of cardinality ≤ (κβ)ℵ0” (or more restricted,
like Pβ), and G ∩ R is generic over N then N [G] is a Q

˜
β [Gβ ]–candidate.
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also for each β ≤ α we define Pαβ , a temporary (Bα, κβ)-definition of
a forcing notion (so BP

α
β = Bα, θPα = κβ) (this is a variant of Pβ, the

same as forcing notion; naturally ϕ̄P
α
β has β as a parameter).

(E) [Claim] If Q̄ is a nep–CS–iteration, and β ≤ α = `g(Q̄), then Q̄ |̀β is
a nep–CS–iteration, Limnep(Q̄ |̀β) = Pβ if β < α; and Pβ ⊆ H<ℵ1(κβ).
For β < α, (Bα

β , ϕ̄
Pαβ , κβ) is another definition of Pβ as in claim

1.1 for quantifier free formulas, moreover the derivation of ϕ̄P
α
β from

(Bα, ϕ̄
Pβ , κβ) is uniform. So Pαβ is explicitly straight correct κα–nep.

(F) [Claim] For Q̄ as in (A), a Bα–candidate N , γ ≤ β ≤ α and p, q ∈ Pβ
we have:
(a) p is a function with domain a countable subset of β (more, see in

clause (D) below ),
(b) Pβ is a forcing notion (i.e. a quasi order) satisfying (d) + (e) of

5.13 and (a), (b), (b)+ of 1.3(1),(2),
(c) p |̀ γ ∈ Pγ and Pβ |=“p |̀ γ ≤ p”,
(d) Pγ |=“p |̀ γ ≤ q” implies Pβ |=“p ≤ (q ∪ p |̀ [γ, β))”,
(e) Pγ ⊆ Pβ and even Pγ <◦ Pβ,
(f) p ∈ Pβ iff p a function with domain ∈ [β]≤ℵ0 and

ζ ∈ Dom(p) ⇒ p |̀ (ζ + 1) ∈ Pζ+1,

(g) |Pβ| ≤ (κβ)ℵ0 .
(G) [Definition] For a Bα–candidate N and β, γ such that γ < β ≤ α,

γ ∈ N , β ∈ N , and q ∈ Pβ, p ∈ N such that N |=“p ∈ Pβ” and q |̀ γ is
〈N,Pγ〉–generic we define when q is [γ, β)–canonically 〈N,Pβ〉–generic
above p. We also define ϕPα2 .

(H) [Theorem]
(a) If q ∈ N is a [γ, β)–canonically 〈N,Pβ〉–generic above p, then q is
〈N,Pβ〉–generic and Pβ |= p ≤ q.

(b) “q is [0, β)-canonically 〈N,Pβ〉–generic above p” can be defined as
in 5.13(3), i.e., by an ord-hc-κ-Borel function.

(c) If Gβ ⊆ Pβ is generic over V and β < α, then Q
˜
β[Gβ], i.e., defining

it by its defining formulas (ϕ̄β), and Pβ+1/Gβ are essentially the
same modulo renaming.

(I) [Theorem] Pα is explicitly straight correct κα–nep for (Bα, ϕ̄Pα , κα)
with ZFC−∗ ; in fact very straight.

(J) [Theorem] For any κ ≥ κα,

`Pα “ (H<ℵ1(κ))V[Pα] = {τ
˜

[G
˜
Pα ] : τ

˜
is an hc–κ–Pα–name })”.

(K) [Definition] For a nep-CS-iteration Q̄ = 〈Pi,Q
˜
′
i, ϕ̄i,B˜ i, κi, θi : i < α〉

we define F [Q̄] = 〈P′i,Q
˜
′
i : i < α〉.



226 S. SHELAH

(L) [Claim] F [Q̄] is CS iteration such that Pi ⊆ P′i even Pi is a dense
subset of P′i for i ≤ α.

Let us carry out the clauses one by one.

Clause (A), Definition: Q̄ = 〈(Pi,Q
˜ i
, ϕ̄i,B

˜
i, κi, θi) : i < α〉 is a nep–

CS–iteration if:
(α) β < α ⇒ Q̄ |̀β is a nep–CS–iteration,
(β) if α = β + 1 then

(i) Pβ = Limnep(Q̄ |̀β) (use clause (D))
(ii) ϕ̄β = 〈ϕβ,` : ` < 3〉 is formally as in the definition of explicitly nep

(the substantial demand is (v) below, but the parameter Bβ is a
name!)

(iii) κβ, θβ are infinite cardinals (or ordinals)
(iv) B

˜
β is a Pβ–name of a model with universe28 κβ whose vocabu-

lary is a fixed countable set τ0 ⊆ H(ℵ0) (fixed means “does not
depend on β”) definable in C |̀ω, but for each atomic formula
ψ(x0, . . . , xn−1) and α0, . . . , αn−1 < κβ the name of the truth
value B

˜
β |=“ψ(α0, . . . , αn−1)” is an hc–κ-Pβ–name (i.e., is de-

fined by one p = pβψ∗ ∈ cl1(Pβ)) where ψ∗ = ψ(α0, . . . , αn−1) so
actually B

˜
β is the function

(β, ψ∗(α0, . . . , αn−1)) 7→ pβψ∗(α0,... ,αn−1);

this function is from V.
(v) `Pβs“ the Q

˜ β
defined by ϕ̄β, is temporarily very straight29 correct

explicitly (κβ, θβ)–nep as witnessed by B
˜
α ”, so we should add it

to Q̄ or to ϕ̄. But
(α) B

˜
α is a Pβ–name such that we can write it as an ord–hc Borel

function having extra ω variables in which we put pn ∈ cl1(Pβ),
(β) B

˜
α may depend on a countable set of ordinals (the N ∩Ord).

(vi) Qβ has a minimal element ∅Qβ , e.g., just ∅ for notaional simplicity,
(γ) ZFC−∗ is good for {Pβ : β < α} or even for forcing notions of cardinality
≤ Σ{κℵ0

β : β < α}.

Clause (B), Definition: We define κα = sup[{κi+1, θi+1 : i < α}∪{α}]
(ordinal is here more natural; of course, if the result is an ordinal we can
replace it by min{κ : κ a cardinal κ > α and κ > κi, θi for i < α}. We use
κi + 1, θi + 1 just to clarify, “Bα codes them”. We could here allowed κ

˜
i,

θ
˜
i to be hc–κα+1

i − Pi–names but then let κα = min{ζ : |ζ| ≥ α and for any
28The reader can concentrate on this case, we shall just remerk on the changes needed

to assume just that the model has universe just a subset ofH<ℵ1(κβ)V[G
˜ Pβ ] which includes

κβ .
29There are many such by 5.14(3).
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β < α, `Pβ“ κ
˜
i, θ

˜
i are < ζ ”}. Why the “< ζ” instead of “≤ ζ”? Formally

to allow such names).

Clause (C), Definition: We define Bα = BQ̄, a model with universe
included in H<ℵ1(κα) or write κα and the usual vocabulary such that:

(∗) Bα codes (by its relations uniformly) α, {(β, ϕ̄β, κβ, θβ) : β < α} and
〈B
˜
β : β < α〉; i.e., for every atomic formula ψ = ψ(x0, . . . , xn−1) in

the vocabulary τ0 (so is of B
˜
β), for some function symbol Fψ we have:

if α` < κβ for ` < n then Fψ(x̄)(β;α0, . . . , αn−1) is pβψ(α0,... ,αn−1) (see
clause (A)(iv)) and

if the B’s are on κ, we have also Fψ,`, functions of Bα

such that:
if α` < κβ for ` < n then {Fψ(β, `, α0, . . . , αn−1) :
` < ω} lists the ordinals in Tcord(pβψ(α0,... ,αn−1)) (the
condition in Pβ saying. . . ) and F ′ψ codes how p was
gotten from them (so we need κα ≥ ω1).

So in any case
(∗∗) if N is a Bα–candidate, and β ∈ α ∩ N then N essentially is a Bβ–

candidate. Better, note that as Bβ is so easily definable in Bα by
some parameter, we can for Pβ use Bα-candidates to which β belongs.
Formally done in clause (D) below.

Similarly with the 〈B
˜
β : β < α〉.

Clause (D), Definition:
Case 1: If α = 0 then Pα = {∅}.
Case 2: If α = β + 1 then

Pα =
{
p : p is a function, Dom(p) ⊆ α, p |̀β ∈ Pβ and if β ∈ Dom(p)

then we have r = rp,β ∈ cl1(Pβ) determined by p such that
(α) if q appears in r then Dom(q) ⊆ Dom(p |̀β)
(β) p(β) is defined by cases:

if r[G
˜
Pβ ] = t, then p(β) is a hc-θβ-Pβ-name in Q

˜ β
,

and an explicit witness is provided (say p(β) codes it
and having r[G

˜
Pβ ] = t says so),

if not, p(β) is ∅ = ∅Q
˜ β

= min(Q
˜ β

)
}
.

In details, p ∈ Pα if and only if p has the form p′ ∪ {〈β, {(`, x
˜
`) : ` < 3}〉}

where p′ ∈ Pβ, x
˜

0 ∈ cl1(Pβ), x
˜

1, x
˜

2 are hc–κα–Pβ–names of members of
H<ℵ1(θβ) and x

˜
0[Gβ] is the truth value of “x

˜
2[Gβ] is a witness to x

˜
1[Gβ] ∈

Qβ”, see Proposition 5.12(2) and Definition 5.13(1) clause (e).
Case 3: If α is limit, then

Pα = {p : p is a function, Dom(p) ∈ [α]≤ℵ0 and β ≤ α ⇒ p |̀β ∈ Pβ}.
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The order:
For α = 0 nothing to do.
For α limit: p ≤ q if and only if

∧
β<α

Pβ |=“p |̀β ≤ q |̀β” (equivalently:

∧
β∈Dom(p)

Pβ+1 |= “ p |̀ (β + 1) ≤ q |̀ (β + 1) ”).

For α = β + 1: the order is the transitive closure of the following cases:
(α) p ∈ Pβ, q ∈ Pα and Pβ |=“p ≤ q |̀β”,
(β) p(β) = q(β) and Pβ |=“p |̀β ≤ q |̀β”,
(γ) p |̀β = q |̀β and there is a Bα–candidate N and p′ ∈ PNα such that q |̀β

is a [0, β)–canonical (N,Pβ)–generic above p′ |̀β, hence Pβ |=“p′ |̀β ≤
q |̀β”, and (i) or (ii) where
(i) p′ ∈ Pβ and N |=“[p′ 
Pβ p(β) ≤Qβ q(β)]”,
(ii) N |=“p′ � β 
Pβ “p(β) ≤Qβ p′(β)” and q(β) is canonically generic

for (Qβ[Gβ], N [G
˜
β]) over p(β), i.e., is B

˜
Qβ
1 (p′(β), N [G

˜
β], ā[G

˜
β])

where for an ω-list of N we produce on ω–list ā of N [G
˜
β] by

a′n =

{
an N |= “an not a Pβ-name”
an〈G

˜
β〉 N |= an is a Pβ-name”.

We have so far defined Pα just as a forcing notion. But ϕPα0 is implicit in
the definition of the set of the elements, and ϕPα1 is explicit in the definition
of the orders. As for ϕPα2 we do define it, yet this will be done in clause (G),
so pedantically we should write P−α . We also have to define Pαβ for β < α,
this is obvious.

Clause (E), Claim: Trivial.

Clause (F), Claim: Subclauses (a) and (c)–(f) are trivial.
Subclause (b): Here we should be careful concerning transitivity of ≤Pβ
as we did not ask just that the order is forced but there is a hc witness.
However we define the order as the transitive closure of cases with a witness
so we can combine them, i.e., use almost witness in the sense of Definition
5.13. See more in the proof of clause (I).

Clause (G), Definition:
Case 1: For β < α note that N is also a Bβ–candidate as β ∈ N and use
the definition for Q̄ |̀β, i.e., the induction hypothesis.
Case 2: If γ = β = α – trivial.
Case 3: For β = α, α = 0 – trivial.
Case 4: Suppose γ < β = α, α = β′ + 1.
Then: q |̀β′ is [γ, β′)–canonically 〈N,Pβ〉–generic and for some τ

˜
, and r

˜
=

〈(pi, r
˜
i) : i < ω〉 we have
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(α) {pi : i < ω} list a subset of PNβ′ which is predense in it for ≤NPβ′ ,
(β) r

˜
i ∈ N and N |= “r

˜
i is an hc-κβ-Pβ-name of a member of Q

˜
β which is

above p(β),
(γ) r

˜
is r

˜
i for the first i such that pi ∈ G

˜
Pβ′′ and ∅Q

˜
β

if there is no such i

and q(β) = B
˜
Q
˜
β

1 (τ
˜
, N, ā[G

˜
β]) for some ω-list ā of N .

(δ) Dom(q) \ γ = N ∩ γ \ β
Case 5: γ < β = α, β a limit.
Say that diagonalization was used (and for β′ ∈ N ∩β\γ use the induction);
see more in clause (H) below.

Lastly we define ϕPα2 (〈pi : i < ω〉_〈q〉) it say that for some Bα-candidate
N , which is hereditarily countable, q is [0, α]-canonically 〈N,Pα〉–generic
(above some p ∈ PNα ) and {pi : i < α} list some subset of PNα predense
under ≤NPα (or dense open if you prefer). Note that it does not matter if
we use N or its ord–hereditary collapse (see 4.7; this applies to the proof of
(H)).

Clause (H), Theorem: First about the [0, β]–canonical 〈N,P〉–generic
being defined by a witness the zero case is trivial. In the limit case this
holds as all the construction is carried in N , and any ω-list of the members
of N (and N ∩Ord) suffices to make all the free choices. So we first compute
from it a set 〈βn : n < ω〉 of ordinals in N ∩ β such that β0 = γ, βn < βn+1
and (∀β′ ∈ N ∩β)(∃n)[β′ < βn], recall that by the definition of Bα, N ∩β is
closed under the successor function hence N ∩β has no last element. Second
choose 〈In : n < ω〉 listing pdac(N,Pβ). Third we choose 〈p

˜
n : n < ω〉 by

induction in n, such that p
˜
n is a hc-κβn-Pβn-name of a member30 of PNβ ,

p
˜

0 = p, p
˜
n+1 is the first member of PNβ (by the list above) such that if

Gβ ⊆ Pβ is generic over V, then p
˜
n+1 |̀βn = p

˜
n |̀βn, and for some I, N |=

“I is a maximal antichain of Pβn and if r ∈ I ∩ G
˜
βn then p

˜
n+1 is the first

p′′ ∈ PNβ /G˜ βn satisfying p
˜
n[Gβn ] ≤Pβ p′ ∈ In, p′ |̀βn ≤Pβnr. The successor

case is easy using B
Qβ′
1 .

We turn to proving that canonically generic is generic, that is we have to
prove

⊗0 if N is a Bβ-candidate γ ≤ β ≤ α, {γ, β} ⊆ N ∩ (α+ 1), and q ∈ Pβ is
canonically [γ, β]–generic above p, p ∈ PNβ , then q is 〈N,Pβ〉–generic,
i.e., q 
 “G

˜
Pβ ∩ Pβ is not disjoint to IN for IN ∈ pd(N,Pβ) and is

directed by ≤Pβ and p belongs to it”.

We do it by the same cases as in clause (G).

30but in general, itself not a member of N
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case 1: β < α: By the induction hypothesis (pedantically we define N ′

which is the same as N except BN ′ = (Bα
β as defined inside Bα), etc or

just use “essentially a candidate”.
case 2: γ = β = α: In the Definition (G) we assume q is 〈N,Pγ〉–generic.
case 3: α = 0: Trivial
case 4: γ < β = α = β′ + 1:
So assume that Gβ ⊆ Pβ is generic over V and q ∈ Pβ. Let Gβ′ = Gβ ∩Pβ′ ,
clearly it is a generic subset of Pβ′ over V and q |̀β′ ∈ Gβ′ . By the definition
in stage G, the condition q′ = q |̀β′ is canonically 〈N,Pβ′〉–generic as N is
essentially a Pβ′-candidate. So by the induction hypotheses:
⊗1 Gβ′ ∩ PNβ′ is not disjoint to any IN , I ∈ pd(N,Pβ′) and is directed by
≤NPβ′ .

Let N+ = N〈Gβ′ ∩ PNβ′〉, so

⊗2 N+ is a generic extension of N for Pβ′ .
Now as ZFC−∗ is {Pβ}–good
⊗3 V[Gβ′ ] |= “N+ is a Q

˜
β′ [Gβ′ ]-candidate”.

So by Definition 5.13(3) clause (f) and our definition of “q is [0, β]-canonically
〈N,Pβ〉–generic” we have
⊗4 V[Gβ′ ] |= “q(β′)[Gβ′ ] is (N+,Q

˜
β′ [Gβ′ ])–generic”.

In V[Gβ′ ] we have Qβ′ = Q
˜
β′ [Gβ′ ], i.e., (B

˜
β[Gβ′ ], ϕ̄β, θβ) defines it, and

we have Q
˜
′
β′ = Pβ/Gβ′ . Now every member of Qβ′ belongs to H<ℵ1(θβ)

and has a witness in H<ℵ1(κα), a Pβ′-names say x
˜

1[Gβ′ ], x˜
2[Gβ′ ] hence by

Proposition 5.12(2), there is x
˜

0, a hc-κα-Pβ′-name of the truth value of this,
So p ∈ Gβ′ which forces x

˜
, x
˜

1, x
˜

2 to have those properties, that is x
˜

0 to be
truth. So p ∪ {〈β′, {(`, x

˜
`) : ` < 3}〉} ∈ Pα and so q = x

˜
1[Gβ′ ] ∈ Q

˜
β′ is

actually p(β′). The inverse inclusition is also easy. Similarly for the order;
so
⊗5 Qβ′ [Gβ′ ] is (essentially) equal to Pα/Gβ′ .
⊗6 Similarly inside N [Gβ′ ∩ PNβ′ ].
⊗7 Gβ ∩ IN 6= ∅ for I ∈ pdac(N, θ,Pβ).

We leave the checking to the reader as it is the same as the usual CS iteration
and prove that
⊗8 Gβ ∩ PNβ is directed by ≤NPβ

Why? Let p1, p2 ∈ Gβ∩PNβ , hence p1 |̀β, p2 |̀β ∈ Gβ′∩PNβ′ hence by ⊗1 above,
there is r∗ ∈ Gβ′ ∩ PNβ′ such that N |= “p1 |̀β′ ≤Pβ′ r and p2 |̀β′ ≤Pβ′ r”.

In V[Gβ′ ], the condition q(β′)[Gβ′ ] is 〈N+,Qβ〉–generic, by the def of
canonical generic so V[Gβ′ ] |= [q(β′)[Gβ′ ] 
Qβ “G

˜
Qβ ∩ QN

+

β is directed by
≤N+

Qβ ”]. As q ∈ Gβ we can finish.
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⊗9 p |̀β′ ∈ Gβ′ .
Why? By the inductive hypothesis.
⊗10 p(β′)[Gβ′ ] ∈ Gβ/Gβ′ .
Why? By the assumption on Bβ′ . Now, it follows from ⊗9 +⊗10 that
⊗11 p ∈ Gβ.
case 5 β = α is a limit ordinal > γ.
Should also be clear.

Clause (I), Theorem: We have defined Bα and κα (so θα = κα). The
formulas ϕPα` (` < 3) are implicitly defined (in the induction).

Why is ϕPα0 absolute enough? As the demand on p(β) above says that
rp |̀ (β+1),β , the witness for p(β) ∈ cl(Q), is such that r[G

˜
Pβ ] = t gives all the

required information.
Why is ϕPα1 absolute enough? Because the canonical genericity is about

ϕ2 and the properness requirement, see clause (G), are designed such that
they fit.

Now one proves by induction on β ≤ α:
(⊗) if N is a Bα–candidate, γ0 ≤ γ1 ≤ β, {γ0, γ1, β} ⊆ (α+1)∩N , p ∈ PNβ ,

q ∈ Pγ , p |̀ γ1 ≤ q, q is [γ0, γ1)–canonically (N,Pγ1)–generic, then we
can find q+ such that:
(α) q+ ∈ Pβ, q+ |̀ γ = q,
(β) p ≤ q+,
(γ) q+ is [γ, β)–canonically (N,Pβ)–generic.

Clause (J), Theorem: Straight.

Clauses (K),(L): Done elaborately in 5.19 below. 5.18

Proposition 5.19. Assume (∗) of 5.18 (i.e., that ZFC−∗ is normal and nice
to Pi’s for i ≤ α below). The iteration in 5.18 is equivalent to a CS iteration.
More formally, assume

Q̄ = 〈(Pi,Q
˜ i
, ϕ̄i,B

˜
i, κi, θi) : i < α〉 is a CS–nep iteration.

We can define Q̄′ = 〈P′i,Q
˜
′
i

: i < α〉 and 〈Fi : i < α〉 such that for i ≤ α
(a) Q̄′ |̀ i is a CS iteration (and P′α is the limit),
(b) Fi is a mapping from Pi into P′i, such that Dom(Fi(p)) = Dom(p) for

p ∈ Pi, mapping ∅Pi to ∅P′i (the minimal elements),
(c) if j < i then Fj = Fi |̀Pj, and p ∈ Pi ⇒ Fi(p) |̀ j = Fj(p |̀ i),
(d) Fi is an embedding of Pi into P′i with dense range,

more exactly:
(i) Pi |= p ≤ q ⇒ P′i |= Fi(p) ≤ Fi(q),



232 S. SHELAH

(ii) if p ∈ Pi and P′i |= Fi(p) ≤ p′, then for some q we have Pi |= p ≤ q
and P′i |= p′ ≤ Fi(q),

(iii) if p(γ) = ∅Qγ and p ∈ Pβ, then (Fβ(p))(γ) = ∅Pγ ,
hence
(iv) if Gi is a generic subset of Pi over V, then

{p′ ∈ P′i : for some p ∈ Gi, P′i |= p′ ≤ Fi(p)}

is a subset of P′i generic over V,
(v) if G′i is a generic subset of P′i over V, then F−1

i (G′i) is a subset of
Pi generic over V,

(e) Q
˜ i

is mapped by Fi to Q
˜
′
i
,

(f) `P′i“ Q′i is proper ”.

Proof. Straight. Still, by (simultaneous) induction on i (of course, Fi, Q̄′ � i
depend only on Q̄ � i).

Case 1: i = 0 Trivial.

Case 2: i = ε+ 1
By clause (d) for ε, Fi maps Pε–names to P′ε–names naturally. Let Q

˜
′
ε =

Fε(Q
˜
ε), it is a P′ε–name of a forcing notion, so Q̄′ |̀ i is defined naturally. So

for every p ∈ Pi we define Fi(p) by (recall clause (b)):
(i) for j ∈ Dom(p) ∩ ε, (Fi(p))(j) = (Fε(p |̀ ε))(j),
(ii) if j = ε ∈ Dom(p), then (Fi(p))(j) is the Fε–image of the Pε–name

p(ε) (see 5.18 clause (D)). As `Pε“p(ε) ∈ Q
˜
ε” clearly `P′ε“(Fi(p))(ε) ∈

Q′
˜
ε”, so Fi(p) actually belongs to P′i.

Now clauses (a), (b), (c), (d)(i)+(iii) should be clear and we shall now
prove clause (d)(ii), then clause (e) will follow. So we are given p ∈ Pi and
p′ ∈ P′i such that P′i |= Fi(p) ≤ p′, and we should find q such that Pi |= p ≤ q
and P′i |= p′ ≤ Fi(q). Applying the induction hypothesis (clause (d)(ii)) to
p |̀ ε, p′ |̀ ε we can find q0 ∈ Pε satisfying P′ε |= p′ |̀ ε ≤ Fε(q0). Note that p′(i)
is a P′ε–name of a member of Q

˜
′
ε. Let χ be large enough, N a countable ele-

mentary submodel of (H(χ),∈) to which {C,B,Q, ε, Fε, p, p′, q, q0} belongs,
and hence is a Pε–candidate (we are assuming normality).

We can find q1 ∈ Pε which is (N,Pε)–generic and Pε |=“q0 ≤ q1”. Let
r
˜

= p′(ε); by the inductive hypothesis F (q) is (N,Pε)-generic, hence above
q1, r

˜
is equivalent to some r′ which is as in 5.18(D) case(2). By the induction

hypothesis there is a Pε–name r
˜

such that q1 `Pε “F (r
˜

) = r′”.
Now q1 ∪ {(ε, r′

˜
)} is as required.

Case 3: i a limit ordinal of countable cofinality
Define Fi(p) = q iff p ∈ Pi, Dom(q) ⊆ i and (∀j < i)(Fi(p) |̀ j = Fj(q)).
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Now Fi(p) is well defined by clause (c). As Pi = {p : Dom(p) ⊆ i and (∀j <
i)(p |̀ j ∈ Pj)} and we let P′i = {p : Dom(p) ⊆ i and (∀j < i)(p |̀ j ∈ P′j)}
clearly clauses (a), (b), (c), (d)(i) hold. Also clause (d)(iii) holds by the
inductive definition of the order in both cases, and clause (e) will follow (if
i < α) once we prove clause (d)(ii); for proving it we prove that for any
i0 ≤ i1 ≤ i from N the statement �i0,i1 , see below (for (i0, i1) = (0, i) and
appropriate N we get the desired conclusion): for χ large enough:
�i0,i1 Assume N ≺ (H(χ),∈) is countable, and {C,B, Q̄, Q̄′ |̀ i1, Fi1 , i0, i1} ∈

N , and p ∈ N ∩Pi1 , q ∈ Pi0 , Pi0 |= p |̀ i0 ≤ q, q is (N,Pi0)–generic (may
add canonically) P′i1 |= Fi1(p) ≤ p′ and p′ ∈ N and P′i0 |= p′ |̀ i0 ≤ q.
Then we can find q+ such that q+ ∈ Pi1 , q+ |̀ i0 = q, Pi1 |= p ≤ q+,
P′i1 |= p′ ≤ Fi1(q+) and q is (N,Pi1)–generic (may add canonically or
at least) Dom(q+) \ i0 = N ∩ [i0, i1).

This is done as usually by induction on i1.
Case 4: cf(i) > ℵ0 Easier. 5.19

Discussion 5.20. If we have a CS iteration 〈Pi,Q
˜
i : i < α〉 in mind, and

each Qi is a correct explicit nep for (B
˜
i, ϕ̄

˜
i, θ

˜
i), still we may not translate it

to a CS–nep iteration when those names are too complicated. By whatever
we have in mind we can first define it as a CS–nep iteration and then we
are assured by 5.19 that actually we have the CS iteration we have in mind
to begin with, using of course:

Proposition 5.21. For any function F and an ordinal α we can find a
CS–nep iteration Q̄ = 〈(Pi,Q

˜
i, ϕ̄i,B

˜
i, κi, θi) : i < β〉 such that

(a) for i < β, (ϕ̄i,Bi, κi, θi) = F (Q̄ |̀ i),
(b) β ⊆ α,
(c) if β < α then F (Q̄) is not as required in 5.18 clause (A)(β) with

Limnep(Q̄), F (Q̄) here standing for Pβ, (B
˜
β, ϕ̄

˜
β′κβ) there.

Proof. Obvious. 5.21

Proposition 5.22. In the context of 5.18:
Assume that each B

˜
β is essentially a real; i.e., κβ = ω and so for R in

the vocabulary of B
˜
β we have RB

˜
β ⊆ n(R)ω. If α < ω1 then so is the Bα.

(If α ≥ ω1 we get weaker results).

Proof. Left to the reader.

Remark 5.23. 1. Note that 5.18, 5.19 (and 5.22) say something even
for α = 1 so it speaks on cl3(Q0) = P1 (or cl(Q0) = P1).
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2. Concerning 5.22 note that if κ(B) ≥ ω1, the difference between nep
and snep is not large, however the case α < ω1 has special interest.

3. In 5.18, 5.19, we can replace the use of cl3(Q) from Definition 5.7
(using 5.8) by Q′ = cl(Q) from 5.2.

4. We can derive a theorem on local in 5.19, but for strong enough ZFC−∗ ,
then it anyhow follows.

Of course, we can get forcing axioms.

Proposition 5.24. 1. Assume for simplicity that V |= 2ℵ0 = ℵ1 & 2ℵ1 =
ℵ2. Then for some proper ℵ2–c.c. forcing notion P of cardinality ℵ2
and we have
(⊗) P is the limit of a CS iteration of (ℵ1,ℵ1)-nep forcing notions and

we have in VP:
(⊕) Axω1 [(ℵ1,ℵ1)–nep]: if Q is a (κ, θ)–nep forcing notion,

κ, θ ≤ ℵ1 and Ii is a dense subset of Q for i < ω1 and S
˜
i as a

Q–name of a stationary subset of ω1 for i < i(∗) ≤ ω1,
then for some directed G ⊆ Q we have: for any i < ω1 we
have G ∩ Ii 6= ∅ and

S
˜
i[G] def= {ζ < ω1 : for some q ∈ G we have q `Q “ ζ ∈ S

˜
i ”}

is a stationary subset of ω1.
2. We can demand that P is explicitly (ℵ2,ℵ2)–nep provided that in (⊕)

we add “explicitly simply” to the requirements on Q.
3. Assume κ is supercompact with the Laver indestructibility, and we re-

place ℵ2 by κ. Then in parts 1) and 2), we can strengthen (⊕) to
Axω1 [nep].

Proof. Straight (as failure of “Q, i.e., ϕ̄ is nep” is preserved when extending
the universe by a proper forcing). 5.24

Proposition 5.25. In 5.14–5.19 we can replace CS countable support (CS)
by free limit (see [25, Chapter IX, §1.8, pp. 436–443]) this influences just
how the elements of Limnep(Q̄) look like, essentially what we have done
to each Qi (replace it say by cl3(Qi)) is done also in limit of countable
cofinality.

Proposition 5.26. We can generalize the definitions and claims so far by:
(a) a forcing notion Q is (Q,≤,≤pr, ∅Q), where ≤pr is a quasi order, p ≤pr

q ⇒ p ≤ q and ∅Q the minimal element;
(b) in the definition of nep in addition to ϕ1 we have ϕ1,pr defining ≤pr,

which is upward absolute from Q–candidates, and in Definition 1.3(2)(c)
we strengthen p ≤ q to p ≤pr q;
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(c) the definition of CS iteration 〈Pi,Q
˜ i

: i < α〉 is modified in the follow-
ing way:

Pi =
{
p : p is a function, Dom(p) is a countable subset of i,

j ∈ Dom(p) ⇒ `Pj “ p(j) ∈ Q
˜ j

”
}
,

with the order given by: p ≤ q if and only if
• Dom(p) ⊆ Dom(q),
• β ∈ Dom(p) ⇒ q |̀β 
 p(β) ≤Qβ q(β), and
• {β ∈ Dom(p) : ¬(q |̀β 
 p(β) ≤pr,Qβ q(β)} is finite.

(d) Similarly for the CS-nep iteration.

Proof. Left to the reader. 5.26

Discussion 5.27. 1. Why not {β ∈ Dom(p) : 1Pp“∅Q
˜
β
≤pr p(β)”} finite?

Let 〈Pi,Q
˜
i : i < ω1〉 be such iteration (just CS or CS–nep but with

purity condition as above), and assume that τ
˜
i is a Q

˜ i
–name, such

that
`Pi “ there is p ∈ Q

˜ i
, p `Q

˜ i
“τ
˜
i = ∅”, but Q

˜ i
|= ∅Q

˜ i
≤pr p implies

that there is q satisfying Q
˜ i
|= p ≤pr q and q `Q

˜ j
τ
˜
i 6= ∅ ”.

This is a very reasonable demand. Now let w
˜

be the Pω1–name w
˜

=
{i : τ

˜
i[G] = 0}, and i

˜
n the n–th member of w

˜
. So w

˜
⊆ ω1, and for

every p ∈ Pω1 and j < ω1 we can find q, such that p ≤ q ∈ Pω1 ,
j ⊆ Dom(q) and for some finite u ⊆ j, q `Pω1

“w
˜
∩ j ⊆ u”, in fact

u = {i < j : q |̀ i 1Pj “φQ
˜
i ≤

Q
˜
i

τ
˜
i>0 q(i)”}. Also obviously `Pω1

“w
˜

is
infinite”. So `Pω1

“sup{i
˜
n : n < ω} = ω1” (so Pω1 is not proper). See

more in [25, XIV, §2].
2. In fact being able to define for Q̄ a nep-CS iteration (see in Proposition

5.18) the forcing notion Pw for any subset w of α = `g(Q) is one
of the advantages of using nep forcing. As we like to deal with the
connection between iteration and “subiteration”, it is convenient to
have the following.

Definition 5.28. 1. For any set w of ordinals we can define when Q̄ =
〈Pi,Qi : i ∈ w〉 is CS iteration of forcing notions and its limit Lim(Q̄),
by induction on otp(w):
(a) Q

˜
i is a Pi∩w-name of a forcing notion,

(b) Pi = Lim(Q̄ |̀ (w ∩ i)),
(c) Lim(Q̄) = {p : p a function such that Dom(p) ∈ [w]≤ℵ0 and 
Pi

p(i) ∈ Q
˜
i for i ∈ Dom(p)},

(d) with the usual order.
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2. We can define similarly CS-nep forcing.

Observation 5.29. Definition 5.28(2) gives nothing new (see 5.35).

Definition 5.30. Assume that Q̄ = 〈(Pi,Q
˜
i, ϕ̄i,B

˜
i, κi, θi : i < α〉 is a nep-

CS-iteration, and κα,Bα are as in 5.18. For β ≤ α we define what is supp(p)
for p ∈ Pβ and supp(τ

˜
) for τ

˜
a hc-κ-Pβ-name, by induction on β as follows:

case 1 if β = 0 they are both the empty set;
case 2 if β is limit
For p ∈ Pβ let supp(p) =

⋃
{supp(p |̀ γ) : γ < β}

For τ
˜

a hc-κ-Pβ-name let supp(τ
˜

) =
⋃
{supp(q) : q is a condition from Pβ

which appears in τ
˜
}.

case 3 if β = γ + 1
For p ∈ Pβ, if p ∈ Pγ we are done otherwise supp(p) = supp(p |̀ γ) ∪ {γ} ∪⋃
{supp(x

˜
`) : x

˜
is one of the hc-κβ+1-names appearing in p(γ)}. For τ

˜
a

hc-κ-Pβ-name let

supp(τ
˜

) =
⋃
{supp(q) : q is a condition from Pβ which appears in τ

˜
}.

Definition 5.31. Let Q̄ = 〈(Pi,Q
˜
i, ϕ̄i,B

˜
i, κi, θi) : i < α〉 be a nep-CS-

iteration. By induction on β ≤ α we define for w ⊆ α the meaning of “w is
Q̄-closed” and Pw = Pw[Q]
(A) We say w ⊆ β is Q̄-closed if

(a) i ∈ w ⇒ w ∩ i is Q̄-closed,
(b) if w has a last member, say i, then the name B

˜
i involves conditions

from Pw∩i only, that is for each of the hc-κ(Bi)-Pi-names x
˜

in the
definition, supp(x

˜
) ⊆ w ∩ i.

(B) If w ⊆ β is Q̄-closed, Pw = {p ∈ Pβ : supp(p) ⊆ w} and let the order
≤Pw be ≤Pα |̀Pw.

Discussion 5.32. 1. A natural case is B
˜
i = Bi, then every w ⊆ lg(Q̄) is

Q̄-closed.
2. A more general natural case is when for each B

˜
i there are hc-κ-Pi-

names x
˜
i,n for n < ω such that all B

˜
i is computed from then. So w is

Q̄-closed if β ∈ w ⇒
⋃

(supp(x
˜
β,n) : n < ω} ⊆ w.

3. In the more general case for w ⊆ α, we can allow to “compute” B
˜
i

only as far as we can by Pi∩w, seems reasonable, but no urgent need
now, so not included in Definition 5.31.

Observation 5.33. Let Q̄ be as in 5.18
1. If p ∈ Pγ, γ ≤ β ≤ α, then supp(p) does not change if we use the

definition for Q̄ or for Q̄ |̀β.
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2. If w ⊆ β < α then w is Q̄-closed iff w is (Q̄ |̀β)-closed, and similarly
for Pw.

3. If w1 ⊆ w2 then p ∈ Pw ⇒ p ∈ Pw2.

Proof. Trivial. 5.33

We know that Pw1 l Pw2 in general fails for Q̄-closed w1 ⊆ w2. Still we
intuitively feel that there is a connection of this sort and we shall have a
substitute for it. The first step is

Observation 5.34. Let Q̄-be a nep-CS-iteration (as in 5.18). If w and
w1 ⊆ w2 are Q̄-closed, then

(a) Pw1 ⊆ Pw2 as quasi orders,
(b) if p ≤Pw q then Dom(p) ⊆ Dom(q),
(c) if p ≤Pw q then supp(p) ⊆ supp(q) ⊆ w.

Proof. First note that clause (b) is a property of the CS-nep iteration which
we can prove by induction on β ≤ α for p, q ∈ Pβ. For β = 0, β limit trivial.
For β = β′ + 1 we define the order on Pβ as the transitive closure of some
“atomic cases”. So check each using the induction hypothesis on Pβ′ .
The proof of clauses (a),(c) is similar. 5.34

Observation 5.35. 1. Assume Q̄ = 〈(Pi,Q
˜
i, ϕ̄i,B

˜
i, κi, θi) : i < α〉 is a

nep-CS-iteration, and each Bi is an object in V not just a Pi-name.
(A) Every w ⊆ α is Q̄-closed.
(B) If w ⊆ α and Q̄′ = 〈P′i,Q

˜
′ : i < otp(w)〉 is the CS iteration satis-

fying (∗) below, then P′otp(w)
∼= Pw, where P̄′otp(w) = Limnep(Q̄′):

(∗) if j = otp(γ ∩ w) & γ ∈ w, then Q
˜
′
j is the forcing notion

defined by (Bγ , ϕ̄γ , θγ) in VP′i.
(C) If N is a (Bα, ϕ̄α, θα)–candidate with (Bα, ϕ̄α, θα) as in 5.28, and

N |= “U ⊆ α” and w = {i : N |= i ∈ U}(⊆ α) and p ∈ PNU , then
for some q we have
(a) P |= p ≤ q,
(b) q ∈ Pw,
(c) q 
PU “G

˜
PU ∩ PNPU is a 〈PU , N〉–generic (i.e., directed subsets

a (PNU ,≤NPU ) generic over N)”, and moreover
(d) clause (c) also holds for `Pα.

2. Similar to (1) above, but each Bi is “almost” an object in V: it is
computed by an ord-hc Borel function from some hc name x

˜
i of a real.

Proof. Should be clear.
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Observation 5.36. In 5.35 we can deal with Q̄ |̀w instead of mapping to
otp(w).

Observation 5.37. Assume Q̄ is a nep-CS-iteration as in 5.18 so α =
`g(Q̄).

1. If N ∩ α ⊆ w ⊆ α and w is Q̄–closed, and N is a (Q̄ |̀w)–candidate
(if you assume normality, as normally done, then any countable N ≺
(H(χ),∈, <∗χ) to which Q̄, w belong is fine) and q is canonically
〈N,Pw〉–generic, then q is 〈N,Pα〉–generic.

2. If N is a Pα-candidate and q is [0, α]–canonically 〈N,Pα〉–generic, and
w is Q̄-closed containing N ∩ α, then q ∈ Pw is also 〈N,Pw〉–generic.

Proof. Repeat the proof that canonically generic implies generic. 5.37

Conclusion 5.38. 1. Assume that:
(a) Qε = (Qε, ϕ̄ε, θε) for ε < ε∗ is a definition of a very straight correct

simple explicit forcing notion even for

K = {P : P the limit of CS-iteration of forcing among {Qε : ε < ε∗} }

for ZFC−∗ , which is normal,
(b) Q̄ = 〈Pi,Q

˜
i : i < α〉 is a CS iteration, each Qi is (Qε(i))VPi for

some ε < ε∗,
(c) N ≺ (H(χ),∈, <∗χ) is countable, p ∈ P.
Then for some q we have
(α) p ≤ q ∈ Pα,
(β) q is (N,Pα)–generic,
(γ) if we let w = α∩N and Q̄w = 〈Pwi ,Q

˜
w
j : i ∈ w∪{α}, j ∈ w〉 be the

CS iteration with Q
˜
w
j = (Qε(j))VP

w
j , then we have Pwα ⊆ Pα (but

not in general Pwα l Pα), and there is q ∈ Pwα such that

q 
Pwα “ G
˜
Pwα ∩N is a generic subset of (Pα)N over N ”,

and

q `Pα “G
˜
Pα ∩ PNα is a generic subset of (PNα ,≤NPα) ”.

(δ) Note that Pwi is a CS-iteration of countable length of cases of Qε.
2. As in 5.35(2).

Proof. Should be clear.

Conclusion 5.39. 1. Assume that:
(a) Q̄ = 〈Pi,Q

˜
i : i < α〉 is a CS iteration.



PROPERNESS WITHOUT ELEMENTARICITY 239

(b) each Qi is one of the creature forcing proved in [19] to be proper,
or more generally is a very straight nep forcing with definition in
V, being nep in VPi,

(c) {Bi : i < i∗} is a family of Borel sets (i.e., definitions of Borel
subsets say of R or ω2), or just Π1

2 sets,
(d) for every countable w ⊆ α, 
Pw “

⋂
i<i∗ Bi = ∅”.

Then VLim(Q̄) |= “
⋂
i<i∗

Bi = ∅”.

2. In part (1), we can allow Qi to be as in 5.37.
3. In parts (1) and (2), in the definition of Qi

˜
, we can allow a Pi-name

η
˜
i of a real provided that η

˜
i = B∗i (〈ν˜ j(i,n) : n < ω〉) with j(i, n) < ω,

ν
˜
i is hc-Qj-name.

Proof. (Recall that a Π1
2 set is the intersection of ℵ1 Borel sets.)

By 5.18 we can deal with CS-nep iteration. Assume toward contradiction
that

p1 `Pα “ η
˜
∈
⋂
i<i∗

Bi ”.

Let χ be large enough and let N ≺ (H(χ),∈, <∗χ) be countable and such that
Q̄ ∈ N . Let q1 be as in 5.38, so w = α ∩N is countable and q ∈ Pw ⊆ Pα,
and q ` η

˜
= η

˜
′ where η′ is computed from the truth values of q ∈ G for

q ∈ Pα ∩ N ⊆ Pw. By hypothesis (d), q ` Pwη
˜
′ /∈

⋂
i<i∗

Bi. Hence there

are q1, i such that Pw |= q ≤ q1, i < i∗ and q1 `Pw “ η
˜
′ /∈ Bi ”. Let

N1 ≺ (H(χ),∈, <∗χ) be a countable model such that N, Q̄, q1, η
˜
′ ∈ N1. Let

q2 be 〈N1,Pw〉–generic above q1. Now, q2 ∈ Pα and

q2 ` “ G
˜
Pα ∩N1 ∩ Pw is a generic subset of PN1

w over N1 ”,

so we get an easy contradiction. 5.39

Discussion 5.40. Inside a forcing Q we may be able to find q ∈ Q and a
forcing notion Q∗ definable in N such that

q ` “G
˜
Q ∩N is a directed subset of (QN ,≤NQ ) generic over N”.

This looks like a cheating so we call it faking; one example occurs in 5.35(3).
Another example for faking is gotten by considering the Miller rational
perfect forcing Q =, which is {T : T ⊆ ω>ω is a subtree such that for every
η ∈ T for some ν we have η � ν ∈ T and sucT (η) infinite }. With the order
≤=≤1= inverse inclusion. Let
p ≤0 q iff q ⊆ p & sp(q) = sp(p) ∩ q,

where sp(p) = {η ∈ p : (∃infn)(η_〈n〉 ∈ p}, and let
p ≤2 q iff p ≤0 q & (∀η)(tr(q) � η ∈ q & η ∈ sp(p)→ η ∈ sp(q)).
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Now for every r ∈ Q the quasi order ({p ∈ Q : r ≤2 p},≤2) is isomorphic
to Laver forcing. So if Q̄ is nep-CS-iteration of rational perfect forcing, we
can define also ≤2Pi . Then

(a) ≤2Pi is a quasi order on Pi, p ≤2Pi q ⇒ p ≤Pi q,
(b) if N is a Q̄-candidate, p ∈ (Lim(Q̄))N , then there is q such that:

p ≤2
PLim(Q̄) q and q 
Pi “G

˜
Pi ∩ N is a subset of PNi directed under

≤2,N
Lim(Q̄) and not disjoint to IN to which p belongs” whenever N |=

“I is a subset of Lim(Q̄) dense under ≤2
Lim(Q̄)”. Now Q̄ is nw–nep

( see [26], [22]) whereas Laver forcing is just nep. Here the “nw-
nep” dominates, i.e., we succeed even for non-well-founded models by
thinning each q(i) naturally (think on the case α = 1).

6. When a real is (Q, η)–generic over V

A first time reader may be advised that the case τ ∈ {2, ω}, σ = ω is
typical, interesting and may suffice for you hence we write “n < σ”.

Definition 6.1. 1. We say that (Q, W̄ ) is a temporary (B, θ, σ, τ)–pair
if for some Q–name η

˜
the following conditions are satisfied:

(a) Q is a nep-forcing notion for (B, ϕ̄, θ); possibly B expands BQ,
(b) `Q“η

˜
∈ στ”,

(c) W̄ = 〈Wn : n < σ〉,
(d) for each n < σ, Wn ⊆ {(p, α) : p ∈ Q and α < τ},
(e) if (p`, α`) ∈ Wn for ` = 1, 2 and α1, α2 are not equal, then p1, p2

are incompatible in Q,
(f) for each n < σ the set In = In[W̄ ] def= {p : (∃α)[(p, α) ∈ Wn]} is a

predense subset of Q,
(g) so σ = σ[W̄ ] = σ[Q, W̄ ] and (abusing notation) let τ = τ [W̄ ] =

τ [Q, W̄ ].
2. For (Q, W̄ ) as above, η

˜
= η

˜
[W̄ ] = η

˜
[Q, W̄ ] is the Q–name

{(n, α) : (∃p ∈ G
˜
Q)[(p, α)) ∈Wn], so n < σ}.

3. We replace the temporary by K if this (specifically the demand (f))
holds in any K–extension of V; similarly below.

4. We may write (Q, η
˜

), W̄ = W̄ η
˜ abusing notation. If we omit B we

mean B = BQ. If τ = ℵ0 we may omit it; if τ = σ = ℵ0 we may omit
them, if κ(B) = θ = σ = τ = ℵ0, we may write κ.

5. We say that η
˜

[Q, W̄ ] is a temporarily generic real (or function) for Q
if for no distinct G1, G2 ⊆ Q generic over V do we have η

˜
[G1] = η

˜
[G2].



PROPERNESS WITHOUT ELEMENTARICITY 241

6. In part (5) we add directly if for every p ∈ Q there is an ord-hc Borel
function which from η

˜
[Q, W̄ ] computes the truth value of p ∈ G

˜
.

7. Instead (Q, W̄ ) we may write ((BQ, ϕ̄Q, θQ), W̄ ) (or with η
˜

instead W̄ ).

Definition 6.2. 1. Let Kκ,θ,σ,τ be the class of all (Q, η
˜

) which are tem-
porary (B, θ, σ, τ)–pairs for some B with κ(B) ≤ κ, ‖B‖ ≤ κ.

2. Let (Q, η
˜

) be a temporary (κ, θ)–pair (actually more accurately write
((B, ϕ̄, θ),W̄ )); and σ = ℵ0 ≥ τ ≥ 2.

Let N be a Q–candidate and η ∈ ωω. We say that η is a (Q, η
˜

)–
generic real over N if for some G ⊆ QN which is generic over N we
have η = η

˜
[G].

We add satisfying q if above q ∈ G (note that “satisfying” has more
direct meaning if Q is generated by η

˜
as in the proof of 6.5).

3. We say that η
˜

= η
˜

[W̄ ] is hereditarily countable if each Wn is countable
(note: the generic reals of the forcing notions from [19] are like that,
but for our purpose just “absolute enough” suffices).

Definition 6.3. 1. (Q, W̄ ) is a temporary explicitly (B, θ, σ, τ)–pair (or
nep pair) if for some Q–name η

˜
we have:

(a) Q is an explicit nep forcing notion for (B, ϕ̄, θ),
(b) `Q“η

˜
∈ στ”,

(c) W̄ = 〈ψα,ζ : α < σ, ζ < τ〉,
(d) ψα,ζ ∈ cl1(Q) for α < σ, ζ < τ ,
(e) `Q“ η

˜
(α) = ζ iff ψα,ζ [G

˜
Q] = t ”.

2. In this case η
˜

= η
˜

[W̄ ] = η
˜

[Q, W̄ ] is the Q–name above (it is unique).
Abusing notation we may write (Q, η

˜
) instead (Q, W̄ ) and then let

W̄ = W̄ [η
˜

] = W̄ [Q, η
˜

].
3. We introduce the notions from 6.1(3)–(6) for the current case with

almost no changes.

Definition 6.4. Kex
κ,θ,σ,τ = {(Q, η

˜
) ∈ Kκ,θ,σ,τ : (Q, η

˜
) is temporarily explic-

itly (B, θ, σ, τ)–pair for some model B with κ(B) ≤ κ, ‖B‖ ≤ κ}.

Proposition 6.5. Assume that:

(a) Q is an explicitly nep forcing notion which satisfies the c.c.c.
(b) `Q“η

˜
∈ σω” and (for α < σ and m < ω) ψα,m ∈ cl1(Q) are such that

`Q “ η
˜

(α) = m iff ψα,m[G
˜
Q] = t ”.
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(c) Q′ def= B2(Q, η
˜

) is the following suborder of cl2(Q): the set of elements
is B′(Q, η

˜
), where

B′(Q, η
˜

) =: {p ∈ cl2(Q) : p is generated by the
ψα,m’s i.e. it belongs to the closure of
{ψα,m : α < σ,m < ω}
under ¬,

∧
i<γ

for γ < ω1 in cl1(Q)}

(i.e., it is the quasi order ≤Q2 restricted to this set).
Then:

1. Q′ <◦ cl2(Q) and η
˜
∈ σω is a generic function for Q′.

2. Assume additionally that
(∗) if M is a Q–candidate, M |=“I is a maximal antichain of Q”,

then IM is a maximal antichain of Q.
Then we also have
(α) Q′ is (κ, θ)-nep and strong c.c.c. forcing notion (see 6.12),
(β) if Q is simple, then Q′ is simple, (really (*) is not needed),
(γ) if Q is K–local, then Q′ is K–local,
(δ) if Q is Souslin, then so is Q′.

Proof. Straight. 6.5

Now the hypothesis (∗) in 6.5(2) is undesirable, so we use B3(Q, η
˜

) (see
6.6(c) below), which has a suitable quasi order.

Proposition 6.6. Assume that:
(a) Q is a correct explicitly nep forcing notion which satisfies the c.c.c.
(b) `Q“η

˜
∈ σω” and ψα,m ∈ cl2(Q) for α < σ,m < ω are such that

`Q “ η
˜

(α) = m iff ψα,m[G
˜
Q] = t”,

(c) Q′ def= B3(Q, η
˜

) is a forcing notion defined as follows:
the set of elements is like B2(Q, η); i.e. it is the closure of {ψα,m : α <
σ,m < ω} under ¬,

∧
i<γ

for γ < ω1 inside cl2(Q);

the quasi order ≤3=≤B3(Q,η
˜

)
3 is ≤cl3(Q) restricted to B3(Q, η

˜
),

(d) Q is correctly explicitly nep forcing and c.c.c. in V and in every Q–
candidate. (This strengthens clause (a))

Then:
(α) Q′ is a complete suborder of cl3(Q); including ψ ∈ Q′ ⇒ ψ ∈ cl3(Q),

and for ψ1, ψ2 ∈ Q′ we have: ψ1 ≤3 ψ2 ⇔ ψ1 ≤cl3(Q) ψ2,
(β) η

˜
is a Q′–name, `Q′“η

˜
∈ σω” and η

˜
is a generic function for Q′,
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(γ) Q′ is explicitly nep c.c.c. forcing notion with BQ′ = BQ, ϕ̄Q′ =
ϕ̄B3(Q,η

˜
), θQ′ = θQ,

(γ)+ each forcing extension of V which preserves the assumption (a) (hence
also (b)) preserves (γ),

(δ) if Q is simple (or straight) then Q′ is simple (or straight).

Proof. Straightforward, still we elaborate [note that in the proof of clauses
(α), (β) we do not use (d)].
Clause (α) By the choice of Q′ we have ≤Q′=<cl3(Q) |̀Q′. Also if
Q′ |=“ψ1, ψ2 incompatible” then they are incompatible in cl3(Q), otherwise
ψ1 ∧ ψ2 ∈ Q′ is a counterexample. So the only problem is for Q′ <◦ cl3(Q).
So assume I = {ψj : j < i∗} is a maximal antichain of Q′ and we shall prove
that it is a maximal antichain of cl3(Q), this suffices as we are assuming the
Q satisfies the c.c.c., also cl3(Q) satisfies c.c.c..

Hence necessarily i∗ is countable, so if I is not a maximal antichain of
cl3(Q), let ψ∗ ∈ cl3(Q) be incompatible with every ψi, let p ∈ Q, p `
“ψ∗[G

˜
Q] =truth”. Consider ψ =

∧
i<i∗
¬ψi;

(i) ψ belongs to cl1(Q),
(ii) ψ is in cl3(Q) as p `“ ψ[G

˜
Q] =truth”, by the choice of p and ψ∗,

(iii) ψ is incompatible with each ψi (see its definition),
(iv) ψ ∈ B′2(Q, η

˜
) (as ψi ∈ Q′ for i < i∗),

(v) ψ ∈ Q′ (by (ii)+(iv)).

So Q′ <◦ cl3(Q), i.e., clause (α) holds.
Clause (β) The first two statements are obvious and the third one follows
by

(∗)ψ if G1, G2 are subsets of Q′ generic over V (in some generic extension
of V) and η

˜
[G1] = η

˜
[G2] and ψ ∈ B2(Q, η), then ψ[G1] = ψ[G2]

We prove (∗) by induction on the depth of ψ. For depth zero we use η
˜

[G1] =
η
˜

[G2] and in the other cases the inductive definition of ψ[G`].
Clause (γ) As Q′ <◦ cl3(Q) by the c.c.c. most clauses of Definition
1.3(1),(2) follow by 5.8(3)(e) except clause (c)+. So let N be a Q′–candidate
so a Q–candidate, and p ∈ (Q′)N hence p ∈ cl3(Q)N by the definition of Q′.
Let

ψ1 = p &
∧

I∈pdac(p,N,Q′)

∨
r∈IN

r and ψ2 = p &
∧

I∈pdac(p,N,cl3(Q))

∨
r∈IN

r.

By 5.8 ψ2 is explicitly (N, cl3(Q))–generic. Now also N |=“Q′ l cl3(Q)”,
hence pdac(p,N,Q) ⊆ pdac(p,N, cl3(Q)), because by clause (d) as we have
not used it in the proof of clauses (α)+(β) above so they are satisfied by N
too.
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So clearly cl1(Q) |= ψ1 ≤ ψ2 hence ψ1 ∈ cl3(Q), and its definition (and
the definition of Q′) we have ψ1 ∈ Q′. Obviously ψ1 is (N,Q′)–generic by
its definition, but what about explicitly? Just let ψ′2 say that there is ψ2 as
above (and use cl3(Q) is correct explicitly nep by 5.8(3), as (~) of clause
(d) here implies ((~3)) there.)
Clauses (γ)+, (δ) Left to the reader. 6.6

Proposition 6.7. In 6.1–6.6 above, we can replace Q by Q |̀ (≥ q) =: Q |̀ {p ∈
Q : p ≥ q} preserving the properties of (Q, η

˜
).

Fact 6.8. If Q is simple correct nep for K, Q is in V, and V1 is a K–
extension of V, then

(i) in V1, QV ≤ic QV1 which means: for p, q ∈ V0, “p ∈ Q”, “p ≤ q”,
“¬(p ≤ q)”, “p, q compatible”,“p, q incompatible” all in the sense of Q
are preserved from V to V1,

(ii) for p, pn ∈ V the statements “p /∈ Q” and “I = {pn : n < ω} is
predense above p in Q” are preserved from V to V1,

(iii) if Q satisfies the c.c.c., then in clause (ii) above we can omit the
countability of I.

Proof. (i) Straight, for example:
“p, q are incompatible” iff there is no Q–candidate M such that

M |= “ p, q have a common ≤Q–upper bound ”.

So by Shöenfield–Levy absoluteness, if this holds in V, it holds in V1.
(ii) Similarly.
(iii) Follows (and repeated in 7.14 below). 6.8

Proposition 6.9. Let (Q, η
˜

) be temporarily explicitly nep pair. Assume N
is a Q–candidate. If N |=“η∗ is (Q, η

˜
)–generic over the Q–candidate M”,

then η∗ is a (Q, η
˜

)–generic over M .

Proof. Straight. 6.9

Proposition 6.10. Assume that:
(a) Q is explicitly nep,
(b) Q is c.c.c. moreover it satisfies the c.c.c. in every Q–candidate,
(c) incompatibity in Q is upward absolute from Q–candidates (but see 6.8),
(d) η

˜
is a hc–κ(BQ)–Q–name of a member of ωω defined from BQ (so

we demand this in every Q–candidate).
Furthermore, suppose that
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(A) N1, N2 are Q–candidates, N2 is a generic extension of N1 for a forcing
notion R, (so BN2 = BN1 and N1 |=“R is a forcing notion”),

(B) N1 |=“ for every countable X ⊆ Q there is a Q-candidate N0 ≺Σm
N1 to which X and R belong, moreover N0-s being a Q-candidate is
preserved by forcing for R” for each m < ω; recall N0 is in particular
countable,

(C) η∗ ∈ ωω is a (Q, η
˜

)–generic real over N2.

Then η∗ ∈ ωω is a (Q, η
˜

)–generic real over N1.

Remark 6.11. 1. In clause (B), we can replace X by “a maximal an-
tichain of Q or just of B3(Q, η

˜
)”.

2. Clearly we can replace “maximal antichain” by “predense set” or “pre-
dense set over p” (note IN2 = IN1 as N2 = NR1 ).

3. We can weaken “N0 ≺Σm N1” in clause (B).

Proof of 6.10. Clearly, it suffices to prove that (assuming (a)–(d), (A),
(B) and (C)):

(∗) if N1 |=“I is a maximal antichain of Q”,
then IN1 = IN2 and N2 |=“I is a maximal antichain of Q”.

Assume that this fails for I. Then some r ∈ RN forces this failure (in N1).
By assumption (b), in N1 the set IN1 is countable so let N1 |=“I = {pn :
n < α}”, where α ≤ ω. Let m < ω be large enough. By clause (B) in N1
there is a Q–candidate N0 to which I and r and R belong and N0 ≺Σm N1.
Since

N1 |= “(∃r ∈ R)[r `R “I is not a maximal antichain of Q
(and N1[G

˜
R] is a Q–candidate)”]”,

there is r0 ∈ RN0 such that

N0 |= “[r0 `R “I is not a maximal antichain of Q
(and N0[G

˜
R] is a Q–candidate)]”.

Now, as N1 satisfies enough set theory and N1 “thinks” that N0 is countable
and RN0 is a forcing notion in N0, there is in N1 a subset G′R of RN0

generic over N0 to which r0 belongs. So in N0[G′R] there is p ∈ QN0[G′R]

incompatible (in QN0[G′R]) with each pn. By the assumption (c) this holds
in N1, contradiction to the choice of I (see (∗)). 6.10

Definition 6.12. 1. We say that ϕ̄ or (ϕ̄,B) is a temporarily (κ, θ)-
definition of a strong c.c.c.–nep forcing notion Q for (B

˜
, ϕ̄) if:

(a) ϕ0 defines the set of elements of Q and ϕ0 is upward absolute from
(B, ϕ̄, θ)–candidates,
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(b) ϕ1 defines the partial ordering of Q (even in (B, ϕ̄, θ)–candidates)
and ϕ1 is upward absolute from (B, ϕ̄, θ)–candidates,

(c) for any (B, ϕ̄, θ)–candidate N , if N |=“I ⊆ Q is predense”, then
also in V, IN is a predense subset of Q,

(d) incompatibility is upward absolute from Q-candidates.
2. We say that ϕ̄ or (ϕ̄,B) is a temporarily [explicitly] (κ, θ)–definition

of a c.c.c.–nep forcing notion Q if
(α) it is a temporary [explicitly] (κ, θ)-definition of a nep forcing no-

tion,
(β) for every Q–candidate N we have N |=“Q satisfies the c.c.c.”.

3. The variants are defined as usual.

Proposition 6.13. 1. If Q is temporarily strong explicit c.c.c.–nep forc-
ing notion and N1 ⊆ N2 are Q–candidates, then every η which is
(Q, η

˜
)–generic over N2 is also (Q, η

˜
)–generic over N1.

2. If ZFC−∗ is normal and Q is temporarily c.c.c.–nep then Q satisfies
the c.c.c.

Proof. 1) As in 6.10 (by Definition 6.12).
2) Easy too. 6.13

Comment 6.14. We can spell out various absoluteness, e.g.
1. If Q is simple nep, c.c.c. and “〈pn : n < ω〉 is predense” has the form

(∃t ∈ H<ℵ1((κ+θ)))[t |= . . . ] (e.g. κQ = ω and it is Π1
2) then predensity

of countable sets is preserved in any forcing extension.
2. Note that strong c.c.c.–nep (from 6.12(1)) does not imply c.c.c.–nep

(from 6.12(2)). But if ZFC−∗∗ ` ZFC−∗ and ZFC−∗∗ says that ZFC−∗ is
normal and Q is strong c.c.c.–nep for ZFC−∗ , then Q is c.c.c.–nep for
ZFC−∗ .

The following is similar to 6.10, but for a simpler case so we make it self
contained: it is really from [25, III] (in earlier version this was said offhand
in §8).

Definition/Theorem 6.15. By induction on the ordinal α we define and
prove the following
(A) [Definition] Q̄ = 〈(Pi,Qi

˜
, θ
˜
i, θi : i < α〉 is a c.c.c-simple-FS-iteration,

in full Pi = PQ̄i = Pi[Q̄] etc and α = `g(Q̄),
(B) [Definition] θQ̄ = θ[Q̄] for Q̄ as in (A),
(C) [Definition] τ

˜
is a hereditarily countable Pβ-name of a member of

H<ℵ1(ζ) or hc-ζ-Pβ-name,
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(D) [Definition] Lim(Q) denoted also by Pα = PQ̄α ,
(E) [Claim] Assume Q̄ is a c.c.c-simple-FS-iteration as in (A)

(a) Pα is a c.c.c. forcing notion with set of elements ⊆ H<ℵ1(θα),
(b) if β ≤ α(= lg(Q̄)), then Q̄ |̀β is a c.c.c.–simple–FS–iteration and

Lim(Q̄ |̀β) = Pα, θ[Q̄] = θα (hence Pβ ⊆ H<ℵ1(θβ)) and Pβ ⊆ Pα,
(c) p ∈ Pα iff p is a function with domain a finite subset of α such that

γ ∈ Dom(p) implies that p(γ) is an hc-Pγ-name of a member of
H<ℵ1(θγ+1) which is forced to be a member of Q

˜
γ and ofH<ℵ1(θγ),

(d) the order on Pα is as usual,
(e) if γ ≤ β ≤ α and p ∈ Pβ, then p |̀ γ ∈ Pγ and P |= (p |̀ γ) ≤ p,
(f) if γ ≤ β ≤ α, p ∈ Pβ and Pγ |= (p |̀ γ) ≤ q,

then Pβ |= “p ≤ (q ∪ (p |̀ [γ, β])”,
(g) if γ ≤ β ≤ α, then Pγ <◦ Pβ,
(h) if β ≤ α, then ||Pβ|| ≤ (θβ)ℵ0 ,
(i) Pα is c.c.c.

(F) For any θ ≥ θα,


Pα “(H<ℵ1(θ))V[Pα] = {τ
˜

[G
˜
Pα ] : τ

˜
is a hc-κ-Pα-name }”

Let us carry out the obvious induction.
Clause (A)
Q̄ = 〈(Pi,Q

˜
i, θ

˜
i, θi) : i < α〉 being a c.c.c.-simple-FS-iteration is defined by

cases

case 1 α = 0 trivial
case 2 α limit

Q̄ is c.c.c.-simple-FS-iteration iff
Q̄ |̀β is a c.c.c.-simple-FS-iteration for every β < α.

case 3 α = β + 1
Q̄ is a c.c.c.-simple-FS-iteration iff Q̄ |̀β is such iteration, Pβ = Lim(Q̄ |̀β),
θβ ≥ θ[Q̄ |̀β], if equal we say standard; θ

˜
β a Pβ-name of cardinal or

ordinal and 
P “Q
˜
β is a c.c.c. forcing notion with minimal element

∅Q
˜
β

being for simplicity ∅ and set of elements ⊆ H<ℵ1(θ
˜
β)”.

Clause (B)
θQ̄ is the minimal cardinal (or ordinal) θ such that β < α ⇒ θ ≥ θβ and
α = β + 1 implies θ ≥ β + 1 and 
Pβ “θ

˜
β ≤ θ”.

Clause (C)
As in §5
Clause (D)
We define Pα = Lim(Q̄) by clauses (c) + (d) of clause (E).
Clause (E)
As in the classical proofs on FS iterations of c.c.c forcings.
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Clause (F)
Easy too. 6.15

Definition 6.16. We say that Q̄ = 〈(Pi,Q
˜
i, κ

˜
i,B

˜
i, ϕ̄

˜
i, θ

˜
i, κ

i,Bi, ϕ̄i) : i <
α〉 is a [strong] c.c.c.-nep-FS iteration if

(a) Q̄′ = 〈(Pi,Q
˜
i, θi

˜
, κi) : i < α〉 is a c.c.c.-simple-FS-iteration;

(b) (κ
˜
i,B

˜
i, ϕ

˜
i, θ

˜
i,Q

˜
i) are Pi-names and it is forced (
Pi) that Q

˜
i is a

(κ
˜
i,Qi)-definition of a [strong] c.c.c.-nep forcing for (B

˜
i, ϕ̄

˜
i), see Defini-

tion 6.12(1); it follows that this is done through (B
˜
i, ϕ̄

˜
i, θ

˜
i)-candidates;

(c) Bi is a model with universe H<ℵ1(κi) and the relation ∈ and the
(finitely many) relations implicit in Q̄ |̀ i,Pi, κ

˜
i,B

˜
i, ϕ̄i, θ

˜
i so in partic-

ular ` “κi
˜
, θi
˜
< κi”;

(d) ϕ̄i define Pi in Bi naturally.

Proposition 6.17. 1. In Definition 6.16, for every β < α, (Bi, ϕ̄i) is a
[strong] (κ1, κ1)-definition of the [strong] c.c.c.-nep forcing notion Pi.

2. If N is a (Bi, ϕ̄i, κi)-candidate and j < i and j ∈ N , then N is a
(Bj , ϕ̄j , κj)-candidate.

3. If N is a (Bj+1, ϕ̄j+1, κj+1)-candidate, j ∈ N and Gj ⊆ Pj is generic
over V, then G = PNj ∩ Gj is 〈N,PNj 〉–generic and N〈G〉 is a
(B
˜
j [G], ϕ̄

˜
j [G], θ

˜
j [G])–candidate with (N〈G〉)Bj [G] = B

˜
G〈G〉 defined

naturally.

Proof. 1) We prove by (1) by induction on i. Let N be a (B, ϕ̄, κi)-
candidate.

Case 1 N ∩ i has no last element (i.e., i is a limit ordinal).
So assume N |= “I ⊆ Q is predense”, and let q ∈ Pi. For some j ∈ N ∩ i,
Dom(q) ∩ (N ∩ i) ⊆ j, and in N define J = {p |̀ j : p ∈ I}, so clearly
N |= “I is a predense subset of Pj”. Now N is a (Bj , ϕ̄j , θj)-candidate by
part (2) below. Hence by the induction hypothesis IN is predense in Pj so
there is p′ ∈ JN , compatible with q in Pj , so there is r ∈ Pj above both.
As p′ ∈ JN , for some p ∈ IN we have N |= p |̀ j = p′, hence p′ = p |̀ j
and r ∩ (p |̀ [i, j]) ∈ Pj is a common upper bound of q and p ∈ IN in Pi as
required.

Case 2 i = j + 1
Similarly using part (3).
2), 3) Left to the reader. 6.17

Proposition 6.18. 1. For every function F and ordinal α there is a
unique c.c.c.-nep-FS-iteration Q̄ = 〈(Pi,Q

˜
i, κ

˜
i,B

˜
i, ϕ̄

˜
i, θ

˜
i, κ

i, ϕBi
i, ϕ
∗) :

i < β〉 such that
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(a) β ≤ α,
(b) if i < β, then (Q

˜
i, κ

˜
i,B

˜
i, ϕ̄

˜
i, θ

˜
i) = F (Q̄ |̀ i),

(c) if β < α, then (κ
˜
i,B

˜
i, ϕ̄

˜
i, θ

˜
i) is not a Pi-name, or it is but is not

forced (i.e. 
Pβ) to be as in Definition 6.10(b).
2. The parallel of 5.19 holds. We can add “strong” (c.c.c.).

Proof. Straight.

Proposition 6.19. We can do the parallel of 6.15, 6.18 replacing finite
support and c.c.c. by countable support and proper.

7. Preserving a little implies preserving much

Our main intention is to show that, for example if a “nice” forcing notion
P satisfies `P“(ω2)V is not null”, then it preserves “X ⊆ ω2 (X ∈ V) is
not null”.

By Goldstern and Shelah ([25, Chapter XVIII, 3.11]) if a Souslin proper
forcing preserves “(ωω)V is non-meagre” then it preserves “X ⊆ ωω is non-
meagre” and more (in a way suitable for the preservation theorems there).

The main question not resolved there was: is this preservation special
for Cohen forcing (which is a way to speak on non-meagre), or does it
hold for nice c.c.c. forcing notions in general, in particular does a similar
theorem hold for “non-null” instead of “non-meagre”. Though there have
been doubts about it, we succeed to do it here. In fact, even for a wider
family of forcing notions but we have to work more in the proof.

The reader may concentrate on the case that Q is strong c.c.c. nep and
P,Q are explicitly ℵ0–nep and simple. It is natural to assume that η

˜
is a

generic real for Q but we do not ask for it when not used.

Convention 7.1. 1. Q is an explicitly nep forcing notion.
2. η

˜
∈ ωω is a hereditarily countable Q-name which is B–definable, so as

in 6.2(1).

We would like to preserve something like: “x is Q–generic over N”.

Definition 7.2. 1. I(Q,η
˜

)
def= {A ∈ Borel(ωω) : `Q“η

˜
/∈ A”} (this is an

ideal on the Boolean algebra of Borel subsets of ωω).
2. Iex

(Q,η
˜

) is the ideal generated by I(Q,η
˜

) on P(ωω). (So for A ∈ Borel(ωω)
we have: A ∈ I(Q,η

˜
) ⇔ A ∈ Iex

(Q,η
˜

)).
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3. Let

Idx
(Q,η

˜
)

def= {X ⊆ ωω : for a dense set of q ∈ Q, for some Borel set B ⊆ ωω,
we have X ⊆ B and q `“η

˜
/∈ B”}.

4. For an ideal I [an ideal on Borel sets], the family of I–positive [Borel,
respectively] sets is denoted by I+.
(Thus, for a Borel subset A of ωω, A ∈ I+

(Q,η
˜

) iff there is q ∈ Q such

that q `Q“η
˜
∈ A”).

Definition 7.3. 1. A forcing notion P is I(Q,η
˜

)–preserving if for every
Borel set A

A ∈ (I(Q,η
˜

))
+ ⇒ `P “ AV ∈ (Iex

(Q,η
˜

))
+”

(AV means: the same set, which is AV[P] ∩V).
2. A forcing notion P is strongly I(Q,η

˜
)–preserving if for all X ⊆ ωω (i.e.

not only Borel sets)

X ∈ (Idx
(Q,η

˜
))

+ ⇒ `P “X ∈ (Iex
(Q,η

˜
))

+”.

[See 7.4(7) below for Q which is c.c.c.]
3. We say that a forcing notion P is weakly I(Q,η

˜
)–preserving if `P“

(ωω)V ∈ (Iex
(Q,η

˜
))

+ ”.

4. P is super–I(Q,η
˜

)–preserving if for all X ⊆ ωω we have:

X ∈ (Idx
(Q,η

˜
))

+ ⇒ `P X ∈ (Idx
(Q,η

˜
))

+.

Proposition 7.4. 1. I(Q,η
˜

) is an ℵ1–complete ideal (in fact, if 〈Ai : i ≤

α〉 ∈ V, each Ai ∈ Borel(ωω) and `Q“AV[G
˜

]
α ⊆

⋃
i<α

A
V[G

˜
]

i ” (if α is a

countable ordinal this is equivalent to Aα ⊆
⋃
i<αAi) and Ai ∈ I(Q,η

˜
)

for i < α, then Aα ∈ I(Q,η
˜

)).
2. If (Q, η

˜
) is not trivial (i.e., `Q“η

˜
/∈ (ωω)V), then singletons belong to

I(Q,η
˜

).
3. ωω /∈ I(Q,η

˜
).

4. Assume (ZFC−∗ is K–good and) Q is correct. If in V, X ∈ Iex
(Q,η

˜
) and

P ∈ K, then in VP still X ∈ Iex
(Q,η

˜
).

5. Assume (ZFC−∗ is K–good, particularly (c) of 1.15 and) Q is correct.
If, in V, B is a Borel subset of ωω from I(Q,η

˜
) and P ∈ K and V1 =

VP, then also V1 |=“B ∈ IQ,η
˜

” , of course here B mean BV1.
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6. Iex
(Q,η

˜
), I

dx
(Q,η

˜
) are ideals of P(ωω) and IexQ,η

˜
⊆ IdxQ,η

˜
,

I(Q,η
˜

) = Iex
(Q,η

˜
) |̀ (the family of Borel sets) = Idx

(Q,η
˜

) |̀ (the family of Borel sets).

7. If Q satisfies the c.c.c. then Idx
(Q,η

˜
) is generated by I(Q,η

˜
), so equal to

Iex
(Q,η

˜
).

8. Iex
(Q,η

˜
) is ℵ1–complete.

9. If for some stationary S ⊆ [χ]ℵ0 the forcing notion Q is S–proper then
Idx

(Q,η
˜

) is ℵ1–complete.
10. If Q is c.c.c., V1 an extension of V (normally generic) and η ∈

(ωω)V1, then : there is G ⊆ Q generic over V such that η = η
˜

[G]
iff (∀B ∈ IV

(Q,η
˜

))(η /∈ BV1); of course this applies to suitable candi-
dates.

Proof. We will prove parts 5) and 4), 6) only, the rest is left to the reader.
5) First work in VP. If the conclusion fails then for some q ∈ Q we have
q `“η

˜
∈ B”. So there is a Q–candidate M to which q,B (i.e. the code of

B) belong. There is q′ such that q ≤Q q′ and q′ is (M,Q)–generic. Now
for every G ⊆ QV[P] generic over VP to which q′ belong, η

˜
[G] ∈ BVP[G].

By absoluteness, also M〈G ∩ QM 〉 |= η
˜
〈G ∩ QM 〉 ∈ BM〈G〉 and hence (by

the forcing theorem) for some p ∈ G ∩ QM we have M |= [p `Q “η
˜
∈ B”].

Now, returning to V, by Shöenfield–Levy absoluteness there are such M ′, p′

in V. Let p′′ be 〈M ′,Q〉–generic, p′ ≤Q p′′. So similarly to the above,
p′′ `Q“η

˜
∈ B”.

4) As X ∈ Iex
(Q,η

˜
), clearly for some Borel set B ∈ I(Q,η

˜
) we have X ⊆ B.

By part (5), also in VP we have B ∈ Iex
(Q,η

˜
) and trivially X ⊆ BV ⊆ BVP .

6) E.g. assume B is a Borel set and it belong to Idx
(Q,η), then the set

I = {p ∈ Q : for some Borel set B1 we have B ⊆ B1 and p 
Q “η
˜
/∈ B1”,

is a dense subset of Q. But for p ∈ I let Bp
1 witness it, now B ⊆ Bp

1 , p 

“η
˜
/∈ Bp

1 , i.e., η
˜
/∈ (Bp

1)VQ”. But the inclusion of Borel sets is absolute,
so p 
Q “BVQ ⊆ (Bp

1)VQ and η
˜
/∈ (Bp

1)VQ”. Hence p 
Q “η
˜
/∈ BVQ”. As

this holds for a dense set of p ∈ Q (i.e. p ∈ I) clearly 
Q “η
˜
/∈ BVQ”, so

B ∈ I(Q,η
˜

). So we have shown IdxQ,η
˜
|̀ {B : B Borel set} ⊆ IexQ,η

˜
. The other

parts are even easier. 7.4

Proposition 7.5. 1. If a forcing notion P is I(Q,η
˜

)–preserving, then P is
weakly I(Q,η

˜
)–preserving.
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2. If P is super I(Q,η
˜

)–preserving, then P is strongly I(Q,η
˜

)–preserving. If
P is strongly I(Q,η

˜
)–preserving, then P is I(Q,η

˜
)–preserving.

3. Assume that Q satisfies the c.c.c. and (Q, η
˜

) is homogeneous (see (~)
below). Then: P is I(Q,η

˜
)–preserving iff P is weakly I(Q,η

˜
)–preserving,

where
(~) (Q, η

˜
) is specially homogeneous if: for any (Borel) sets B1, B2 ∈

(I(Q,η
˜

))+ we can find a Borel set B′1 satisfying B′1 ⊆ B1, B′1 ∈
(I(Q,η

˜
))+ and a Borel function F from B′1 into B2 such that

(α) for every Borel set A ∈ I(Q,η
˜

), F−1[A ∩ B2] ∈ I(Q,η
˜

) and this
holds even in VP, we say this F is (I(Q,η

˜
))+–preserving in VP,

(β) this is absolute (or at least it holds also in VP).
4. If Q is strong explicit c.c.c.–nep forcing and N is a Q–candidate in

generic for Q, then B−N = {ν ∈ ωω : ν is not (Q, η)–generic over N}
is Borel and belongs to I(Q,η

˜
).

Remark 7.6. We say that the forcing notion Q [or a pair (Q, η
˜

)] is homoge-
neous when for every p, q ∈ Q we can find p1, q1 such that p ≤Q p1, q ≤Q q1
and an isomorphism F from Q � {r : p1 ≤Q r} onto Q � {r : p1 ≤Q r}
[mapping the appropriate restriction of η

˜
to the one of η

˜
].

Proof. 1), 2) Easy.

3) By part (1) it suffices to show “non–preserving” assuming “not weakly
preserving”, and toward contradiction assume that this fails. So there are
p,B∗, A

˜
such that B∗ ∈ (I(Q,η

˜
))+ is a Borel subset of ωω and

p `P “ (a) A
˜

is a Borel set
(b) A

˜
∈ I(Q,η

˜
), that is `Q “η

˜
/∈ A

˜
”

(c) ν ∈ A
˜

for every ν ∈ (B∗)V. ”

Let

J = {B : B ∈ (I(Q,η
˜

))+, so a Borel subset of ωω, and
for some Borel function F from B into B∗ we have
F is (I(Q,η

˜
))+–preserving even in VP}.

Choose (in V) a maximal family {Bi : i < i∗} ⊆ J such that i 6= j ⇒
Bi∩Bj ∈ I(Q,η

˜
). As Q satisfies the c.c.c. necessarily i∗ < ω1, so without loss

of generality i∗ ≤ ω. By the assumption (~), clearly, ωω \
⋃
i<i∗

Bi ∈ I(Q,η
˜

).

Let Fi witness that Bi ∈ J . Let

A
˜
i = {η ∈ ωω : η ∈ Bi and Fi(η) ∈ A

˜
, recalling Fi is Borel}.
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Then A
˜
i is a (Q-name of a) Borel subset of ωω and p `P“A

˜
i ∈ I(Q,η

˜
)” as

p `P“A
˜
∈ I(Q,η

˜
)” and the choice of Fi. Hence

p ` “
⋃
i<i∗

A
˜
i ∪ (ωω \

⋃
i<i∗

Bi) ∈ I(Q,η
˜

) ”

(call this set A
˜
∗). Now for every ν ∈ BV

i , Fi(ν) ∈ (B∗)V hence (by clause
(c) in the choice of p, B∗, A

˜
) we have p `“Fi(ν) ∈ A

˜
” hence by the definition

of A
˜
i we have p `“ν ∈ A

˜
i”. So

p `P “ (ωω)V = (ωω\
⋃
i<i∗

Bi)V∪
⋃
i<i∗

BV
i ⊆ (ωω\

⋃
i<i∗

Bi)∪
⋃
i<i∗

A
˜
i ∈ I(Q,η

˜
) ”

so we are done.

4) By 6.13(1). 7.5

Example 7.7. 1) It is easy to find a forcing notion P which is I(Q,η
˜

)–
preserving, but not strongly I(Q,η

˜
)–preserving, e.g. for Q = Cohen (see

Exaple 7.12 below). However, for sufficiently nice forcing notion P, “I(Q,η
˜

)–
preserving” and “strongly I(Q,η

˜
)-preserving” coincide, as we will see in 7.10.

(Parallel to the phenomenon that for “nice” sets, CH holds).
2) It is even easier to find a weakly I(Q,η

˜
)–preserving forcing notion P which

is not I(Q,η
˜

)–preserving.
Assume that for ` < 2 we have (Q`, η

˜
`) as in 7.1, e.g. Q0 is Cohen forcing,

Q1 is random real forcing. Let Q = {∅} ∪
⋃
`<2
{`}×Q`, ∅ minimal, (`1, q1) ≤

(`2, q2) iff `1 = `2 and Q`1 |= q1 ≤ q2. We define a Q–name η
˜

by defining
for a generic G ⊆ Q over V:

η
˜

[G] is
〈0〉_(η

˜
0[G0]) if {0} ×Q0 ∩G 6= ∅, and G0 = {q ∈ Q0 : (0, q) ∈ G}

〈1〉_(η1
˜

[G1]) if {1} ×Q1 ∩G 6= ∅, and G1 = {q ∈ Q1 : (1, q) ∈ G}.

Then usually (and certainly for our choice) we get a counterexample.

Proposition 7.8. Assume that A is a Borel subset (better: a definition of
a Borel subset) of ωω, M is a Q–candidate (so η

˜
∈ M , i.e. 〈ψα,m : α <

ω,m < ω〉 ∈ M as in Definition 6.2) and A ∈ M (i.e. the definition).
Further, suppose that q ∈ QM is such that q `Q“η

˜
∈ A”. Then

(α) M |=“q `Q η
˜
∈ A”,

(β) there is η ∈ A which is a (Q, η
˜

)–generic real over M satisfying31 q.

31i.e. η = η
˜

[G] where G is 〈N,Q〉–generic and q ∈ G
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Proof. As for (α), if it fails then for some q′ ∈ QM , we have

M |= “ q ≤Q q′ and q′ `Q η
˜
/∈ A ”,

and let r ∈ Q be 〈M,Q〉–generic above q′. So if G is a subset of Q generic
over V to which r belongs then q′ ∈ G and G ∩ QM is a subset of QM
generic over M to which q′ belongs. Hence M〈G〉 |=“η

˜
〈G ∩ QM 〉 /∈ A”

and η
˜
〈G ∩ QM 〉 ∈ ωω. By absoluteness also V[G] |= η

˜
[G ∩ QM ] /∈ A and

η
˜

[G ∩ QM ] ∈ ωω. But as η
˜
∈ M clearly η

˜
〈G ∩ QM 〉 = η

˜
[G] and as q′ ∈ G

also q ∈ G, so we get contradiction to q `Q“η
˜
∈ A”.

By clause (α) clause (β) is easy: we can find a subset G ∈ V of QN to
which q belongs which is generic over M . So η

˜
[G] ∈ ωω and it belongs to

A as M |=“q `Q η
˜
∈ A”. 7.8

Proposition 7.9. Assume Q is correct and satisfies the c.c.c., ℵ0 = θQ +
κQ+ ||BQ||+ ||τ

˜
||+‖CQ‖ and η

˜
, an ord-hc-Q-name, is generic for Q. Then

the following conditions are equivalent for a set X ⊆ ωω:
(A) X ∈ Iex

(Q,η
˜

),

(B) for some ρ ∈ ω2, for every Q–candidate N to which ρ belongs there is
no η ∈ X which is (Q, η

˜
)–generic over N ,

(C) for every p ∈ Q for some Q–candidate N such that p ∈ QN , there is
no η ∈ X which is (Q, η

˜
)–generic over N satisfying q.

Proof. (A) ⇒ (B): So assume (A), i.e. X ∈ Iex
(Q,η

˜
). Then for some Borel

set A ∈ I(Q,η
˜

) we have X ⊆ A. Let ρ ∈ ω2 code A. Since `Q“η
˜
/∈ AV[G

˜
Q]”,

it follows from 7.8 that
(*) for any Q–candidate N to which ρ belongs, N |=“q `Q η /∈ AV[G

˜
Q]”,

hence there is no (Q, η
˜

)–generic real η over N which belongs to X (or
even just to A).

(B)⇒ (C): Easy as Q is correct. That is given p ∈ Q, by correctness there
is a Q–candidate M such that p ∈ QM . Also there is a Q–candidate N such
that |M | ∪ {ρ} ⊆ N where ρ witness clause (B); there is such N as ZFC−∗
is weakly normal (see 1.17). Now N is as required.
(C) ⇒ (A): Assume (C). Let

I = {p ∈ Q : for some Borel subset A = Ap of ωω
we have p ` “η

˜
/∈ Ap” and X ⊆ Ap}.

Suppose first that I is predense in Q. Clearly it is open, and we can find
a maximal antichain J of Q such that J ⊆ I. As Q satisfies the c.c.c.,
necessarily J is countable. So A def=

⋂
p∈J

Ap is a Borel subset of ωω (as J
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is countable) and it includes X (as each Ap does). Moreover, since J is a
maximal antichain of Q (and p ∈ J ⇒ p ∈ I ⇒ p `Q“η

˜
/∈ Ap” ⇒

p `Q“η
˜
/∈ A”) we have `Q“η /∈ A”. Consequently (A) holds.

Suppose now that I is not predense in Q and let p∗ ∈ Q exemplify it,
i.e. it is incompatible with every member of I. Let N be a Q–candidate
such that p∗ ∈ QN as is guaranteeded by clause (C) which we are assuming.
Thus p∗ ∈ QN and no η ∈ X is (Q, η

˜
)–generic over N . Let q be a member

of Q which is above p∗ and is 〈N,QN 〉–generic (i.e. q `“GP ∩QN is generic
over N”). Let A def= {η ∈ ωω : η is not (Q, η

˜
)–generic over N}. Now

(a) A is a Borel subset of ωω.
(Why? As N is countable and η

˜
being generic and hereditarily countable

name, of course without η
˜

being generic for Q, we get only Σ1
1, but see next

proof.)
(b) X ⊆ A.

(Why? By the choice of N according to clause (C).)

(c) q `Q“η
˜
/∈ AV[GQ]”.

(Why? By the definition of A.)
(d) q ∈ I.

(Why? By (a)+(b)+(c)).
Thus p∗ ≤ q ∈ I and we get contradiction to the choice of p∗. 7.9

Theorem 7.10. Assume that:
(a) Q, η

˜
are as above (see 7.1), and Q is correct,

(b) P is nep-forcing notion with respect to our fixed version ZFC−∗ ,
(c) P is I(Q,η

˜
)–preserving, moreover32,

(c)+ if M is a P–candidate and a Q–candidate, p ∈ PM , and q ∈ QM , then
there are p1 ∈ P and η ∈ ωω such that p ≤P p1, p1 is 〈M,P〉–generic
and p1 `P“η is (Q, η

˜
)–generic both for M and for M〈G

˜
P〉 satisfying

q”.
(d) ZFC−∗∗ is a stronger version of set theory including clauses (i)–(v) below

for some33 χ
(i) (H(χ),∈) is a (well defined) model of ZFC−∗ ,
(ii) (a), (b) and (c) and (c)+ hold (with BP, BQ, η

˜
as individual

constants),
(iii) Q,P ∈ H(χ) and (H(χ),∈) is a semi P–candidate and a semi Q-

candidate with (BP) interpreted as (BP)N |̀ H(χ) and similarly for

32This follows from clause (c) if Q satisfies the c.c.c., by 7.5(4).
33but we can with more care, using several χ-s weaken the demands
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Q, so (natural to assume) BP, BQ ∈ H(χ) (remember: “semi”
means omitting the countability demand, see 1.1(7), (8))

(iv) forcing of cardinality < χ preserves the properties (i), (ii), (iii),
and χ is a strong limit cardinal.

Then:
(α) if, additionally,

(e) ZFC−∗∗ is normal (see Definition 1.15(3))
then P is strongly I(Q,η

˜
)–preserving,

(β) if N is a P–candidate and Q–candidate and moreover it is a model of
ZFC−∗∗ and N |=“p ∈ P” and η∗ is (Q, η

˜
)–generic over N ,

then for some p′ we have:
(i) p ≤P p′ and p′ ∈ P,
(ii) p′ is 〈N,P〉–generic; i.e. p′ `P“G

˜
P ∩ PN is generic over N” (see

4.3),
(iii) p′ `P “η∗ is (Q, η

˜
)–generic over N [PN ∩G

˜
P]”.

(α)+ We can strengthen the conclusion of (α) to
“P is super–I(Q,η

˜
)–preserving”.

Remark 7.11. 1) We consider, for a nep forcing notion Q
(∗)1 Q satisfies the c.c.c.
We also consider
(∗)2 being a predense subset (or just a maximal antichain) of Q is K–

absolute.
By results of the previous section, (∗)1 ⇒ (∗)2 under reasonable conditions.
You may wonder whether (∗)2 ⇒ (∗)1, but by the examples in Section 10
the answer is not.
2) Note that in (α), (α)+ we can use only weak normality if Q satisfies the
c.c.c., see 7.14. We do not use “P is explicitly nep” so we do not demand it
(though would not mind it).

Before we prove the theorem, let us give an example for a forcing notion
failing the conclusion and see why many times we can simplify assumptions.

Example 7.12. Start with V0. Let s̄ = 〈si : i < ω1〉 be a sequence of
random reals over V0, i.e. generic sequence for the measure algebra on
ω1(ω2). Let V1 = V0[s̄], V2 = V1[r], r a Cohen over V1 and

V3 = V2[t̄] where t̄ = 〈ti : i < ω1〉 is a sequence of random reals,
i.e. generic over V2 for the measure algebra ω1(ω2).

Then in V3 (in fact, already in V2), {si : i < ω1} is a null set, whereas
{ti : i < ω1} is not null. But t̄ is also generic for the measure algebra over
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V1. So V′2 = V1[t̄] is a generic extension of V1. We have V3 = V′2[r],
where r is generic for some forcing notion from V′2 , more specifically for

R def= (Cohen ∗ measure algebra adding t̄)/t̄.

So in V′2 the sets t̄ and s̄ are not null and R makes s̄ null, but not t̄.
How can R do that? R uses 〈ti : i < ω1〉 in its definition, so it is not

“nice” enough. 7.12

Remark 7.13. 1) In the proof of 7.10, of course, we may assume N ≺
(H(χ),∈) if (H(χ),∈) |= ZFC−∗∗, as this normally holds. In (α) the use of
such N does not matter. In (β) it slightly weakens the conclusion. Now,
(α) is our original aim. But (β) both is needed for (α) and is a step towards
preserving them (as in [25]). So typically N is an elementary submodel of
appropriate H(χ).
2) Below we use 7.5(4) to get (c)+, may consider 7.9 too.

Proof of 7.10 Clause (α): To prove (α) we will use (β). So let
X ⊆ ωω, X ∈ (Idx

(Q,η
˜

))
+. Then there is a condition q∗ ∈ Q such that

(∗)1 for no Borel subset B of ωω and q satisfying q∗ ≤ q ∈ Q do we have:
X ⊆ B and q `Q“η

˜
/∈ B”.

Let χ be large enough. We can find N ⊆ (H(χ),∈) as in (β), moreover
N ≺ (H(χ),∈) a model of ZFC−∗∗ (and so a P–candidate and a Q-candidate)
[it exists because by clause (e) of the assumptions for (α), ZFC−∗∗ is normal
so for χ large enough any countable N ≺ (H(χ),∈) to which C,BQ,BP
belong is a model of ZFC−∗∗ and is a P–candidate and a Q–candidate, so is
as required].

Towards a contradiction, assume p∗ ∈ P and p∗ `P“X ∈ Iex
(Q,η

˜
)”. So for

some P–name A
˜

we have

p∗ `P “A
˜

is a Borel subset of ωω, X ⊆ A
˜

and A
˜
∈ I(Q,η

˜
), i.e. `Q η

˜
/∈ A

˜
”.

Without loss of generality the name A
˜

is hereditarily countable and A
˜
, p∗, q∗

belong to N . In V, let

B = {η ∈ ωω : η is a (Q≥q∗ , η
˜

)–generic real over N , which means that
η = η

˜
[G] for some G ⊆ QN generic over N such that

q∗ ∈ G}.
Clearly, it is an analytic set (if η

˜
was generic real then it is actually Borel;

both holds as the relevant statement follows from ZFC−∗∗). So for some
sequence B̄ = 〈Bi : i < ω1〉 we have B =

⋃
i<ω1

Bi, each Bi is Borel (absolutely

as long ℵ1 is not collapsed). Let q ∈ Q be 〈N,Q〉–generic and q∗ ≤ q. Then
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q `Q“η
˜
∈ B” by the definition of B and hence possibly increasing q, for some

i < ω1 we have q `Q“η
˜
∈ Bi”. Since q∗ `Q“η

˜
/∈ (ωω\Bi)” (as q `“η

˜
∈ Bi”),

we may apply (∗)1 to the set ωω \Bi to conclude that X 6⊆ ωω \Bi. Choose
η∗ ∈ X ∩ Bi (so it is (Q, η

˜
)–generic over N by the choice of B and B̄). So

by clause (β) (proved below), there is a condition p ∈ P, p ≥ p∗ which is
〈N,P〉–generic (i.e. it forces that G

˜
P ∩ PN is generic over N , generally not

necessarily G
˜
P ∩ N , but in our case N ≺ (H(χ),∈) hence they are equal)

and such that

p `P “η∗ is (Q, η
˜

)–generic over N [G
˜
P ∩ PN ]”.

Choose GP ⊆ P generic over V, such that p ∈ GP. In V[GP], N [GP ∩
PN ] is a generic extension of N (for PN !), a Q–candidate (see (d) of the
assumptions), and η∗ is (Q, η

˜
)–generic overN [GP∩N ] (and overN). As p∗ ≤

p ∈ GP, clearly if GQ ⊆ QV[GP] is generic over V[GP], then η
˜

[GQ] /∈ A
˜

[GP]
in V[GP, GQ], simply by the choice of A

˜
. But N [GP ∩PN ] ≺ (H(χ)V[GP],∈)

by the choice of N , so N [GP ∩ PN ] satisfies the parallel statement.
Since η∗ is (Q, η

˜
)–generic over N [GP∩PN ], it cannot belong to A

˜
[GP∩PN ],

all in V[GP]. But easily A
˜

[GP ∩ PN ] = A
˜

[GP] as definitions of Borel sets
and X ⊆ A

˜
[G
˜
P] by the choice of A

˜
as p∗ ∈ G

˜
P. But η∗ ∈ X by the choice

of η∗, hence, η∗ ∈ X ⊆ A
˜

[GP], a contradiction to the previous paragraph.
This ends the proof of clause (α) of 7.10.
Clause (α)+: Similar to the proof of clause (α). We start as there so
toward contradiction we assume p∗ 
P “X ∈ Idx

(Q,η
˜

)” but now we choose
functions r∗, A∗, I such that
(∗)2 Dom(r∗) = Dom(I) is the set of all hereditarily countable canonical P–

names for elements of Q (so each is a member of H<ℵ1(κ(P) + κ(Q))),
and34

Dom(A∗) = {(p, q
˜

) : p ∈ I(q
˜

), q
˜
∈ Dom(r∗)},

each A∗(p, q
˜

) is a P–name,
(∗)3 for each q

˜
∈ Dom(r∗) = Dom(I), I(q

˜
) is a predense subset of P above

p∗ such that for each p ∈ I(q
˜

) we have:

p `P “ A∗(p, q
˜

) is a Borel subset of ωω”,
p `P [r∗(q

˜
) `Q “ η

˜
/∈ A∗(p, q

˜
) ”],

p `P “ X ⊆ A∗(p, q
˜

) ”,
p `P “ Q |= q

˜
≤ r∗(q

˜
) ”.

Those functions exist by the definition of Idx
(Q,η

˜
). Without loss of generality,

the set X, and the functions r∗, A∗, I belong to N choosen as above. We
34If we change Dom(r∗) to be Dom(A∗) we can ask also r∗(p, q

˜
) to be a hereditary

countable name.
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choose also conditions q ∈ Q, p ∈ P and a real η∗ ∈ X and a generic filter
GP ⊆ P over V in a similar manner as in the proof of clause (α). We note
that by (∗)3

q
˜
∈ Dom(r∗) ∩N ⇒ “I(q

˜
) a predense subset of P”

⇒ PN ∩ I(q
˜

) ∩GP 6= ∅,

so we can choose p[q
˜

] ∈ PN ∩ I(q
˜

) ∩ GP for q
˜
∈ Dom(I ∩ N . Since η∗

is (Q, η
˜

)–generic over N [GP ∩ PN ], there is G∗ ⊆ QN [GP∩PN ] generic over
N [GP ∩ PN ] such that η∗ = η

˜
[G∗]. By the choice of the function r∗ the set

{r∗[q
˜

][GP] : q
˜
∈ Dom(r∗)} is a dense subset of QV[GP], hence also N [GP∩PN ]

satisfies this hence there is q
˜
∈ N ∩Dom(r∗) such that r def= r∗[q

˜
][GP∩PN ] ∈

G∗. Now, A = A∗(p[q
˜

], q
˜

)[GP] ∈ N [GP ∩ PN ] is a Borel subset of ωω and
N [GP ∩ PN ] |=“r `Q η

˜
/∈ A”, hence N [GP ∩ PN ][G∗] |=“η

˜
[G∗] /∈ A”. But

N [GP ∩ PN ] |= “X ⊆ A”, so (H(χ),∈)V[GP] |= X ⊆ A, hence V |= X ⊆ A.
Therefore, recalling A ⊆ V, we have N [G

˜
P ∩ P][G∗] |=“X ⊆ A that is

X \ A = ∅”. But this contradicts η
˜

[G∗] = η∗ ∈ X \ A (see the choice of G∗

and η∗).

Clause (β): So N, η∗,Q,P, p are given; if below the use of N〈G1〉〈G2〉
seen suspicious, we may without lost of generality assume N is ordinal
transitive, so if G ⊆ P ∗ RN∗ is generic over V then N〈G〉 = N [G] and
N [G] is ord-transitive. Let N1 = N [G∗] be a generic extension of N by
a subset G∗ ∈ V of QN generic over N such that η∗ = η

˜
[G∗], note that

G∗ ∈ V exist by an assumption and N being countable (see 6.2). As
ZFC−∗∗ ` “χ is strong limit”, clearly the power sets of P and Q belong to
H(χ). Now choose (in N) for ` = 1, 2 a model M` ≺ (H(χ),∈)N such that

�1 (i) P,Q, η
˜
, p ∈M`,

(ii) QN ⊆M` and PN ⊆M`,
(iii) the family of maximal antichains of P and ofQ fromN are included

in M`,
(iv) M` ∈ N , moreover M` ∈ H(χ)N ,
(v) M1 ∪ PN (M1) ⊆M2.

Hence, by assumption (d), clause (iii)

�2 M` is a P-candidate and a Q-candidate and

N |= “M` is a semi P-candidate and semi Q-candidate”.

Let R` = Levy(ℵ0, |M`|)N i.e. {f : a function from some n < ω into M` in
N -’s sense} ordered by inclusion; of course we can replace |M`| by ||M`||N ;
lastly let R = R2,M = M2. In V let GR ⊆ R be generic over N1 = N〈G∗〉
(note that as N1 is countable, clearly GR exists) and let N2 = N1[GR] =



260 S. SHELAH

N〈G∗〉〈GR〉 (note that it too is a P-candidate and a Q-candidate), by clause
(iv) of clause (d) of the assumption of 7.10. Note that
�3 η∗ ∈ N1 ⊆ N2.

Note: η∗ is (Q, η
˜

)–generic over M too and G∗ is a subset of QM generic over
M (by clauses (ii) + (iii) of �1) and QN = QM , PN = PM (note that in N2
the model M is countable).

Now we ask the following question:
~ Is there p′ ∈ PN2 such that
N2 |=“ p ≤P p′, p′ is (M,P)–generic and p′ `P“η∗ is (Q, η

˜
)–generic

over M〈G
˜
P ∩ PM 〉” ”?

Depending on the answer, we consider two cases.
Case 1: The answer is “yes”.
Choose p′ as in ~ and choose p′′ ∈ P, such that p′ ≤P p′′ and p′′ is (N2,PN2)–
generic. Then we have

p′′ `P “ in V[G
˜
P], G

˜
P ∩ PN2 is generic over N2, {p, p′} ∈ G

˜
P, and

in N2〈G
˜
P ∩ PN2〉, η∗ is (Q, η

˜
)–generic over M〈G

˜
P ∩ PM 〉,

hence also over N〈G
˜
P ∩ PN 〉”.

[Why does p′′ force this? As:
(A) “G

˜
P ∩ PN2 is generic over N2” holds because p′′ is (N2,PN2)–generic;

(B) “p, p′ ∈ G
˜
P” holds as p ≤ p′ ≤ p′′ ∈ GP

(C) “in N2〈G
˜
P∩PN2〉, η∗ is (Q, η

˜
)–generic over M〈GP∩PM 〉” holds because

of clause (A) and the choice of p′ (i.e. the assumption of the case and
as p′ ∈ GP);

(D) “η∗ is (Q, η
˜

)–generic over N〈GP ∩PN 〉” holds by clause (C) above and
clause (iii) of the choice of M that is �1 .]

So, p′′ `P“η∗ is (Q, η
˜

)–generic over N [G
˜
P ∩ PN ]”, i.e., p′′ is as required.

Case 2: The answer is “no”.
Let ψ(x) be the following statement:
�4
ψ x is (Q, η

˜
)-generic real over M and there is no p′ satisfying:

p′ ∈ P, P |=“p ≤ p′”, p′ is 〈M,PM 〉–generic and p′ `P“x is a (Q, η
˜

)–
generic real over M〈G

˜
P ∩ PM 〉”.

So ψ is a first order formula in set theory, all parameters are in N ⊆ N1 =
N〈G∗〉 ⊆ N2 = N〈G∗〉〈GR2〉, and by the assumption of the case

N〈G∗〉〈GR2〉 |= ψ[η∗].

As GR ⊆ R is generic over N1 = N〈G∗〉 for R, necessarily (by the forcing
theorem), for some r = r2 ∈ GR we have

N〈G∗〉 |= “ r `R ψ[η∗] ”.
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Since R is homogeneous we may assume that r = ∅. So necessarily, for some
q ∈ G∗ ⊆ QN = QM we have

N |=
(
q `Q [r `R ψ(η

˜
[G
˜
Q])]
)
.

Now R = R2 ∈ N (by its definition, as M ∈ N) so
�5 N |=

(
(q, r) `Q×R ψ(η

˜
[G
˜
Q])
)
.

For the rest of the proof we can forget η∗, and derive, eventually, a contra-
diction thus finishing. Next, we deal with R1, let GR1 ⊆ R1

N be generic
over N hence over M2. For a time everything said on N holds for M2 as
well, so N〈GR1〉 is a generic extension by a “small” forcing of N which is
a model of ZFC−∗∗, so N〈GR1〉 satisfies (i), (ii) and (iii) of the clause (d)
of the assumptions. Note that N |=“M1 is a semi Q-candidate and a semi
P–candidate”, see clause (d)(iii) of the assumptions and the choice of M1,
so also N〈GR1〉 satisfies this. Moreover, N〈GR1〉 |=“ M1 is countable”, so
N〈GR1〉 |=“M1 is a Q-candidate and a P–candidate”. Hence by assumption
(d)(ii), that is in (c)+ there are p1, η⊗, G⊗Q ∈ N〈GR1〉 such that:

�6 N〈GR1〉 |= “ p1 ∈ P, p ≤P p1, p
1 is 〈M1,PM 〉–generic and

p1 `P [η⊗ is a (Q, η
˜

)–real over M1[G
˜
P ∩ PM ]

and over M1 satisfying q]
more explicitly, p1 `P “η⊗ = η

˜
〈G⊗Q〉”, where

G⊗Q ⊆ QM1 is a generic set over M1 such that
q ∈ G⊗Q”.

[Why such p1, η⊗, G⊗Q exist? As N〈GR1〉 satisfies the assumption (c)+,
(apply clause (iv) of the assumption (d) to R1).]

As said above, wlog in �6 we can replace N by M2 and in particular
p1, η⊗, G⊗Q belong to M2. Let p

˜
1, η

˜
⊗, G

˜
⊗
Q ∈ N , moreover ∈ M2, be R1–

names such that η
˜
⊗〈GR1〉 = η⊗, G⊗Q = G

˜
⊗
Q〈GR1〉 and p

˜
1〈GR1〉 = p1, and

some r1 ∈ GR1 forces all this. Now, without loss of generality, r1 = ∅Q
(again by homogenity of R) so in N we have

�7 r1 `R1 “ η
˜
⊗ is a #(Q, η

˜
)–generic real over M1 satisfying q and p

˜
1 ∈ P

and p
˜

1 forces (`P) that
η
˜
⊗ is also (Q, η

˜
)–generic over M1〈G

˜
P ∩ PM1〉 satisfying q,

and G
˜
⊗
Q is a subset of QM1 generic overM1, η

˜
⊗ = η[G

˜
⊗
Q]

˜
”.

Let G′R2
⊆ R2 be a generic over N〈GR2〉, to which r2 belongs, N [GR1 ][G′R2

]
is a forcing extension of N [GR1 ]. So both are generic extensions of N by a
small forcing and GR1 ×G′R2

is generic for R1 × R2 over N .
Now G

˜
⊗
Q is essentially a complete embedding of Q |̀ (≥ q) in N into R1

(by basic forcing theory, see the footnote to 1.15(1)(d)); and we can use the
value for 0 of the function

⋃
{f : f ∈ GR1} to choose q′, q ≤ q′ ∈ QN = QM2



262 S. SHELAH

recalling r1 = ∅). Hence, in N , possibly increasing q, for some Q–name
R̃∗ = R∗1 we have (Q |̀ (≥ q)) ∗ R̃∗ is R1, more exactly R1 |̀ {r : r is above
some member of I} for some non empty subset I of R1. So GR1 = G⊗Q ∗GR∗
for some GR∗ ∈ N〈GR1〉, where R∗ = R̃∗[G⊗Q], R̃∗ a QN–name. So we

can represent N〈GR1〉〈G′R2
〉 also as N3 def= N〈G⊗Q〉〈G′R2

〉〈GR∗1〉; i.e., forcing

first with QN |̀ (≥ q), then with R2, lastly with R̃∗〈G⊗Q〉. Now let N2 def=
N〈G⊗Q〉〈G′R2

〉, so N2 is a generic extension ofN andN3 is a generic extension
of N2 (both by “small” forcing), and in N3 we have p1 and η⊗ = η

˜
〈G⊗Q〉

and G⊗Q. But G⊗Q × G′R2
is a generic subset of (QN |̀ ≥ q) × R2 over N , so

essentially a generic (over N) subset of QN × R2 to which (q, r2) belongs,
hence (by �5 above) N2 |= ψ(η

˜
〈G⊗Q〉). Therefore by the choice of ψ above

(see �4
ψ) we have

�1 there is no p′ ∈ N2 such that35:
(�2) N2 |= [p′ ∈ P is 〈M,PM 〉-generic, p ≤ p′ and p′ `P“η⊗ is (Q, η

˜
)–

generic over M〈G
˜
P ∩ PM 〉”].

Recall that p
˜
′, G

˜
Q
⊗, η

˜
⊗, R

˜
∗ belong to M2. Now in N〈G⊗Q〉, the forcing notion

R̃∗〈G⊗Q〉 has cardinality at most ||M1||N .
So N〈G⊗Q〉 |= “the cardinality of P(R̃∗〈G⊗Q〉) is ≤ 2‖M1‖, see �1(iii) hence

if we force with R2, we can find a generic for R̃∗〈G⊗Q〉”.
Hence there is G′ ∈ N〈G⊗Q〉〈GR2〉 = N2 such that N2 |= “G′ is generic

of R
˜
∗〈G⊗Q〉 over N〈G⊗Q〉, i.e., it is a directed and meet all relevant dense

subsets”.
So in N2, G⊗Q is a generic subset of QM2 over M2, to which q belongs and

G′ is a generic subset of R̃∗〈G⊗Q〉 over M2[G⊗Q], hence GR1 = G⊗Q ∗ G∗ is a

generic subset of R1 over M2, and so M∗2
def= M2[GR1 ] ∈ N2 satisfies

• M∗2 is countable and a P-candidate and a Q-candidate and a generic
extension of M2 for R1.

�7 • G⊗Q ∈M∗2 is a subset of QM2 generic over M2,
• q ∈ G⊗Q,
• η

˜
⊗〈GR1〉 = η

˜
〈G⊗Q〉, call it η′,

• p∗1 = p
˜

1〈GR1〉 belong to PM∗2 and is 〈M1,PM 〉-generic,
• M∗2 |= [p∗1 
 “η′ is (Q, η

˜
)–generic over M1〈G

˜
P ∩ PM1〉”].

[Why? See �6.]
Now in N2, by �6, M2〈GR1〉 is countable and a P–candidate (see the

assumptions) so there is p∗2 which is 〈M2〈GR1〉,PM2〈GR1 〉〉–generic and p∗1 ≤P
35Of course, we can use a weaker demand on G⊗Q .
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p∗2. Now p∗2 contradicts �6, that is G⊗Q × GR2 ⊆ Q × R2 is generic over N
and (q, r2) belongs to it, but by �7 above N〈G⊗Q〉〈G

⊗
R2
〉 |= ψ[η

˜
⊗] where

η⊗ = η⊗

˜
〈G⊗Q〉 hence p∗2 can serve as the “no p′” in the definition of ψ(x) ,

see �4
ψ. So we are done. 7.10

Proposition 7.14. Assume (a),(b),(c) and (d) of 7.10 and
(e) ZFC−∗∗ is weakly normal,
(f) Q is c.c.c. and simple (for simplicity) and correct,
(g) ℵ0 = θQ ` κQ + ||BQ||+ |α∗(C)|,
(h) η

˜
∈ ωω is a generic for Q.

Then P is super I(Q,η
˜

)–preserving.

Proof. First note by 7.4(7) that Iex
(Q,η

˜
) = Idx

(Q,η
˜

). Now, if the conclusion fails
in V as witnessed by a set X, then, by 7.9, the statements (A), (B), (C) of
7.9 fail in V. Hence, by ¬(A), X ∈ (Iex

(Q,η
˜

))
+ and by ¬(C) there are p ∈ P

and a hereditarily countable canonical P–name y
˜

such that

p `P “ y
˜
∈ H<ℵ1(Q) and for no Q-candidate M to which y

˜
, p belong

there is ν ∈ X which is (Q, η
˜

)–generic over N [G
˜
P]”.

As ZFC−∗∗ is weakly normal we can find a model N of ZFC−∗∗ which is a
P–candidate and a Q–candidate and to which y

˜
and p belong. Let η∗ ∈

X ⊆ ωω (in V) be (Q, η
˜

)–generic over N (exists by the negation of (B) of
7.9). By (β) of 7.10 there is q ∈ P such that p ≤ q, q is 〈N,P〉–generic and
q `P“η∗ is (Q, η

˜
)–generic over N [G

˜
P]”, a contradiction. 7.14

Conclusion 7.15. Assume (a), (b), (c) of 7.10. Let P,Q be normal K–
good for K = {R : R a forcing notion of cardinality ≤ in(∗)(κ∗)} where
κ∗ = θP + θQ + ||BP|| + ||BQ|| + |αx(C)| for n(∗) large enough (3 suffices)
and
(c)∗ if χ is large enough and M ≺ (H(χ),∈) is countable and P,Q, η

˜
∈ M

and p ∈ P ∩M , q ∈ Q ∩M then there are p1, η such that p1 ∈ P is
(M,P)–generic, η is (Q, η

˜
)–generic over M satisfying q and p1 `“ η

is (Q, η
˜

)–generic over M [G
˜
P] satisfying q”.

Then
(α)′ P is super I(Q,η

˜
)–preserving,

(β) for χ large enough, if N ≺ (H(χ),∈) is countable (and C,BQ,BP, η
˜
∈

N) and N |=“p ∈ P” and η∗ is (Q, η
˜

)–generic over N then for some q
we have
(i) p ≤ q, q ∈ P,
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(ii) q is 〈N,P〉–generic; i.e., q `P“G
˜
P ∩ PN is generic over N”,

(iii) q `P“η∗ is (Q, η
˜

)–generic over N [PN ∩GP]”.

Proof. Let χ1 be a large enough strong limit, and χ2 = iω(χ1), χ3 =
iω(χ2), and repeat the proof of 7.10 (that is of clause (α)+) using N ≺
(H(χ3),∈) to which C,BQ,BP and P,Q, θ, χ1, χ2 belong. 7.15

Observation 7.16. Assume Q is strong c.c.c.–nep. and η
˜

generic for Q.
Then in 7.10 we can omit assumption (c)+ as it follows.

Proof. Let M,p, q be given. Choose p1 ∈ P which is 〈M,P〉–generic and is
above p, and let G ⊆ P be generic over V such that p1 ∈ G. In V[G], M〈G〉
is a P–candidate, hence by 7.5(4) the Borel set B1 = {ν ∈ ωω : ν is (Q, η

˜
)–

generic over M〈GP ∩ PM 〉} satisfies ωω \ B1 ∈ I(Q,η
˜

). Let q′, q ≤ q′ ∈ QV

be 〈M,Q〉–generic in V, the Borel set B0 = {ν ∈ ωω : ν is (Q, η
˜

)–generic
over M and is above q′} belongs to I+

(Q,η
˜

). But as (by clause (c)) the forcing

notion P is I(Q,η
˜

)–preserving, so BV
0 /∈ Iex

(Q
˜
,η
˜

) in V1. As ωω \ B1 ∈ I(Q,η
˜

)

necessarily BV
0 ∩ B1 6= ∅, and choose η∗ ∈ BV

0 ∩ B1, lastly, some p′1 ∈ GP
which is above p1 (hence p) forces this so we are done. 7.16

We can conclude (phrased for simplicity for strong-c.c.c. nep).

Conclusion 7.17. Assume that
(a) Q is strong c.c.c. explicitly nep (see Definition 6.12) and simple and

correct,
(b) η

˜
∈ ωω generic for Q, a hereditarily countable Q–name.

If P0 is nep, I(Q,η
˜

)–preserving and `P0“P̃1 is nep, I(Q,η
˜

)–preserving”, then
P0 ∗ P̃1 is (nep and) I(Q,η

˜
)–preserving.

The reader may ask: what about ω-limits (etc.)? We shall address these
problems in the continuation [21] and [22].

The point is to combine the results here with, e.g., the proof say in [25,
XVIII, §3]. The following example is characteristic for many cases, and is
central in itself

Conclusion 7.18. Assume Q̄ = 〈Pi,Q
˜
i : i < α〉 is a nep–CS–iteration, and

forcing with Q
˜
i does not make ω2 null (forcing over VPi, but normally this

is absolute). Then forcing with Pα = Lim(Q̄) preserve non–nullity of any
X ⊆ ω2 (from V).



PROPERNESS WITHOUT ELEMENTARICITY 265

Proof. See [15]. 7.18

8. Non-symmetry

The following Hypothesis 8.1 will be assumed in this and the next section.
Sometimes (including the main Theorems 9.11–9.15) we assume snep (i.e.,
8.2). The FS iteration we use is from the end of Section 6.

Hypothesis 8.1. Q is correct c.c.c. simple, strongly c.c.c. nep, η
˜

is a heredi-
tarily countable name of a generic real for Q, so (Q, η

˜
) ∈ K (see Definition

6.2; by 6.5 the assumption that η
˜

is generic real for Q is not a great loss)
and ZFC−∗ and ZFC− (and the properties above) are preserved by a forcing
of cardinality < χ∗, |Q|ℵ0 < χ∗, for all the Q–candidates we shall consider,
e.g., χ∗ is an individual constant.

Hypothesis 8.2. Like 8.1 with snep.

Definition 8.3. Let Q, η
˜

be as in 8.1 and let α be an ordinal.

1. Let Q[α] be Pα, where 〈Pi,Q
˜ j

: i ≤ α, j < α〉 is a FS iteration and

Q
˜ j

= QV[Pj ].
2. We let η

˜
[α] be 〈η

˜
i : i < α〉, where η

˜
i is η

˜
“copied to Q

˜ i
” (see 8.4(1)

below).
3. (Q〈α〉, η

˜
〈α〉) is defined similarly as a FS product.

4. For a finite set u ⊆ α with n < ω elements we define the function
F = Fα,uQ from Q[n] into Q〈α〉 by induction on n naturally.

5. The FS iteration Q̄ = 〈Pi,Q
˜ j
, η
˜
j : i ≤ α, j < i〉 of nep means (Q

˜ j
, η
˜
j) ∈

K.

Proposition 8.4. 1. In Definition 8.3(4), for finite u ⊆ α, F = Fα,uQ
is a complete (<◦–) embedding, as “p ≤ q”, “p, q compatible”, “p, q
incompatible”, “〈pn : n < ω〉 is predense set above q” are upward
absolute from Q–candidates (holds as Q is strongly c.c.c. by 8.1). So
η
˜
α is Fα,{α}Q (η

˜
) if α ∈ u.

2. Q[α] satisfies the c.c.c.
3. The same holds for Q〈α〉.
4. (Q[α], η

˜
[α]) for α < ω1 are as in 8.1, too.

5. If “η
˜

is generic for Q” is absolute, then η
˜

[α] is generic for Q[α] (and
η
˜
〈α〉 is generic for Q〈α〉).
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6. Similarly for non constant sequence of such (definitions) of forcings
(so we have Fα,uQ̄ ).

Proof. For example:
3) It is enough to prove it for finite α, and this we prove by induction on
α for α = n+ 1. For the c.c.c. use “incompatibility is upward absolute” for
forcing by Q〈n〉, so we can use the last phrase in 8.1.
4) The main point here is the strong c.c.c.-nep, so let N be a Q-candidate
(and α+ 1 ⊆ N) and

N |= “ I ⊆ Q[α] is predense ”.

Let G[α] ⊆ Q[α] be generic over V and for β ≤ α, G[β] = G[α] ∩Q[β]. Show
by induction on β that G[β] ∩ (Q[β])N is a generic subset of (Q[β])N over
N〈G[β]〉. This is clearly enough. 8.4

Definition 8.5. 1. We say that Q is [n]–symmetric whenever:
if 〈η∗` : ` < n〉 is generic for Q[n] = 〈P`,Q

˜ `
, η
˜
` : ` < n〉 and π is a

permutation of {0, . . . , n− 1},
then 〈η

˜
π(`) : ` < n〉 is generic for 〈P`,Q

˜ `
, η
˜
` : ` < n〉.

2. If (Q′, η
˜
′), (Q′′, η

˜
′′) are as in 8.1, we say that they commute whenever:

if r′ is (Q′, η
˜
′)–generic over V and r′′ is (Q′′, η

˜
′′)–generic over V[r′],

then r′ is (Q′, η
˜
′)–generic over V[r′′].

(Note that η′′ is (Q′′, η
˜
′′)–generic over V is always true by 6.6.)

3. For (Q′, η
˜
′), (Q′′, η

˜
′′) we say that they weakly commute if (Q′ |̀ (≥

q′), η
˜
′), (Q′′ |̀ (≥ q′′), η

˜
′′) commute for some q′ ∈ Q′ and q′′ ∈ Q′′.

4. Similarly for a set or sequence of such pairs.

Proposition 8.6. 1. “Commute” is a commutative relation.
2. For n ≥ 2 we have:
Q is [n]–symmetric iff
Q,Q[n−1] commute and Q is [n− 1]–symmetric iff
Q is [2]-symmetric.

3. If P,Q[n] commute, m ≤ n, then P,Q[m] commute. Similarly, if P,Q
commute and Q′ <◦ Q, then P,Q′ commute.

4. In part 3) we can replace [−] by 〈−〉.
5. If (Q′, η

˜
′), (Q′′, η

˜
′′) weakly commute and Q′,Q′′ are strongly homoge-

neous, then they commute.
6. 〈(Qi, η

˜
i) : i < i∗〉 commute iff for every i < j < i∗ the pair (Qi, ηi),

(Qj , ηj) commutes.
7. Similarly for a sequence 〈Q` : ` < n〉, 〈(Q`, η

˜
`) : ` < ω〉.
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Proof. 1) Let (Q′, η
˜
′), (Q′′, η

˜
′′) be as in 8.1. Then “(Q′, η

˜
′), (Q′′, η

˜
′′) com-

mute” says Q′ ∗Q
˜
′′ = Q′′ ∗Q

˜
′, which is symmetric.

2) For the second “iff”, use “the permutations π` = (`, ` + 1) for ` < n
generate the group of permutations of {0, . . . , n− 1}”.
3)–7) Left to the reader. 8.6

Proposition 8.7. 1. If Q[ω] and Cohen do not commute, then for some
n < ω, Q[n] and Cohen do not commute.
(The inverse holds by 8.6(3), second phrase.)

2. If Q〈ω〉 and Cohen do not commute, then for some n < ω, Q〈n〉 and
Cohen do not commute.

Proof. 1) Since Cohen and Q[ω] do not commute, there is a Q[ω]–name
I
˜

of a dense open subset of Cohen (i.e. of (ω>2,C)) such that for some
condition (p, q

˜
) ∈ Cohen ∗Q

˜
[ω] we have

(p, q
˜

) ` “ η
˜

Cohen has no initial segment in I
˜

”.

Without loss of generality (possibly increasing p) for some n∗ < ω we have

p `Cohen “ Dom(q
˜

) ⊆ {0, . . . , n∗ − 1} ”.

Let I
˜
′ be the Q[n∗]–name for the following set:

{η ∈ ω>2 : for some p′ ∈ Q[ω], p′ |̀n∗ ∈ G
˜ Q

[n∗] and p′ `Q[ω] “η ∈ I
˜

”}.
It should be clear that `Q[n∗]“I

˜
′ is a dense open subset of (ω>2,C)”. We

interprate I also as a (Cohen ∗Q
˜

[n])–name naturally. Now we ask the fol-
lowing question.

Does (p, q
˜

) `Cohen∗Q
˜

[n∗]“ η
˜

Cohen |̀n /∈ I
˜
′ for each n < ω ”?

If yes, we have gotten the desired conclusion (i.e. Cohen and Q
˜

[n∗] do not
commute). If not, for some (p′, q

˜
′) such that (p, q

˜
) ≤ (p′, q

˜
′) ∈ Cohen ∗Q

˜
[n∗]

and for some n < ω and ν ∈ nω we have:

(p′, q
˜
′) `Cohen∗Q

˜
[n∗] “ η

˜
Cohen |̀n = ν ∈ I

˜
′ ”.

So (by the definition of I ′) for some (p′′, q′′
˜

) ∈ Cohen ∗ Q
˜

[n] above (p′, q
˜
′)

for some r ∈ (Q[ω])V we have (p′′, q
˜
′′) `“(∅, r |̀n∗) ∈ G

˜ Cohen∗Q
˜

[n∗]” and

r `Q[ω]“ν ∈ I
˜

”. So wlog p′′ ` Q[ω] |= [r |̀n∗ ≤ q
˜
′′]. Then (p′′, q

˜
′′ ∪ r |̀ [n∗, ω))

forces (in Cohen ∗Q
˜

[ω]) that η
˜

Cohen |̀n = ν ∈ I
˜

, a contradiction.

2) Similar to part (1), just easier (replacing Q[n],Q[ω] by Q〈n〉,Q〈ω〉] and q
˜by q).

8.7



268 S. SHELAH

Proposition 8.8. 1. If Q[n] and Cohen do not commute (Q as before),
then Q and Cohen do not commute in VQ[m]

for some m ≤ n (we get
“do not commute in V” if both “absolutely”).

2. The following conditions (for nep forcing notion Q as in 7.10) are
equivalent:
(i) Q commutes with Cohen,
(ii) `Q“(ω2)V is not meagre”,
(iii) (∀A)[V |=“A ⊆ ω2 non-meagre” ⇒ `Q“A is non-meagre”]
(all three clauses are interprated “absolutely”, i.e., not only in the
present universe but in its generic extensions too, for all set forcing or
just for large enough K).

3. In part (2) we can replace Cohen by others to which 7.10 applies and
are homogeneous (see 7.5).

Proof. 1) Assume toward contradiction that Q and Cohen commute when
forcing over VQ[m]

for every m < n (i.e., the conclusion fails). Let η ∈
ω2 be a Cohen real over V. Let G` ⊆ QV[G0,... ,G`−1,η] be generic over
V[G0, . . . , G`−1, η] for ` < n, and let η` = η

˜
[G`]. We now prove by induction

on `, that η is a Cohen real over V[G0, . . . , G`−1]. The induction step is by
the assumption “Q and Cohen commute in VQ[m]

”. The net result is that
η is a Cohen real over V[η0, . . . , ηn−1], contradicting the assumption.
2) The second clause implies the third by 7.10. The third clause implies
the second trivially.

Let us argue that the implication (i) ⇒ (ii) holds.
Add ℵ1 Cohen reals {ηi : i < ω1} and then force by Q, i.e., let GQ ⊆
QV[〈ηi:i<ω1〉] be generic over V[〈ηi : i < ω1〉], and η = η

˜
Q[GQ]. Then (i)

implies that for every j < ω1 we have: ηj is Cohen over V[〈ηi : i < ω1, i 6=
j〉, η]. Hence in V[〈ηi : i < ω1〉, η] = V[〈ηi : i < ω1〉][GQ], the set {ηi : i <
ω1} is not meagre and consequently (ii) holds.

Lastly, assume (ii) and let ν ∈ ω||Q|| be generic for Levy(ℵ0, ||Q||). Let η
be (Q, η

˜
)–generic real over V[ν]. By (ii), we can find in V[ν] a real ρ ∈ ω2

which is in no meagre Borel set from V[η] (note that there are countably
many such meagre sets from the point of view of V[ν]). Now we easily
finish.
3) Same proof. 8.8

9. Poor Cohen commutes only with himself

Definition 9.1. 1. We say a Q–name x
˜

of a subset of some countable
a∗ ∈ V is [somewhere] essentially Cohen if B2(Q, x

˜
) is [somewhere]
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essentially countable; i.e., [above some p] has countable density; on
B2(Q, x

˜
) see 6.5.

2. We say (Q, η
˜

) ∈ K¬c (a non-Cohen pair) if:
(a) (Q, η

˜
) is as in 8.2,

(b) (Q, η
˜

) (see Definition 6.5) is nowhere essentially Cohen (i.e. above
every condition).

Hypothesis 9.2. In addition to Hypothesis 8.2 χ is regular large enough
cardinal, and (Q, η

˜
) ∈ K¬c will be fixed as in 9.1, and ZFC−∗ is normal (see

Definition 1.15).

Definition 9.3. 1. D = D≤ℵ0(H(χ)) is the filter of clubs on [H(χ)]≤ℵ0 .
2. C0 = {a : a ≺ (H(χ),∈) is countable, and (Q, η

˜
) ∈ a (i.e. their defini-

tions) so a, i.e., (a,∈) is a Q–candidate}.

Definition 9.4. We say that q ∈ Q is influential on a ∈ C0 if:
(~)a,q the set {p ∈ a∩Q : p, q are incompatible in Q} is dense in the (quasi)

order Q |̀ a.

Proposition 9.5. 1. For every a ∈ C0 there is q ∈ Q which is influential
on a.

2. Moreover, for every p ∈ Q and a ∈ C0 there is q influential on a such
that p ≤ Qq.

Proof. 1) Follows by 2).
2) Let p, a be given. Clearly G

˜
Q ∩ a is a Q–name of a countable subset of

an old set Q ∩ a, so it can be considered as a real. We restrict ourselves to
be above our fix p ∈ Q. Note that
(∗)1 G

˜
Q ∩ a is not somewhere essentially Cohen.

[Why? Toward contradiction assume that this fail, say above q, q ≥ p.
From G

˜
Q ∩ a we can compute η

˜
(as η

˜
∈ a, i.e., the relevant (countably

many, countable) maximal antichains belong to a), so η
˜

can be considered
a B2[Q, G

˜
Q ∩ a]–name. But “any (name of) a real in an essentially Cohen

forcing notion is essentially Cohen itself”, so η
˜

is essentially Cohen Q–name,
contradicting Hypothesis 9.2.]

Consequently, p `Q“G
˜
Q ∩ a is not a generic subset of Q |̀ a (over V)”.

Thus there are q and I such that:
(i) p ≤ q ∈ Q,
(ii) I ⊆ Q ∩ a is a dense open subset of Q |̀ a,
(iii) q `Q“G

˜
Q is disjoint to I”.

But this means that
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(∗)2 q is incompatible with every r ∈ I.
[Why? Otherwise q 6 `Q“r /∈ G

˜
Q”.]

So {r ∈ a ∩ Q : q, r incompatible (in Q)} is a subset of Q ∩ a including I
hence it is dense in Q |̀ a. 9.5

Choice 9.6. We choose p̄ = 〈pa : a ∈ C0〉 such that pa ∈ Q is influential on
a (possible by 9.5).

Definition 9.7. 1. For R ⊆ Q let A[R] def= {a ∈ C0 : pa ∈ R}.
2. Dp̄ = DQ,p̄

def= {R ⊆ Q : A[R] ∈ D}.
The family of Dp̄–positive sets will be denoted D+

p̄ (so for a set S ⊆ Q,
we have S ∈ D+

p̄ iff R ∩ S 6= ∅ for each R ∈ Dp̄).
3. For R ⊆ Q and q ∈ Q let R[q] def= {p ∈ R : p, q are incompatible in Q}

(so R[q] is in a sense the orthogonal complement of q inside R).

Fact 9.8. 1. Dp̄ is an ℵ1–complete filter on Q.
2. For R ⊆ Q we have R ∈ D+

p̄ ⇔ A[R] ∈ D+.

Proof. Immediate as a ∈ C0 ⇒ pa /∈ a and for some C1 ∈ D, C1 ⊆ C0 and
〈pa : a ∈ C1〉 is without repetitions.

Proposition 9.9. If R ∈ D+
p̄ then the set

R⊗
def= {q ∈ Q : R[q] ∈ D+

p̄ }
is dense in Q.

Proof. Assume not, so for some q∗ ∈ Q we have
(∗)1 there is no q ∈ Q such that q∗ ≤ q ∈ Q & R[q] ∈ D+

p̄ .
Thus
q∗ ≤ q ∈ Q ⇒ R[q] = ∅ mod Dp̄ ⇒ A[R[q]] = ∅ mod D

⇒ for some club Cq ⊆ C0 of [H(χ)]≤ℵ0 we have (∀a ∈ Cq)(q ∈ a)
and (∀a ∈ Cq)[pa /∈ R[q], i.e., pa, q are compatible].

Let C∗ = {a ∈ C0 : q∗ ∈ a and (∀q)[q∗ ≤ q ∈ a ∩ Q ⇒ a ∈ Cq]}. As each
Cq is a club of [H(χ)]≤ℵ0 clearly C∗ (as a diagonal intersection) is a club
of [H(χ)]≤ℵ0 , i.e., C∗ ∈ D. Since R ∈ D+

p̄ by 9.8 we have A[R] ∈ D+, so
together with the previous sentence we know that there is a∗ ∈ A[R] ∩ C∗.
By the choice of p̄ (see 9.6, and Definition 9.4) as q∗ ∈ a∗∩Q (see the choice
of C∗) for some q we have:

q∗ ≤ q ∈ a∗ and pa∗ , q are incompatible.
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Now this contradicts “a∗ ∈ Cq”. 9.9

Definition 9.10. Assume χ1 = (2χ)+ (so H(χ) ∈ H(χ1)) and N is a
countable elementary submodel of (H(χ1),∈) to which {χ,Q, p̄} belong (so
Dp̄ ∈ N).

1. We let CohenN = CohenN,Q be (D+
Q,p̄,⊇) |̀N (so this is a countable

atomless forcing notion and hence equivalent to Cohen forcing).
2. If GN ∈ Gen(N,D+

Q,p̄)
def= {G : G ⊆ CohenN is generic over N for the

partial order ((D+
Q,p̄,⊇) |̀N)} (possibly in a universe V′ extending V),

then let p
˜
N [G] be the sequence (i.e., in ωω or just member of ωθ(Q))

such that for each ` < ω and γ

(p
˜
N [GN ])(`) = γ ⇔ (∃R ∈ G)(∀p ∈ R)[p(`) = γ].

Proposition 9.11. Assume (9.2 and, additionally), Q is Souslin c.c.c.
(i.e., the incompatibility relation is Σ1

1)36. If χ1, N and G ∈ Gen(N,D+
Q)

are as in 9.10 (so G is possibly in some generic extension V1 of V but
CohenN is from V), then

(a) p
˜
N [G] is an ω–sequence (i.e. for each ` there is one and only one γ),

(b) p
˜
N [G] ∈ Q,

(c) p
˜
N [G] is influential on N (which belongs to C0).

Proof. For every p ∈ Q there is νp ∈ ωω which witnesses p ∈ Q, i.e.,
p ∗ νp ∈ lim(TQ0 ). So choose such a function p 7→ νp. Now in V, for n < ω
the function pa 7→ (pa |̀n, νpa |̀n) is a mapping from {pa : a ∈ C0} ∈ Dp̄ with
countable range. Since Dp̄ is ℵ1–complete

(∗)1 in V, if R ∈ D+
p̄ and n < ω then for some R′ ⊆ R and (ηn, νn) we have

R′ ∈ D+
p̄ and (∀p ∈ R′)[(p |̀n, νp |̀n) = (ηn, νn)].

This is inherited by N , so wlog the function p 7→ νp belongs to N , hence
p
˜
N [G] satisfies clauses (a), (b) (in fact

ν
˜

[G] =
⋃
{ν∗ : for some n < ω and R ∈ G we have (∀p ∈ R)[νp |̀n = ν∗]}

is a witness for p
˜
N [G] ∈ Q). Also for each q ∈ Q ∩N the set

Jq =
{
R ∈ D+

p̄ : for some q′ ∈ Q stronger than q we have:
(∀p ∈ R)[p, q′ are incompatible (in Q)]

}
36If we have more absolutness, we can omit this.
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is a dense subset of (D+
p̄ ,⊇) (remember pa is influential on a; use normality

of the filter D). Clearly Jq belongs to N , so by the demand on G we know
that G ∩ Jq 6= ∅. Choose Rq ∈ G ∩ Jq and let q′ ∈ Q ∩N witness it, so

Rq ∈ D+
p̄ ∩N and (∀p ∈ Rq)[p, q′ are incompatible].

Now “incompatible in Q” is a Σ1
1–relation (belonging to N) hence as above,

p
˜
N [G], q′ are incompatible. As q was any member of Q∩N we have finished

proving clause (c). 9.11

Proposition 9.12. Assume 9.2 and let Q be Souslin c.c.c. Then Q[ω] (see
8.3) and Cohen do not commute.

Proof. Assume that Q[ω] and Cohen do commute. Let χ be large enough,
N ≺ (H(χ),∈) be countable such that (Q, η

˜
) ∈ N (as in 9.10 and we whall

use freely 9.6, 9.7, 9.10). Now we can interpret a Cohen real ν (over V) as a
subset of D+

p̄ ∩N called gν . Thus it is CohenN,Q–generic over V so p
˜
N [gν ] is

well defined, and it belongs to QV[ν] (by 9.11). Moreover, in V[ν] we have:

{q ∈ QN : q and p
˜
N (gη) are incompatible in Q } is dense in QN .

Let 〈η` : ` < ω〉 be generic for (Q[ω], η
˜

[ω]) over V and let ν be Cohen generic
over V[〈η` : ` < ω〉]. For each `, clearly η` is (Q, η

˜
)–generic also over V,

so let η` = η
˜

[G`], where G` ⊆ Q is the unique such generic set over V.
Clearly G` ∩N is a subset of QN generic over V (by “Q is strongly c.c.c.”).
So 〈G` ∩N, gν〉 is a subset of QN × (D+

p̄ ∩N,⊇) generic over N . By 9.11,
for any q ∈ QN and R ∈ (D+

p̄ ∩ N), for some R′ ⊆ R and q′ we have
R′ ∈ (D+

p̄ ∩N), N |=“q ≤ q′ ∈ Q” and

N |= (∀a ∈ R′)(pa, q′ are incompatible).

So look at the set

I def= {(q,R) ∈ QN × (D+
p̄ ∩N) : (∀a ∈ R)(pa, q are incompatible)}.

By the previous sentence, this is a dense subset of QN×(D+
p̄ ∩N,⊇). Hence

there is (q,R) ∈ (G` ∩ N) × gν which belongs to it. Hence, as in 9.11, for
each `, p

˜
N [gν ] is incompatible with some q ∈ G`.

By the assumption that the forcing notions commute we know that 〈η` :
` < ω〉 is generic for (Q[ω], η

˜
[ω]) over V[ν]. Necessarily (by FS + genericity)

for some ` we have Fω,{`}Q (p
˜
N [gη]) ∈ GQ[〈η` : ` < ω〉]; a contradiction to the

previous paragraph.
9.12
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Conclusion 9.13. Assume 9.2 and let Q be Souslin c.c.c. Then (Q, η
˜

) does
not commute with Cohen but possibly only in some generic extensions of V
(by Q[n]) (even above any q ∈ Q).

Proof. If we restrict ourselves above q0 ∈ Q, the Hypothesis 9.2 still holds
so we can ignore this. By 9.12 we have (Q[ω], η

˜
[ω]) does not commute with

Cohen. So by 8.7 we have that, for some n, (Q[n], η
˜

[n]) does not commute
with Cohen and by 8.8 we finish. 9.13

Proposition 9.14. If Q is Souslin c.c.c., (Q, η
˜

) ∈ K¬c, then Q satisfies
9.2 for suitable ZFC−∗ .

Proof. Let ρ ∈ ω2 be the real parameter in the definition of Q. Let ZFC−∗
say:

(a) ZC (i.e. the axioms of Zermelo satisfied by (H(iω),∈)),
(b) Q (defined from ρ which is an individual constant) satisfies the c.c.c.,
(c) for each n < ω, generic extensions for forcing notions of cardinality

< iω preserve (b) (and, of course (a)).
The “strong” comes for “being a maximal antichain is absolute from Q–
candidates”. Now the desired properties are easy. 9.14

Conclusion 9.15. If Q is a Souslin c.c.c. forcing notion which is not ωω–
bounding (say `“ there is an unbounded η

˜
∈ ωω ”), but adds an essentially

non-Cohen real, then Q does not commute with itself.

Proof. By 6.5(2)(δ), wlog η
˜

is the generic of Q and Q is as in 9.5 if Q is.
By [24], Q adds a Cohen real; now by the assumptions, for some Q–name

η
˜

, (Q, η
˜

) ∈ K¬c. By 9.13 we know that Q and Cohen do not commute, so
by 8.6(3) we are done. 9.15

Conclusion 9.16. If Q is a Souslin c.c.c. forcing notion adding a non-
Cohen real, then the forcing by Q makes the old reals meagre.

10. Some absolute c.c.c. nicely defined forcing notions are not
nice enough

We may wonder can we replace the assumption “Q is Souslin c.c.c.” by
the weaker one in §8 and in [24]. We review limitations and then see how
much we can weaken it.
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Proposition 10.1. Assume that η∗ ∈ ω2 and ℵ1 = ℵL[η∗]
1 . Then there is a

definition of a forcing notion Q (i.e. ϕ̄) such that
(a) the definition is Σ1

1 (with parameter η∗), so p ∈ Q, p ≤Q q, “p, q
incompatible”, “{pn : n < ω} ⊆ a is a maximal antichain of Q” are
preserved by forcing extensions,

(b) Q is c.c.c. (even in a forcing extension; even σ–centered),
(c) there is hc–Q–name η

˜
of a generic for Q,

(d) η
˜

is everywhere not essentially Cohen (preserved by extensions not
collapsing ℵ1), in fact has cardinality ℵ1,

(e) Q commutes with Cohen.

Proof. For notational simplicity we ignore η∗.
A condition p in Q is a quadruple 〈Ep, Xp, up, wp〉 consisting of:

a 2-place relation Ep on ω, a subset Xp of ω, a finite subset up of Xp, and
a finite subset wp of ω such that:

Np
def= (ω,Ep) is a model of ZC− + V = L (let <Np∗ be the

canonical ordering of Np, we do not require well foundedness)
such that:

(Np, Xp) |= “ (α) every x ∈ Xp is an infinite subset of ω,
(β) if x 6= y are from Xp, then x ∩ y is finite,
(γ) if x ∈ Xp, then there is no y satisfying

y <
Np
∗ x & (∀z ∈ Xp)(z <

Np
∗ x⇒ z ∩ y finite) &

(y an infinite subset of ω) &∧
n<ω

(∀z1 . . . zn ∈ Xp)
( n∧
`=1

z` <
Np
∗ x⇒ (∃∞m < ω)(m /∈ y ∪

n⋃
`=1

z`)
)
”.

The order is defined by:
p ≤ q if and only if (p, q ∈ Q and) one of the following occurs:

(A) p = q,
(B) there are Y ⊆ ω and a ∈ Nq and f ∈ Y ω such that:

(i) [x ∈ Y & Np |= “y ∈ x”] ⇒ y ∈ Y ,
(ii) [Np |=“rk(x) = y” & y ∈ Y ] ⇒ x ∈ Y ,
(iii) Np |=“rk(x) = y” & x ∈ Y ⇒ y ∈ Y ,
(iv) the set {x : Np |=“x an ordinal”, x /∈ Y } has no first element by

Ep, i.e., if Np |= “y is an ordinal , y /∈ Y ”, then for some x ∈ ω \Y
we have Np |= “x < y, x is an ordinal”.

(v) Nq |=“a is a transitive set”,
(vi) f is an isomorphism from Np |̀Y onto Nq |̀ {b : Nq |= b ∈ a},
(vii) f maps Xp ∩ Y onto Xq ∩ Rang(f),
(viii) f maps up ∩ Y into uq ∩ Rang(f),
(ix) wp ⊆ wq,



PROPERNESS WITHOUT ELEMENTARICITY 275

(x) if n ∈ wq\wp and x ∈ uq \ f ′′(up), then Nq |=“the n-th natural
number does not belong to x”.

The reader can now check (note that w
˜

=
⋃
{wp : p ∈ G

˜
Q} is forced to be an

infinite subset of ω almost disjoint to every A ∈ A, A a reasonably defined
MAD family in L); see more details in the proof of 10.4. 10.1

Remark 10.2. Is Q nep? Not; let N be a Q-candidate, A ∈ A \ N , and
let w∗ ⊆ ω be such that for some G ⊆ QN generic over N , w∗ = w

˜
[G], and

w∗ ∩ A = ∅. Clearly there is no q which is which is (N〈G〉,Q)–generic. Is
there such G’? If N ∈ L[η∗] and G ⊆ QN is generic over N , they will do.

The following show that we cannot improve too much the results of [22]
(compare with the conclusion in the end of Section 7).

Proposition 10.3. Assume V = L. There is Q = Q0 ∗Q
˜ 1 such that:

(a) Q0 is as nep c.c.c. not adding a dominating real,
(b) `Q0“Q

˜ 1 is as nice as in 10.1, in particular, c.c.c. not adding a domi-
nating real”,

(c) Q adds a dominating real,
(d) in fact, Q0 is the Cohen forcing (so in any V1 it is c.c.c. and strongly

c.c.c., correct, very simple nep (and snep), and it is really absolute,
i.e., it is the same in V1 and V, and its definition uses no parameters),

(e) moreover, Q
˜

1 = Q1 is defined in L, really absolute, and in any V1 it
is c.c.c. (and even snep). In V1, Q1 adds a dominating real iff (ωω)L

is a dominating family in V1.

Proof. Let Q0 be Cohen. We shall define Q1 in a similar manner as Q in
the proof of 10.1.

A condition in Q
˜ 1 is a triple 〈Ep, up, wp〉 such that Ep is a 2-place relation

on ω, up is a finite subset of ω and wp is a finite function from a subset of
ω to ω and:

Np
def= (ω,Ep) is a model of ZFC− + V = L (let <Np∗ be the

canonical ordering of Np, we do not require well founded-
ness); so in formulas we use ∈.

[What is the intended meaning of a condition p? Let

Mp = Np |̀ {x : (Tc(x)Np , Ep |̀Tc(x)Np) is well founded},
where Tc(x) is the transitive closure of x. Let M ′p be the Mostowski collapse
of Mp and hp : Mp −→M ′p be the isomorphism. Now, p gives us information
on the function w

˜
=
⋃
{wp : p ∈ G

˜
} from ω to ω, it says: w

˜
extends the

function wp and if x ∈ Mp ∩ up is a function from ω to ω then for every
natural number satisfying n /∈ Dom(wp) we have x(n) ≤ w

˜
(n). Note that
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hp(x) is a function from ω to ω iff Mp |=“ x is a function from ω to ω ” iff
Np |=“ x is a function from ω to ω ”.]

The order is defined by: p ≤ q if and only if one of the following
occurs:
(A) p = q,
(B) there are Y ⊆ ω and a ∈ Nq and f ∈ Y ω such that

(i) [x ∈ Y & Np |= y ∈ x] ⇒ y ∈ Y ,
(ii) [Np |=“rk(x) = y” & y ∈ Y ] ⇒ x ∈ Y ,
(iii) [Np |=“rk(x) = y” & x ∈ Y ] ⇒ y ∈ Y ,
(iv) the set {x : Np |= “x an ordinal”, x /∈ Y } has no first element (by

Ep),
(v) Nq |=“a is a transitive set”,
(vi) f is an isomorphism from Np |̀Y onto Nq |̀ {b : Nq |= b ∈ a},
(vii) f maps up ∩ Y into uq ∩ Rang(f),
(viii) wp ⊆ wq,
(ix) if n ∈ Dom(wq)\Dom(wp) and x ∈ up, Np |=“x is a function from

the natural numbers to the natural numbers” and x∗ = f(x), so
in particular x ∈ Dom(f) = Y , then Nq |=“if y is the n-th natural
number then wq(y) > x(y)”.

Clearly Q is equivalent to Q′ = (the Hechler forcing)L, just let us define,
for p ∈ Q1, g(p) = (wp, F p) where F p = {hp(x) : x ∈ wp ⊆ Mp}. Now, g is
onto Q′ and

Q1 |= p ≤ q ⇒ Q′ |= g(p) ≤ g(q) ⇒
¬(∃p′)(p ≤Q p′ & p′, q are incompatible in Q).

The rest is left to the reader. 10.3

Proposition 10.4. 1. Assume that:
(a) ϕ̄ = (ϕ0(x), ϕ1(x, y)) defines, in any model of ZFC−∗ , a forcing

notion Qϕ̄ with parameters from Lω1, but we may write x <ϕ1 y
instead of ϕ1(x, y) (or, say, x <ϕ1 y in N),

(b) for every β < ω1 such that Lβ |= ZFC−∗ , for every x, y ∈ Lβ we
have:

[x ∈ QLβ
ϕ̄ ⇔ x ∈ QLω1

ϕ̄ ] and [x < y in QLβ
ϕ̄ ⇔ x < y in QLω1

ϕ̄ ],

(c) for unboundedly many α < ω1 we have Lα |= ZFC−∗ ,
(d) any two compatible members of QLω1

ϕ̄ have a lub,
(e) like (b) for compatibility and for existence of lub.
Then there is a Σ1

1 forcing notion Q equivalent to QLω1
ϕ̄ ; the relations

have just the real parameters of ϕ̄ and are actually Borel.
2. We can use a real parameter ρ and replace Lα by Lα[ρ].
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Proof. It is similar to the proof of 10.1. Let Q be the set of quadruples
p = (Ep, np, ᾱp, āp) such that:
(α) Ep is a two-place relation on ω,

(β) Np
def= (ω,Ep) is a model of ZFC−∗ + V = L,

(γ) for some n = np we have

ᾱp = 〈αp,` : ` < n〉, āp = 〈ap,` : ` < n〉,
(δ) Np |=“αp,` is an ordinal, ap,` ∈ Lαp,` , Lαp,` |= ZFC−∗ , and for k ≤ ` < n

we have Lαp,` |= ϕ0(ap,k), αp,` <ϕ1 αp,`+1”, and
(ε) if m ≤ k ≤ ` < n then Np |=“ Lαp,` |= ϕ1(ap,αm , ap,αk) ”.

The order is given by:
p0 ≤Q p1 if and only if (p0, p1 ∈ Q and) for some Y0, Y1 ⊆ ω and f we have:

(i) for ` = 0, 1: Y` is an Ep–transitive subset of Np` , and

(∀x ∈ Np`)(x ∈ Y` ≡ rkNp` (x) ∈ Y`),
(ii) f is an isomorphism from Np0 |̀Y0 onto Np1 |̀Y1,
(iii) in {x ∈ Np0 : x /∈ Y0, Np0 |=“x is an ordinal”} there is no Ep–minimal

element,
(iv) f maps {αp0,` : ` < n∗} ∩ Y0 into {αp1,` : ` < np1} ∩ Y1,
(v) if f(αp0,k) = αp1,m then Np1 |=“ Lαp1,m |= ϕ1(f(ap0,k), ap1,m) ”.

Claim 10.4.1. Q is a quasi order.

Proof of the claim: Check.
Now for every p ∈ Q define Np,Mp, hp,M

′
p as in the proof of 10.3.

Claim 10.4.2. The set

Q′ def= {p ∈ Q : Np is well founded, np > 0}
is dense in Q.

Proof of the claim: Check.

Define g : Q′ −→ QLω1
ϕ̄ by g(p) = hp(ap,np−1).

Claim 10.4.3. g is really a function from Q′ onto QLω1
ϕ̄ and and for p0, p1 ∈

Q′ we have

p0 ≤Q p1 ⇒ QLω1 |= g(p0) ≤ϕ1 g(p1),
p0, p1 are incompatible in Q′ ⇒ g(p0), g(p1) are incompatible in QLω1 .

Proof of the claim: The first statement is trivial, the second is immediate
by clause (v) in the definition of ≤Q. For the last clause recall clause (e) of
the assumptions.

Now 10.4 should be clear. 10.4
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We may consider possible “inputs” to 10.4. Instead of looking at the case
ℵL[η]

1 = ℵ1 we may look at other cases in which ℵ1 is not large in inner
models. For example:

Proposition 10.5. Assume that ϕ = ϕ(x, y) is such that

(i) ZFC−∗ ` “for every infinite ordinal x ∈ X def= {α : α = ω or ωα = α
(ordinal exponentiation)}, there is a unique Ax, an unbounded subset
of x of order type x such that ϕ(x,Ax), and ψ(·) defines a set S ⊆ X
not reflecting”,

(ii) ZFC−∗ ` if µ1 < µ2 are from X then Aµ1 * Aµ2,
(iii) ω1 = sup{α : Lα |= ZFC−∗ }, and the truth value of “β ∈ Aγ , β ∈ S”

is the same in Lα for every α < ω1 for which Lα |= ZFC−∗ ,
(iv) the set S, i.e. {β < ω1 : (∃α)(Lα |= ZFC−∗ & ψ(β))}, is a stationary

subset of ω1
[this is close to saying “ℵV

1 is below first ineffable and is not weakly
compact in L” ].

Then for some ϕ̄ as in the assumptions37 of 10.4, and η
˜

we have:

(a) QLω1
ϕ̄ is a c.c.c. forcing notion,

(b) η
˜
∈ ω2 is a generic real of QLω1

ϕ̄ , and is nowhere essentially Cohen,

(c) QLω1
ϕ̄ commute with Cohen.

Proof. Let pr(α, β) = (α + β)(α + β) + α, it is a pairing function. By
coding, without loss of generality

(ii)′ if x, x1, . . . , xn are distinct cardinals in Lω1 , then Ax *
n⋃
`=1

Ax` .

[Why? E.g., letting

A′α = {pr+(n, prn(β1, . . . , βn)) : n < ω, {β1, . . . , βn} ⊆ Aα},
where pr1(β) = β, prn+1(β1, . . . , βn+1) = pr(prn(β1, . . . , βn), βn+1)). So
replacing Aα by A′α, we have (ii)′.]

For δ ∈ X let f0(δ) = min(X \ (δ + 1)) and let f1
δ be the first (in the

canonical well ordering of L) one-to-one function from f0(δ) onto δ; exist
by the definition of X. Let Cδ be the first club of δ disjoint to S. For
α ∈ [ω, ω1), let δα = sup(X ∩ α) and let

B∗α = {pr3(ε, ζ, ξ) : ε ∈ Cδα , ζ = f1
δα(α), ξ ∈ Aδα and ε > ζ, ε > ξ}.

Note that
(∗) B∗α is an unbounded subset of δα such that

(a) β ∈ S ∩ α ⇒ β > sup(B∗α ∩ β),
37so we can “translate” it to be Borel
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(b) if α1, . . . , αn ∈ [ω, ω1) \ {α} then B∗α \
n⋃
`=1

B∗α` is unbounded in δα.

[Why? For (a), suppose that β ∈ S ∩ α is a counter example. Trivially,
min(B∗α) > min(Cα), so γ = sup(Cδα ∩ β) is well defined. But Cδα ∩ S = ∅
whereas β ∈ S, hence β /∈ Cδα . Also β < δα = sup(Cδα) and hence
necessarily β > sup(Cδα ∩ β) = γ. Now,

B∗α ∩ β ⊆ {pr3(ε, ζ, ξ) : ε < γ and ζ, ξ < ε} ⊆ (γ + γ + γ)4 < β

(see the definition of B∗α and note that ε ≤ pr3(ε, ζ, ξ); the last inequality
follows from the fact that β ∈ X). To show (b) suppose that γ0 < δα and

choose ξ ∈ Aα \
n⋃
`=1

Aα` . Let ζ = f1
δα

(α) and let ε ∈ Cδα be large enough.

So pr3(ε, ζ, ξ) ∈ B∗α (by definition) and pr3(ε, ζ, ξ) /∈ B∗α` (use the third
coordinate) and pr3(ε, ζ, ξ) > ε > γ0.]

Let Iα be the ideal of subsets of B∗α generated by

{B∗α ∩B∗β : ω ≤ β < ω1, β 6= α} ∪ {B∗α ∩ β : β < δα}.
Let Q be the set of finite functions p from ω1 \ ω to {0, 1, 2} ordered by:
p ≤ q if and only if p ⊆ q and:

if ω ≤ α ∈ Dom(p), β ∈ Dom(q) ∩B∗α\Dom(p)
then q(β) = p(α) ∨ q(β) = 2.

Claim 10.5.1. Q is a partial order.

Claim 10.5.2. For each α ∈ [ω, ω1) the set Iα = {p : α ∈ Dom(p)} is
dense in Q.

Proof of the claim: Let p ∈ Q and suppose that α /∈ Dom(p). Let
q = p ∪ {〈α, 2〉}.

Let f
˜

be the Q–name defined by ` f
˜

=
⋃
G
˜
Q.

Claim 10.5.3. For α ∈ [ω, ω1).

`Q “ for some ` < 3, for any m < 3 we have
{β ∈ B∗α : f

˜
(β) = m} 6= ∅ mod Iα iff m ∈ {2, `} ”.

Proof of the claim: Take p ∈ G
˜
Q such that α ∈ Dom(p) and let

B = B∗α \Dom(p)

so B ∈ Iα. Clearly, p `“ if β ∈ B∗α \B, then f
˜

(β) ∈ {2, p(α)} ”, hence

p `Q “ if m ∈ {0, 1, 2} \ {2, p(α)} then m /∈ Rang(f
˜
|̀ (B∗α \B)) ”.

Now, if B′ ∈ Iα, and p ≤Q q then there is γ ∈ Aα \ B′ \
⋃
{B∗γ : γ ∈

Dom(q) \ {α}} and hence q ∪ {〈γ, p(α)〉} as well as q ∪ {〈γ, 2〉} belong to Q
and are above q. Reflecting we are done.
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Claim 10.5.4. One can define f
˜

from f
˜
|̀ω ∈ ω3.

Proof of the claim: Define f
˜
|̀α by induction on α ∈ X using 10.5.3.

Claim 10.5.5. The forcing notion Q is nowhere essentially Cohen.

Proof of the claim: For every α∗ < ω1 and for every large enough γ <
ω1, the condition q2

γ = {〈γ, 2〉} is compatible with every q ∈ Q such that
Dom(p) ⊆ α∗, but q1

γ = {〈γ, 1〉} is incompatible with it. Together with
10.5.4 we are done.

Claim 10.5.6. The Q–name f
˜

(for a real), hence f
˜
|̀u, is nowhere essen-

tially Cohen.

Proof of the claim: By 10.5.4, 10.5.5, as obviously f
˜

is generic, i.e.,
G
˜

= {p : p ⊆ f
˜
}.

Claim 10.5.7. The forcing notion Q satisfies the demands in 10.5.

Proof of the claim: Check.

Claim 10.5.8. The forcing notion Q satisfies the c.c.c.

Proof of the claim: Use “S ⊆ ω1 is stationary” and clause (a) of (*),
(that is, if pα ∈ Q for α < ω1, for each limit α ∈ S we let

γα = sup
(
{B∗β ∩ α : β ∈ Dom(p) \ {α} and β ≥ ω} ∪ {Dom(pα) ∩ α}

)
,

so by (*)(a) we have γα < α, hence for some stationary S′ ⊆ S we have

α ∈ S′ ⇒ γα = γ∗ & pα |̀α = p∗,

and wlog β < α ∈ S′ ⇒ Dom(pβ) ⊆ α. Now if α1, α2 ∈ S′, then
p = pα1 ∪ pα2 ∈ Q is a common upper bound of pα1 , pα2 , as required. 10.5

Remark 10.6. 1. Of course, such forcing can make ℵ1 to be ℵL[η]
1 . But it

seems that we can have such forcing which preserves the Lω1–cardinals
(and even their being “large” in suitable senses). For this it should be
like “coding the universe by a real” of Jensen, Beller and Welch [1],
and see Shelah and Stanley [27].

2. Instead of coding ℵ1–Cohen we can iterate adding dominating reals or
whatever.

Definition 10.7. 1. We say that forcing notions Q0,Q1 are equivalent if
their completions to Boolean algebras (BA(Q0),BA(Q1)) are isomor-
phic.

2. Forcing notions Q0,Q1 are locally equivalent if
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(i) for each p0 ∈ Q0 there are q0, q1 such that

p0 ≤ q0 ∈ Q0 & q1 ∈ Q1 & BA(Q0 |̀ (≥ q0)) ∼= BA(Q1 |̀ (≥ q1)),

(ii) for every p1 ∈ Q1 there are q0, q1 such that

q0 ∈ Q0 & p1 ≤ q1 ∈ Q1 & BA(Q0 |̀ (≥ q0)) ∼= BA(Q1 |̀ (≥ q1)).

Now we may phrase the conclusions of 10.4, 10.5.

Proposition 10.8. 1. Assume ϕ̄1 = 〈ϕ1
0, ϕ

1
1〉 and ϕ̄2 = 〈ϕ2

0, ϕ
2
1〉 are as

in 10.4. Then we can find ϕ̄3 as there, only with the parameters of
ϕ̄1, ϕ̄2 and such that:
(a) if in Lω1 there is a last cardinal µ (i.e., ℵV

1 is a successor cardinal
in L), then QLω1

ϕ̄3
is locally equivalent to⋃

{QLα
ϕ̄1

: µ < α, Lα |= µ is the last cardinal},

(b) if in Lω1 there is no last cardinal (i.e. ℵV
1 is a limit cardinal in

L), then QLω1
ϕ̄3

is locally equivalent to⋃
{QLω,α

ϕ̄1
2

: Lω1 |= α a cardinal}.

2. In 10.4, 10.5(1) we can replace Lω1 by Lω1 [η∗], η∗ ∈ ωω.
3. In 10.4, 10.5(1) we can replace Lω1 by Lω1 [A] where A ⊆ ω1 but have
ℵ1-snep instead of ℵ0-snep.

Proof. Let ϕ3,0(x) say
(i) x = 〈ᾱx, β̄x, āx, b̄x〉, ᾱx = 〈αx` : ` ≤ nx〉, 〈〈βx`,k : k ≤ kx` 〉 : ` ≤ nx〉,

āx = 〈〈ax`,k : k ≤ kx` 〉 : ` < nx〉, āx = 〈ax` : ` ≤ nx〉, b̄x = 〈bx` : ` < nx〉,
(ii) αx` < βx`,0 < βx`,1 . . . , and Lβx` |=“α`x the last cardinal”,
(iii) Lβx` |=“ϕ1,0(bx` )”, Lαx`+1

|=“ϕ2,0(ax` )” for ` < nx,
(iv) Lβxnx |=“αx` is a cardinal”,
(v) Lαx`+1

|=“ϕ2
1(ax` , a

x
`+1)”.

Let β(x) = x. Let ϕ3,1(x, y) say:
(α) βxnx ≤ β

y
ny ,

(β) {αx` : ` ≤ nx and Lβyy |=“αx` is a cardinal”} is a subset of {αy` : ` ≤ ny},
(γ) if αx`(∗) is maximal in {αx` : ` < nx,Lβy

ny
|=“αx` is a cardinal”} then

ᾱx |̀ `(∗) = ᾱy |̀ `(x), β̄x |̀ `(∗) = β̄y |̀ `(∗), āx |̀ `(∗) = āy |̀ `(∗), b̄x |̀ `(∗) =
b̄y |̀ `(∗),

(δ) αx`(∗) = αy`(∗),
(ε) βx`(∗) ≤ β

y
`(∗) and Lβy

`(∗)
|= ϕ1

0,1(bx`(∗), b
y
`(∗)).
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Now check. 10.8

Remark 10.9. Compare with 6.14.
Are such forcing notions nep? Generally not. E.g., (for Q from 10.3), if in

V, (ωω)L is not bounded (by any function from V) then for any candidate
N , there is an increasing sequence η ∈ (ωω)L not dominated by any f ∈
(ωω)N ; let η∗ ∈ ωω be defined by η∗(0) = 0, η∗(n+1) = η∗(η(n)+1). Then
there is ν ≤ η∗, ν ∈

∏
n<ω

(η(n) + 1) which is Cohen over N . So N [ν] is a

candidate, N [ν] |=`P “η
˜

does not dominate ν”. But

V |=`P “η
˜

dominates η∗ hence ν”.

Probably this is a general phenomena.

11. Open problems

Problem 11.1. 1. Can we in [24] weaken the assumptions (from Souslin
c.c.c.) to “Q is nep and c.c.c.”? (See [22, §2] for partial answer.)

2. Similarly in the symmetry theorem.
3. Similarly other problems here have such versions too.

Problem 11.2 (von Neumann). Is every c.c.c. ωω–bounding atomless forc-
ing notion a measure algebra? We may now rephrase: is the non-existence
consistent?

A relative of the von Neumann problem is a problem which Fremlin [7]
stresses and has many equivalent versions (see [7] on its history). Half way
between them and our context is the following.

Problem 11.3. Assume Q is a Souslin c.c.c. ωω–bounding forcing notion.
Is every Q–name of a new real essentially a random real?

Problem 11.4. 1. Is it consistent that every c.c.c. forcing notion adding
an unbounded real adds a Cohen real? (See B laszczyk and Shelah [5]
for a proof of the σ-centered version).

2. If P satisfies [24, 1.5], does it imply P adds a Cohen real?

Problem 11.5. Are there any symmetric (or (< ω)-symmetric) c.c.c. Souslin
forcing notions in addition to Cohen forcing and random forcing?

[“Yes” here implies “no” to 11.3 so not of present interest.]
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Problem 11.6 (Gitik and Shelah [8], [9]). 1. Assume I is an ℵ1–complete
ideal on κ such that P/I is atomless. Can I+ (as a forcing notion) be
a c.c.c. Souslin forcing generated by a real?

2. Replace Souslin by “definable in an (H<σ(θ),∈,B)”, B has universe
κ or H<σ(κ), and I is (θ + κ)+–complete (see [8]).

3. Generalize the results of the form “if P(κ)/I is the measure algebra
with Maharam dimension µ (or is the adding of µ Cohen reals) then
λ is large enough”, see [9], [10] for those results.

4. Combine (2) and (3).

Problem 11.7. When do iterations (CS,FS) of Souslin c.c.c. forcing no-
tions not adding a dominating real have this property? Is each almost ωω–
bounding? (See [28]; generally try to continue 7.10, replace “η∗ is generic
real for (N,Q, η

˜
)” by less.)

Problem 11.8. 1. Is there a pair (Q, r
˜

) such that:
(a) `Q“r

˜
∈ ω2 is new no-where Cohen”,

(b) if P is a Souslin c.c.c. forcing notion with no P–name r
˜
′ of a real

such that the forcing notion BP(r
˜
′) is ωω–bounding but P adds a

nowhere essentially Cohen real,
then forcing with P adds a (Q, r

˜
) real, i.e. for some P–name r

˜
′′ for

a real we have `P“for some G′′ ⊆ QV generic over V, r
˜
′′[GP] =

r
˜

[G′′]”.
2. As above, P is σ–centered.
3. If P is a Souslin c.c.c. forcing notion adding new reals but not adding

a real r
˜
′ with BP(r

˜
′) being ωω–bounding,

then forcing with P adds a new real r
˜
′′ such that BP(r′′) is σ–centered.

Problem 11.9. Develop38 the theory of “definable forcing notions” when
we allow an ultrafilter on ω as a parameter.

Problem 11.10. Does nep6=snep? (The case θ = κ = ℵ0, of course.)

Problem 11.11. Try to generalize our present context to λ–complete forc-
ing notions (see Ros lanowski and Shelah [20], [17]). Is λ+-c.c. preserved by
(< λ)–support iterations of such forcing notions?

Problem 11.12. When does QV <◦ QVP?

38But see [27].



284 S. SHELAH

Problem 11.13. Does Axω1 [(ℵ1,ℵ1)–nep] imply 2ℵ0 = ℵ2?
Or does Axω1 [nep] imply 2ℵ0 = ℵ2?

[The parallel question for Souslin proper was formulated in Goldstern and
Judah [12]]

Two other relatives of 11.3 are

Problem 11.14. Assume Q is a Souslin c.c.c. forcing notion which is snep
and even “x ∈ Q”, “x ≤Q y”, “{pn : n < ω} predense above q′” are Σ1

1
relations. Does Q add Cohen or random real?

Problem 11.15 (Judah). Can a Souslin c.c.c. forcing notion add a minimal
real? (Note: this is of interest only if the answer in 11.3 is NO and/or the
answer to 11.16 is NO.)

We may also ask:

Problem 11.16. 1. Let Q be a Souslin c.c.c. forcing notion and `Q“r
˜
∈

ω2”. Is B2(Q, r
˜

) also a Souslin c.c.c. forcing notion?
2. Similarly for nep c.c.c.
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List of defined concepts

A[R] 9.7(1)
absolute

absolute nep 4.4
absolutely through (B,p, θ) 1.1(14)
absolutely upward 1.1(13)
K-absolutely 4.4

c in K¬c 9.1
C0 9.3(3)
cl (cl1, cl2, cl3) 5.1, 5.7
candidate 1.1(3),(11)

set–candidate 1.1(8)
class–candidate 1.1(7)
semi candidate 1.1(3),(7)
Q–candidate 1.1(8)

c.c.c. nep 6.12(2)
strong c.c.c. nep 6.12(1)

c.c.c.-simple-FS-iteration 6.15
c.c.c.-nep-FS-iteration 6.16
CohenN 9.10(1)

(somewhere) essentially Cohen 9.1(1)
commute 8.5(2)

weakly commute 8.5(2)
correct 1.3(11)
D, a filter, D = D≤ℵ0(H(χ)) 9.3(1)
Dp̄ 9.7
essentially explicitly (N,Q)–generic 2.10
explicit

explicitly predense 1.3(8)
explicitely nep/snep 1.3(2), 1.9(2)

equivalent (forcing) 10.7
explicitly 〈M,Q〉 generic 1.6
frame 1.1(10)
good (ZFC−∗ is good, K–good) 1.15(1)
G generic

N〈G〉 4.3
τ
˜
〈G〉 4.3

generic / 〈M,Q〉–generic 1.6, 4.9
hc, hereditary countable

hc–κ–P–name 5.10
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I(Q,η
˜

) 7.2
Iex

(Q,η
˜

) 7.2

Idx
(Q,η

˜
) 7.2

impolite 1.1(4)
influential 9.4
K (family of forcing) 0.4(10)
K family of pairs (Q, η

˜
) 6.2(1)

Kex 6.4
K¬c 9.1(2)

local
nep 1.11(2)
snep 1.11(1)

name 4.2
nep 1.1(3)

nep iteration 5.18
real nep 5.17
straight nep 5.13(1)

nice 4.5
ZFC−∗ nice to 4.5
operation (Borel operation) 0.5

normal 1.15(3)
semi normal 1.15(4)
weakly normal 1.15(5)

pair (on (Q, η
˜

)) 6.1, 6.3
Q 1.3
Q is nep 1.3(7)
(Q, η

˜
) 6.1

Q̄ 5.18
Q̂ 5.7
Q[α] 8.3(1),(2)
Q〈α〉 8.3(3)
p
˜
N , p

˜
N [G] 9.10

pd 5.1
pdac 5.1
polite 1.1(4)
predence anti-chain above p 0.7
preserving

I(Q,η
˜

)-preserving 7.3(1)
strongly I(Q,η

˜
)-preserving 7.3(2)

weakly I(Q,η
˜

)-preserving 7.3(3)
super I(Q,η

˜
)-preserving 7.3(4)
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R[q] 9.7(3)
simple 1.3(5)

very simple 1.3(6)
snep 1.9(1)
Souslin proper 1.13
straight 5.13
strong 6.12(1)
symmetric ([n]– ) 8.5(1)
temporary, temporarily

nep 1.3(1)
snep 1.9(1)

witness 1.9(4), 5.13(2)
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