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Abstract. This paper proposes an inductive method to construct bases
for spaces of spherical harmonics over the unit sphere Ω2q of Cq. The
bases are shown to have many interesting properties, among them or-
thogonality with respect to the inner product of L2(Ω2q). As a bypass,
we study the inner product [f, g] = f(D)(g(z))(0) over the space P(Cq)
of polynomials in the variables z, z ∈ Cq, in which f(D) is the differen-
tial operator with symbol f(z). On the spaces of spherical harmonics, it
is shown that the inner product [·, ·] reduces to a multiple of the L2(Ω2q)
inner product. Bi-orthogonality in (P(Cq), [·, ·]) is fully investigated.

1. Introduction

This paper considers spaces of polynomials in the variables z and z of Cq,
q ≥ 1. The unitary space Cq is assumed to be accompanied with its usual
inner product

〈z, w〉 := z1w1 + z2w2 + · · ·+ zqwq, z, w ∈ Cq, (1.1)
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where we are writing z = (z1, z2, . . . , zq) and w = (w1, w2, . . . , wq). The
major polynomial space considered here is P(Cq), the unitary space of poly-
nomials in the independent variables z and z of Cq. Elements of this space
can be written in the form

p(z) := p(z, z) =
∑
|α|≤m

∑
|β|≤n

pα,βz
αzβ, pα,β ∈ C, α, β ∈ Zq+, (1.2)

for nonnegative integers m and n, where standard multi-index notation is in
force. The subspace of P(Cq) composed of polynomials that are homogeneous
of degree m in z and of degree n in z will be denoted by Pm,n(Cq). The
dimension of Pm,n(Cq) is given by ([2, p.17])

δ(q,m, n) :=
(
m+ q − 1
q − 1

)(
n+ q − 1
q − 1

)
. (1.3)

The subspace of Pm,n(Cq) composed of harmonic elements, that is, elements
that are in the kernel of the complex Laplacian

∆2q := 4
q∑
j=1

∂2

∂zj∂zj
(1.4)

will be denoted by Hm,n(Cq). Elements of this space play the role played
by the solid harmonics in analysis on real spheres.

Next, we introduce spaces of polynomials restricted to the unit sphere

Ω2q := {z ∈ Cq : 〈z, z〉 = 1}. (1.5)

The symbol Pm,n(Ω2q) will stand for the space obtained from Pm,n(Cq) by
restricting its elements to Ω2q. Finally, Hm,n(Ω2q) will denote the space of
complex spherical harmonics of degree m in z and degree n in z, that is, the
set of restrictions of elements of Hm,n(Cq) to Ω2q. The space Hm,n(Ω2q) has
dimension d(q,m, n) given by ([2, p. 17])

d(q,m, n) = δ(q,m, n)− δ(q,m− 1, n− 1), m, n 6= 0, (1.6)

(q,m, 0) = δ(q,m, 0), and δ(q, 0, n) = δ(q, 0, n). (1.7)

This paper was motivated by the following three results: the orthogonal
decomposition ([2])

Pm,n(Ω2q) =
m∧n⊕
j=0

Hm−j,n−j(Ω2q), (1.8)

the dimension formula ([2], [8])

d(q,m, n) =
m∑
k=0

n∑
l=0

d(q − 1, k, l), q ≥ 2, (1.9)
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and the fact that some elements of Hm,n(Ω2q) can be constructed from given
elements in Hm−k,n−l(Ω2q), k < m, l < n, by multiplying them by special
elements of Hk,l(Cq) (see proof of Theorem 5.1 in [3]).

Looking at the real version of (1.8) in either [1, p. 76] or [9, p. 139]
one observes that the proof there requires a special inner product on spaces
of homogeneous polynomials. In the first half of the paper, we endow our
polynomial spaces with the following similar inner product

[f, g] := [f, g]q := f(D)
(
g(z)

)
(0), f, g ∈ P(Cq), (1.10)

in which

D :=
(
∂

∂z1
,
∂

∂z2
, · · · , ∂

∂zq

)
, (1.11)

and extract a number of interesting properties. Among them, we show that
there is a positive constant C, depending on m, n and q, such that

[f, g] = C〈f, g〉2, f, g ∈ Hm,n(Ω2q). (1.12)

The inner product in the right-hand side of (1.12) is the usual one in L2(Ω2q),
that is,

〈f, g〉2 :=
∫

Ω2q

f(z)g(z)dσq(z), f, g ∈ L2(Ω2q), (1.13)

where σq is a positive Borel measure invariant by isometries of Cq and
uniquely determined by the condition

σq(Ω2q) =
2πq

(q − 1)!
. (1.14)

The other properties we obtain are related to the Funk-Hecke formula ([5],
[6]) and with properties of bi-orthogonal systems in the polynomial spaces
endowed with the inner product in (1.10). All the results mentioned above
form the contents of Sections 2 and 3.

Formula (1.9) suggests that one should be able to construct a basis for
Hm,n(Ω2q) from given bases for the spaces Hk,l(Ω2q−2), k = 0, 1, . . . ,m,
l = 0, 1, . . . , n. We prove this is the case using the special polynomials
introduced in [3, p. 3] as a generating function. In addition, we discuss
orthogonality and representing properties that are implied by the result,
completing the list of results forming Section 4.

2. The inner product [·, ·]

To begin this section, we observe that the spaces Hm,n(Ω2q) are pairwise
orthogonal with respect to the inner product 〈·, ·〉2 ([3]). Throughout the
paper, orthogonality will always refer to this inner product.
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If O(2q) is the group of isometries of Cq that fix the origin then σq is
O(2q)-invariant in the following sense: σq(ρB) = σq(B) if ρ ∈ O(2q) and B
is a Borel subset of Ω2q. As a consequence, the following invariance property
holds:

〈f ◦ ρ, g ◦ ρ〉2 = 〈f, g〉2, f, g ∈ L2(Ω2q), ρ ∈ O(2q). (2.1)
The following well-known result establishes the O(2q)-invariance of complex
spherical harmonics.

Lemma 2.1. The space Hm,n(Ω2q) is O(2q)-invariant, that is, if f ∈
Hm,n(Ω2q) and ρ ∈ O(2q) then f ◦ ρ ∈ Hm,n(Ω2q).

Proof. It will be left to the reader.

Next, we return to formula (1.10).

Lemma 2.2. Formula (1.10) defines an inner product in P(Cq).

Proof. It is very easy to see from the definitions that if (i, j) 6= (k, l) then
the spaces Pi,j(Cq) and Pk,l(Cq) are orthogonal with respect to [·, ·]. In
particular, we have

[zαzβ, zγzδ] =

{
α!β!, (α, β) = (γ, δ)
0, (α, β) 6= (γ, δ).

(2.2)

Now, let f, g ∈ P(Cq). There are pairs of indices (k, l) and (m,n) in Z2
+

such that

f(z) =
k∑
i=0

l∑
j=0

fi,j(z), g(z) =
m∑
µ=0

n∑
ν=0

gµ,ν(z),

fi,j ∈ Pi,j(Cq), gµ,ν ∈ Pµ,ν(Cq). (2.3)

Hence,

[f, g] =
k∑
i=0

l∑
j=0

m∑
µ=0

n∑
ν=0

[fi,j , gµ,ν ] =
k∧m∑
µ=0

l∧n∑
ν=0

[fµ,ν , gµ,ν ]. (2.4)

Expanding fµ,ν and gµ,ν in the form

fµ,ν(z) =
∑
|α|=µ

∑
|β|=ν

aα,βz
αzβ, gµ,ν(z) =

∑
|γ|=µ

∑
|δ|=ν

bγ,δz
γzδ,

aα,β , bγ,δ ∈ C, (2.5)

we finally deduce that

[f, g] =
k∧m∑
µ=0

l∧n∑
ν=0

∑
|α|=µ

∑
|β|=ν

α!β!aα,βbα,β. (2.6)
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Using this representation, it is now easy to verify that [·, ·] defines an inner
product in the space P(Cq).

As an example, we observe that the set⋃
m,n∈Z+

{
zα√
α!

zβ√
β!

: |α| = m, |β| = n

}
(2.7)

is an orthonormal basis for (P(Cq), [·, ·]). Another remark at this time is
that formula (1.10) reduces to

[f, g] = f(D)
(
g(z)

)
, (2.8)

when the space P(Cq) is replaced with its subspace Pm,n(Cq). At last, we
observe that formula (2.6) is a complex extension of that appearing in The-
orem 5.14 in [1].

Lemma 2.3. The inner product [·, ·] possesses the following invariance
property

[f ◦ ρ, f ◦ ρ] = [f, f ], f ∈ Pm,n(C), ρ ∈ O(2q). (2.9)

Proof. Since every element of Pm,n(Cq) is a linear combination of elements
of the form zαzβ, it suffices to verify the formula in the statement of the
lemma for elements of this type. However, since

[zαzβ ◦ ρ, zγzδ ◦ ρ] = [zα ◦ ρ, zγ ◦ ρ][zβ ◦ ρ, zδ ◦ ρ], ρ ∈ O(2q), (2.10)

it suffices to prove the formula in the case in which f(z) = zα and g(z) = zγ ,
|α| = |γ|, and in the conjugate case of this one. Let ρ ∈ O(2q) be described
as

ρ(z) =

 q∑
j=1

a1jzj ,

q∑
j=1

a2jzj , . . . ,

q∑
j=1

aqjzj

 , alj ∈ C, z ∈ Cq. (2.11)

If f and g are as above then the formula to be proven is

[f ◦ ρ, g ◦ ρ] =
q∏
l=1

Dαl
l ρ(z)γ , (2.12)

where

Dl := al1
∂

∂z1
+ al2

∂

∂z2
+ · · ·+ alq

∂

∂zq
, l = 1, 2, . . . , q. (2.13)

First consider the case α = γ. Using the relation
q∑

k=1

ajkalk =

{
0 if l 6= j

1 if l = j,
(2.14)
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it is easily seen that

Dαl
l ρ(z)

α
= αl! ρ(z)

α−αlεl
, l = 1, 2, . . . , q. (2.15)

It follows that [f ◦ρ, g ◦ρ] = α! = [zα, zα]. If α 6= γ, we can assume without
loss of generality, that αj > γj for some j. In this case, Dαj

j ρ(z)
γ

= 0, that
is, [f ◦ ρ, g ◦ ρ] = 0 = [zα, zγ ]. The conjugate case is dealt with in a similar
manner.

Next, we employ the vector space isomorphism

f ∈ Hm,n(Cq) 7−→ f |Ω2q ∈ Hm,n(Ω2q) (2.16)

to bring the inner product (1.10) into the spaceHm,n(Ω2q). If f ∈ Hm,n(Ω2q)
write f̂ to denote the unique element of Hm,n(Cq) such that f̂ |Ω2q = f . Then
the formula

[f, g] := [f̂ , ĝ], f, g ∈ Hm,n(Ω2q) (2.17)

defines an inner product in Hm,n(Ω2q).
Theorem 2.7 below will reveal that the spaces (Hm,n(Ω2q), [·, ·]) and

(Hm,n(Ω2q), 〈·, ·〉2) are isomorphic. The following results will be helpful
in proving that theorem. Details about them can be found in [2]. The proof
of the first one can also be adapted from results proved in [6, p. 17]. From
now on, the symbol εj will stand for the vector of Cq having 1 in its jth

component and zeros elsewhere.

Lemma 2.4. If W is a nonzero finite-dimensional O(2q)-invariant space
of continuous functions on Ω2q then there exists a unique f in W \{0} such
that f ◦ ρ = f , when ρ ∈ O(2q) and ρ(εq) = εq.

Lemma 2.5. Let f be in Hm,n(Ω2q). The following assertions are equiva-
lent:
i) f ◦ ρ = f if ρ ∈ O(2q) and ρ(εq) = εq;
ii) There exists a complex number C such that

f(z) = Cei(m−n)θ|〈z, εq〉||m−n|P (q−2,|m−n|)
m∧n (2|〈z, εq〉|2 − 1),

z ∈ Ω2q, (2.18)

in which θ is an argument of 〈z, εq〉 in [0, 2π).

Proposition 2.6. Let N be a subspace of Hm,n(Ω2q). If N is O(2q)-
invariant then either N = {0} or N = Hm,n(Ω2q).
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Proof. If N 6= {0} then Hm,n(Ω2q) = N⊕N⊥, in which N⊥ is the orthogo-
nal complement of N in Hm,n(Ω2q). Obviously, N⊥ is O(2q)-invariant. The
rest of the proof will show that N⊥ = {0}. Indeed, if not, we may use
Lemma 2.4 to choose f ∈ N \ {0} and g ∈ N⊥ \ {0} such that f ◦ ρ = f
and g ◦ ρ = g, when ρ ∈ O(2q) and ρ(εq) = εq. Lemma 2.5 furnishes a
complex number C such that f = C g. It follows that f = g = 0, a clear
contradiction.

Theorem 2.7. There exists a positive constant C, depending on m, n and
q, such that

[f, g] = C〈f, g〉2, f, g ∈ Hm,n(Ω2q). (2.19)

Proof. Since F := {f ∈ Hm,n(Ω2q) : 〈f, f〉2 = 1} is a compact subset of
Hm,n(Ω2q), the continuous function

f ∈ F 7−→ [f, f ] ∈ R (2.20)

attains its maximum in a point f0 of F . It follows that,

[f, f ] ≤ [f0, f0]〈f, f〉2, f ∈ Hm,n(Ω2q). (2.21)

We will use this information to show that the bilinear form

ϕ : Hm,n(Ω2q)×Hm,n(Ω2q) −→ C (2.22)

given by

ϕ(f, g) = [f0, f0]〈f, g〉2 − [f, g], f, g ∈ Hm,n(Ω2q) (2.23)

is identically zero. Equivalently, we will show that

N := {f ∈ Hm,n(Ω2q) : ϕ(f, g) = 0, g ∈ Hm,n(Ω2q)} (2.24)

is the whole space Hm,n(Ω2q). Since N is a subspace of Hm,n(Ω2q), Propo-
sition 2.6 tells us that it suffices to show that N is nonzero and O(2q)-
invariant. Let ρ ∈ O(2q) and f ∈ N . Due to (2.21), ϕ is positive definite.
Hence, we may apply Schwarz’s inequality [4, p. 375] to obtain

|ϕ(f ◦ ρ, g)|2 ≤ ϕ(f ◦ ρ, f ◦ ρ)ϕ(g, g), g ∈ Hm,n(Ω2q). (2.25)

However, Lemma 2.3 and property (2.1) imply that ϕ(f◦ρ, f◦ρ) = ϕ(f, f) =
0. It follows that f◦ρ ∈ N . Since a similar argument shows that ϕ(f0, g) = 0,
g ∈ Hm,n(Ω2q), it is clear that N is nonzero.

Corollary 2.8. There exists a positive constant C such that

[f, g] = C〈f |Ω2q , g|Ω2q〉2, f, g ∈ Hm,n(Cq). (2.26)

Next, we compute the constant C in Theorem 2.7. The following lemma
is taken from Rudin’s book [8, p. 16].
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Lemma 2.9. For multi-indices α and β we have∫
Ω2q

zαzβdσq(z) =

0 if α 6= β
2πqα!

(|α|+ q − 1)!
if α = β.

(2.27)

Take f(z) = g(z) = zm1 z2
n in the space Hm,n(Cq). Formula (2.2) implies

that [f, g] = m!n! while Lemma 2.9 produces

〈f, g〉2 =
2πqm!n!

(m+ n+ q − 1)!
. (2.28)

This proves the following theorem.

Theorem 2.10. The constant C in Theorem 2.7 equals to (m + n + q −
1)!(2πq)−1.

We close the section by showing that Theorem 2.7 cannot hold in the
bigger space Pm,n(Ω2q). In fact, if h(z) = zm1 z1

n then [h, h] = m!n! while
Lemma 2.9 yields 〈h, h〉2 = 2πq(m + n)!/(m + n + q − 1)!. Now, it is
easily seen that the equality [h, h] = C〈h, h〉2 holds if and only if C =
m!n!(m + n + q − 1)!(2πq)−1/(m + n)!. This is not the value of C we have
encountered in Theorem 2.10.

3. Bi-orthogonality in (P(Cq), [·, ·])

In this section we investigate orthogonality in the space (P(Cq), [·, ·]). We
begin with a result related to basic elements of (Pm,n(Cq), [·, ·]).
Theorem 3.1. Let {fµ : µ = 1, 2, . . . , δ(q,m, n)} and {gν : ν =
1, 2, . . . , δ(q,m, n)} be bases for (Pm,n(Cq), [·, ·]). If [fµ, gν ] = 0, µ 6= ν
then

〈z, w〉m〈w, z〉n = m!n!
δ(q,m,n)∑
µ=1

fµ(z)gµ(w)
[fµ, gµ]

, z, w ∈ Cq. (3.1)

Proof. Since {fµ : µ = 1, 2, . . . , δ(q,m, n)} is a basis for Pm,n(Cq), there
are polynomials pµ, µ = 1, 2, . . . , δ(q,m, n) such that

〈z, w〉m〈w, z〉n =
δ(q,m,n)∑
µ=1

pµ(w)fµ(z), z, w ∈ Cq. (3.2)

Due to the hypothesis,

[〈·, w〉m〈w, ·〉n, gν ] =
δ(q,m,n)∑
µ=1

pµ(w)[fµ, gν ]
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=pν(w)[fν , gν ], ν = 1, 2, . . . , δ(q,m, n), w ∈ Cq.
On the other hand, writing gν in the form

gν(z) =
∑
|α|=m

∑
|β|=n

cα,βz
αzβ (3.3)

and computing, we obtain

[〈·, w〉m〈w, ·〉n, gν ] =m!n!
∑
|γ|=m

∑
|δ|=n

∑
|α|=m

∑
|β|=n

wγ

γ!
wδ

δ!
cα,β [zγzδ, zαzβ]

=m!n!
∑
|α|=m

∑
|β|=n

cα,β w
αwβ

=m!n! gν(w), ν = 1, 2, . . . , δ(m,n).

Thus,

m!n! gν(w) = pν(w)[fν , gν ], ν = 1, 2, . . . , δ(q,m, n), w ∈ Cq, (3.4)

and, in particular, since each gµ is not identically zero, [fµ, gµ] 6= 0, µ =
1, 2, . . . , δ(m,n). Concluding,

pµ = m!n!
gµ

[fµ, gµ]
, µ = 1, 2, . . . , δ(m,n) (3.5)

and the result follows.

If we let z = w in the previous theorem we get the Pythagorian identity

〈z, z〉m+n

m!n!
=

δ(q,m,n)∑
µ=1

fµ(z)gµ(z)
[fµ, gµ]

, z ∈ Cq. (3.6)

When z ∈ Ω2q, it reduces to

1
m!n!

=
δ(q,m,n)∑
µ=1

fµ(z)gµ(z)
[fµ, gµ]

. (3.7)

If both bases in the previous theorem are equal and orthonormal with re-
spect to [·, ·] then we deduce the addition formula

〈z, w〉m〈w, z〉n = m!n!
δ(q,m,n)∑
µ=1

fµ(z)fµ(w), z, w ∈ Cq. (3.8)

This formula has a structure very similar to that of the addition formula for
complex spherical harmonics ([2]). Finally, the following extension of (3.1)



122 V. A. MENEGATTO AND C. P. OLIVEIRA

can be proved in a similar manner:

〈z, u〉m〈v, z〉n = m!n!
δ(q,m,n)∑
µ=1

fµ(z)gµ(u, v)
[fµ, gµ]

, z, u, v ∈ Cq. (3.9)

Here, gµ(u, v) is obtained from gµ(u) = gµ(u, u), substituting u by v.
In our next result, we establish a Funk-Hecke type theorem for elements

in the space (P(Cq), [·, ·]).

Theorem 3.2. Let f be an element of Pm,n(Cq) and g an element of P(C).
Then, for each w ∈ Cq, the map z ∈ Cq 7→ g(〈z, w〉) belong to P(Cq). In
addition, there exists a nonnegative constant λ, depending on m and n, such
that

[g(〈·, w〉), f ] = λ f(w), w ∈ Cq. (3.10)

Proof. For each pair (k, l), we will denote by {gµk,l : µ = 1, 2, . . . , δ(q, k, l)}
an orthonormal basis for (Pk,l(Cq), [·, ·]). Assume g has degree α in z and
degree β in z. Recalling Theorem 3.1, we can write

g(〈z, w〉) =
α∑
k=0

β∑
l=0

δ(q,k,l)∑
µ=1

k! l! gµk,l(z)g
µ
k,l(w), z, w ∈ Cq. (3.11)

We can find complex numbers aj such that

f =
δ(q,m,n)∑
j=1

ajg
j
m,n. (3.12)

It follows that

[g(〈·, w〉), f ] =
δ(q,m,n)∑
j=1

α∑
k=0

β∑
l=0

δ(q,k,l)∑
µ=1

k! l! aj g
µ
k,l(w)[gµk,l, g

j
m,n]

=
δ(q,m,n)∑
j=1

α∑
k=0

β∑
l=0

δ(q,k,l)∑
µ=1

k! l! aj g
µ
k,l(w)δkmδlnδµj , w ∈ Cq.

Thus,

[g(〈·, w〉), f ] =

{
m!n! f(w), α ≥ m and β ≥ n
0, otherwise,

(3.13)

completing the proof of the theorem.

Corollary 3.3. The following formula holds

[〈·, w〉m〈w, ·〉n, 〈·, ζ〉m〈ζ, ·〉n] = m!n!〈ζ, w〉m〈w, ζ〉n, w, ζ ∈ Cq. (3.14)
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The following theorem is a converse of Theorem 3.1.

Theorem 3.4. Let {fµ : µ = 1, 2, . . . , δ(q,m, n)} be a linearly independent
subset of Pm,n(Cq). Assume there is a subset {gµ : µ = 1, 2, . . . , δ(q,m, n)}
of P(Cq) such that [fµ, gµ] 6= 0, µ = 1, 2, . . . , δ(q,m, n) and

〈z, w〉m〈w, z〉n = m!n!
δ(q,m,n)∑
µ=1

fµ(z)gµ(w)
[fµ, gµ]

z, w ∈ Cq. (3.15)

Then {fµ : µ = 1, 2, . . . , δ(q,m, n)} and {gµ : µ = 1, 2, . . . , δ(q,m, n)} are
bases for Pm,n(Cq) satisfying [fµ, gν ] = 0, µ 6= ν.

Proof. The use of (3.15) yields

m!n!
δ(q,m,n)∑
µ=1

fµ(z)gµ(λw)
[fµ, gµ]

= 〈z, λw〉m〈λw, z〉n

= 〈λz,w〉m〈w, λz〉n

= m!n!
δ(q,m,n)∑
µ=1

fµ(λz)gµ(w)
[fµ, gµ]

=m!n!
δ(q,m,n)∑
µ=1

λ
m
λn
fµ(z)gµ(w)

[fµ, gµ]
, z, w ∈ Cq, λ ∈ C.

Hence
δ(q,m,n)∑
µ=1

(
gµ(λw)− λmλngµ(w)

) fµ(z)
[fµ, gµ]

= 0, z, w ∈ Cq, λ ∈ C. (3.16)

Since the set {fµ : µ = 1, 2, . . . , δ(q,m, n)} is linearly independent, it follows
that

gµ(λw)− λmλngµ(w) = 0, w ∈ Cq, λ ∈ C, (3.17)
that is, gµ ∈ Pm,n(Cq), µ = 1, 2, . . . , δ(q,m, n). To conclude the proof we
apply Theorem 3.2 and formula (3.15) appropriately to obtain

m!n! fν(z) = [〈·, z〉m〈z, ·〉n, fν ] = m!n!
δ(q,m,n)∑
µ=1

fµ(z)[fν , gµ]
[fµ, gµ]

,

ν = 1, 2, . . . , δ(q,m, n).

The linear independence hypothesis allows us to conclude that [fν , gµ] = 0,
µ 6= ν.



124 V. A. MENEGATTO AND C. P. OLIVEIRA

Corollary 3.5. If a linearly independent subset {fµ : µ = 1, 2, . . . ,
δ(q,m, n)} of Pm,n(Cq) satisfies

〈z, w〉m〈w, z〉n = m!n!
δ(q,m,n)∑
µ=1

fµ(z)fµ(w), z, w ∈ Cq, (3.18)

then it is orthonormal with respect to [·, ·].

Proof. It suffices to observe that, under the given hypotheses, the denom-
inator in the sum on the right-hand side of the last equation in the proof of
Theorem 3.4 disappears.

4. Generating bases

This section presents a method to construct bases for the space
Hm,n(Ω2q). The method is inductive over the dimension of the sphere,
that is, it presupposes the knowledge of a basis for Hm,n(Ω2q−2). We begin
with a technical lemma that exhibits a very special kernel in Hm,n(Cq). As
we said before, the idea behind the use of this kernel comes from the proof
of Theorem 5.1 in [3].

For a fixed q1 ∈ {1, 2, . . . , q} we will employ the decomposition Cq =
W q1 ⊕ V q−q1 , where W q1 = {z ∈ Cq : zj = 0, j = q1 + 1, q1 + 2, . . . , q} and
V q−q1 = {z ∈ Cq : zj = 0, j = 1, 2, . . . , q1}.

Lemma 4.1. Let w ∈W q1 ∩ Ω2q and v ∈ V q−q1 ∩ Ω2q. Then

Gw,vm,n(z) := 〈z, v + w〉m〈v − w, z〉n, z ∈ Cq (4.1)

is an element of Hm,n(Cq).

Proof. First observe that

∂

∂zj
Gw,vm,n =

{
−n〈z, v + w〉m〈v − w, z〉n−1wj j = 1, 2, . . . , q1

n〈z, w + v〉m〈v − w, z〉n−1vj j = q1 + 1, q1 + 2, . . . , q.

Next, notice that
q∑

j=q1+1

∂2

∂zj∂zj
Gw,vm,n = −

q1∑
j=1

∂2

∂zj∂zj
Gw,vm,n. (4.2)

It follows that ∆2q(G
w,v
m,n) = 0. The homogeneity of Gw,vm,n with respect to z

and z is clear.
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If q1 = q − 1 in the previous lemma then W q−1 ∩Ω2q is a copy of Ω2q−2.
In other words, elements of W q−1 ∩ Ω2q are of the form ŵ = (w, 0) with
w ∈ Ω2q−2. Denoting the elements of Cq by ẑ = (z, zq), z ∈ Cq−1, and taking
v = εq = (0, 0, . . . , 0, 1), the function in the previous lemma takes the form

G bw,vm,n(ẑ) = (〈z, w〉+ zq)m(−〈w, z〉+ zq)n. (4.3)

From now on, we will adopt the following simplified notation: Gwm,n := G bw,vm,n.
The main result of this section is as follows.

Theorem 4.2. Let {gj : j = 1, 2, . . . , d(q,m, n)} be a linearly indepen-
dent subset of

⋃m
k=0

⋃n
l=0Hk,l(Ω2q−2). Then there exists a subset {fj : j =

1, 2, . . . , d(q,m, n)} of Hm,n(Cq) such that

Gwm,n(ẑ) =
d(q,m,n)∑
j=1

fj(ẑ)gj(w), ẑ = (z, zq) ∈ Cq, w ∈ Ω2q−2. (4.4)

Proof. Initially, we expand the right-hand side of (4.3) to write

Gwm,n(ẑ) =
∑

|α|+µ=m

m!
µ!α!

zαzµqw
α
∑

|β|+ν=n

n!
ν!β!

(−w)βzβzνq , ẑ ∈ Cq. (4.5)

Since |α| ≤ m and |β| ≤ n, a help of (1.8) allows us to find constants aj(α, β)
such that

wα(−w)β =
d(q,m,n)∑
j=1

aj(α, β)gj(w), w ∈ Ω2q−2. (4.6)

Hence,

Gwm,n(ẑ)

=
d(q,m,n)∑
j=1

 ∑
|α|+µ=m

∑
|β|+ν=n

aj(α, β)
m!
µ!α!

zαzµq
n!
ν!β!

zβzνq

 gj(w). (4.7)

We now show that the expression

fj(ẑ) :=
∑

|α|+µ=m

∑
|β|+ν=n

aj(α, β)
m!
µ!α!

zαzµq
n!
ν!β!

zβzνq , (4.8)

defines an element of Hm,n(Cq), for j = 1, 2, . . . , d(q,m, n). The homogene-
ity of fj of degree m with respect to ẑ and of degree n with respect to ẑ is
obvious. Applying the Laplacian in (4.7) we deduce

0 = ∆2q(Gwm,n)(ẑ) =
d(q,m,n)∑
j=1

∆2q(fj)(ẑ)gj(w), ẑ ∈ Cq, w ∈ Ω2q−2. (4.9)
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The linear independence of the gj implies that ∆2q(fj) = 0.

The following lemma describes an integral operator that reproduces com-
plex spherical harmonics. It is a complex version of the famous Funk-Hecke
formula. A proof for this version can be found in [5] and [7]. In the statement
of the lemma, B[0, 1] is the closed unit disk in C, dνq(z) is the normalized
Lebesgue measure given by

dνq(z) :=
q − 1
π

(
1− x2 − y2)q−2

dx dy, z = x+ iy ∈ B[0, 1], (4.10)

Lp,q(B[0, 1]) is the class of complex functions that are p-integrable in B[0, 1]
with respect to νq and P q−2

m,n is the disk polynomial of degree m+n associated
with the integer q − 2.

Lemma 4.3. Let Y be an element of Hm,n(Ω2q), and K an element
of L1,q(B[0, 1]). Then for every w in Ω2q, the mapping z ∈ Ω2q 7−→
K(〈z, w〉)Y (z) is in L1(Ω2q) and∫

Ω2q

K(〈z, w〉)Y (z)dσq(z) = λq−2
n,m(K)Y (w), w ∈ Ω2q, (4.11)

in which
λq−2
n,m(K) :=

2πq

(q − 1)!

∫
B[0,1]

K(z)P q−2
n,m (z)dνq(z). (4.12)

Theorem 4.4. Let {gj : j = 1, 2, . . . , d(q,m, n)} be a linearly independent
subset of

⋃m
k=0

⋃n
l=0Hk,l(Ω2q−2) and let {fj : j = 1, 2, . . . , d(q,m, n)} be as

in Theorem 4.2. If the set {gj : j = 1, 2, . . . , d(q,m, n)} is orthonormal then
{fj : j = 1, 2, . . . , d(q,m, n)} is an orthogonal basis for (Hm,n(Cq), [·, ·]).

Proof. In the first step of the proof we show that [Gwm,n, G
ζ
m,n] = K(〈ζ, w〉),

for some function K. Indeed, recalling the hat notation introduced in the
beginning of the section, we see that

[Gwm,n, G
ζ
m,n] = Dm

1 [(〈ζ, z〉+ zq)m]Dn
2 [(−〈z, ζ〉+ zq)n] , (4.13)

in which
D1 := w1

∂

∂z1
+ w2

∂

∂z2
+ · · ·+ wq−1

∂

∂zq−1
+

∂

∂zq
(4.14)

and
D2 := −w1

∂

∂z1
− w2

∂

∂z2
− · · · − wq−1

∂

∂zq−1
+

∂

∂zq
. (4.15)

However,
Dm

1 (〈ζ, z〉+ zq)m = m!(〈ζ, w〉+ 1)m (4.16)
and

Dn
2 (−〈z, ζ〉+ zq)n = n!(〈w, ζ〉+ 1)n (4.17)
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so that

[Gwm,n, G
ζ
m,n] = m!n!(〈ζ, w〉+ 1)m(〈w, ζ〉+ 1)n := K(〈ζ, w〉),

w, ζ ∈ Ω2q−2. (4.18)

Next, we use the previous theorem to deduce that

[Gwm,n, G
ζ
m,n] =

d(q,m,n)∑
l=1

pl(w)gl(ζ), w, ζ ∈ Ω2q−2, (4.19)

in which

pl(w) =
d(q,m,n)∑
j=1

[fj , fl]gj(w), w ∈ Ω2q−2. (4.20)

If the gl form an orthonormal set we can apply the previous lemma to obtain

λ(j)gj(w) =
∫

Ω2q−2

K(〈ζ, w〉)gj(ζ)dσq−1(ζ) = pj(w),

j = 1, 2, . . . , d(q,m, n), (4.21)

in which λ(j) is a positive constant depending on gj and K. Thus,

[Gwm,n, G
ζ
m,n] =

d(q,m,n)∑
l=1

λ(l)gl(w)gl(ζ), w, ζ ∈ Ω2q−2. (4.22)

A comparison with (4.19) yields the relation

λ(l)gl(w) =
d(q,m,n)∑
j=1

[fj , fl]gj(w),

w ∈ Ω2q−2, l = 1, 2, . . . , d(q,m, n). (4.23)

It is now evident that [fj , fl] = 0, j 6= l and that [fl, fl] = λ(l), l =
1, 2, . . . , d(q,m, n).

Example 4.5. Let m = n = 1 and q = 3. Due to Lemma 2.9, the polyno-
mials

g1(w) =
1√
2π

, g2(w) =
1
π
w1, g3(w) =

1
π
w2, g4(w) =

1
π
w1,

g5(w) =
1
π
w2, (4.24)

g6(w) =
√

3
π
w1w2, g7(w) =

√
3
π
w1w2 and

g8(w) =
√

6
2π

(w1w1 − w2w2) (4.25)
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define an orthonormal subset of H0,0(Ω4)∪H0,1(Ω4)∪H1,0(Ω4)∪H1,1(Ω4).
The kernel Gw1,1(ẑ) takes the form

z3z3 − z1z3w1 − z2z3w2 + z1z3w1 + z2z3w2 − z1z2w1w2 − z1z2w2w1

− z1z1w1w1 − z2z2w2w2.

Computing the coefficients aj(α, β) in (4.6), here written as aj(α;β), we
obtain

a1(0, 0; 0, 0) =
√

2π, a1(1, 0; 1, 0) = −
√

2π
2

, a8(1, 0; 1, 0) = − π√
6

(4.26)

a1(0, 1; 0, 1) = −
√

2π
2

, a8(0, 1; 0, 1) =
π√
6
, a2(0, 0; 1, 0) = −π, (4.27)

a4(1, 0; 0, 0) = π, a5(0, 1; 0, 0) = π, a6(0, 1; 1, 0) = − π√
3

(4.28)

a7(1, 0; 0, 1) = − π√
3
, a3(0, 0; 0, 1) = −π, (4.29)

while all the others equal zero. Looking at (4.8), we encounter

f1(ẑ) =
√

2π
2

(−z1z1 − z2z2 + 2z3z3) , f2(ẑ) = −πz3z1,

f3(ẑ) = −πz3z2, (4.30)

f4(ẑ) = πz1z3, f5(ẑ) = πz2z3, f6(ẑ) = − π√
3
z2z1, (4.31)

and
f7(ẑ) = − π√

3
z1z2, f8(ẑ) =

π√
6

(−z1z1 + z2z2) . (4.32)

Theorem 4.4 implies that {fj : j = 1, 2, . . . , 8} is an orthogonal basis for
(H1,1(C3), [·, ·]). The isomorphism (2.11) provides us with an orthogonal
basis for H1,1(Ω6).

Corollary 4.6. Assume the hypotheses in Theorem 4.4. If {gj : j =
1, 2, . . . , d(q,m, n)} is orthonormal then

fj(ẑ) = pj(zq)gj(z), z ∈ Ω2q−2, j = 1, 2, . . . , d(q,m, n), (4.33)

in which {pj : j = 1, 2, . . . , d(q,m, n)} is a subset of P(C).
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Proof. If {gj : j = 1, 2, . . . , d(q,m, n)} is orthonormal, we can use (4.4) to
deduce

fj(ẑ) =
∫

Ω2q−2

Gwm,n(ẑ) gj(w) dσq−1(w), z ∈ Ω2q−2. (4.34)

Expanding Gwm,n in the form

Gwm,n(ẑ) =
m∑
µ=0

n∑
ν=0

(−1)νm!n!
µ!ν!(m− µ)!(n− ν)!

zm−µq zq
n−νKµ,ν(〈w, z〉), (4.35)

where Kµ,ν(〈z, w〉) = 〈z, w〉µ〈w, z〉ν , using Lemma 4.3 and arranging we
obtain

fj(ẑ) =

 m∑
µ=0

n∑
ν=0

(−1)νm!n!
µ!ν!(m− µ)!(n− ν)!

bj(µ, ν)zm−µq zq
n−ν

 gj(z),

z ∈ Ω2q−2, (4.36)

where the bj(µ, ν) are constants produced by the Funk-Hecke formula.
Defining

pj(z) =
m∑
µ=0

n∑
ν=0

(−1)νm!n!
µ!ν!(m− µ)!(n− ν)!

bj(µ, ν)zm−µzn−ν , z ∈ C (4.37)

concludes the proof.

Corollary 4.7. Assume the hypotheses in Theorem 4.4. If {gj : j =
1, 2, . . . , d(q,m, n)} is orthonormal then

(〈ζ, w〉+ 1)m(〈w, ζ〉+ 1)n = D

d(q,m,n)∑
j=1

〈fj , fj〉2gj(w)gj(ζ),

w, ζ ∈ Ω2q−2, (4.38)

in which D = (m+ n+ q − 1)!(2πqm!n!)−1.

Proof. First we manipulate the sum in the right-hand side of (4.38) to
obtain

d(q,m,n)∑
µ=1

〈fµ, fµ〉2gµ(w)gµ(ζ)

=
d(q,m,n)∑
µ=1

d(q,m,n)∑
ν=1

(∫
Ω2q

fµ(ẑ)fν(ẑ)dσq(ẑ)

)
gµ(w)gν(ζ)
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=
∫

Ω2q

d(q,m,n)∑
µ=1

fµ(ẑ)gµ(w)
d(q,m,n)∑
ν=1

fν(ẑ)gν(ζ) dσq(ẑ)

=
∫

Ω2q

Gwm,n(ẑ)Gζm,n(ẑ) dσq(ẑ), w, ζ ∈ Ω2q−2.

Recalling Lemma 4.1, Theorem 2.7 and Theorem 2.10, we conclude that
d(q,m,n)∑
µ=1

〈fµ, fµ〉2gµ(w)gµ(ζ) =
2πq

(m+ n+ q − 1)!
[Gwm,n, G

ζ
m,n],

w, ζ ∈ Ω2q−2. (4.39)

Finally, (4.18) reduces (4.39) to
d(q,m,n)∑
µ=1

〈fµ, fµ〉2gµ(w)gµ(ζ) = D−1(〈ζ, w〉+ 1)m(〈w, ζ〉+ 1)n,

w, ζ ∈ Ω2q−2, (4.40)

with D as described in the statement of the corollary.

By letting w = ζ in Corollary 4.7 we deduce the following identity
d(q,m,n)∑
µ=1

〈fµ, fµ〉2|gµ(w)|2 =
2m+n+1πqm!n!

(m+ n+ q − 1)!
, w ∈ Ω2q−2. (4.41)

We close this section presenting two independent results, one giving an
estimate for the sum

∑d(q,m,n)
µ=1 〈fµ, fµ〉2 and the other explaining why the

construction in Theorem 4.2 preserves bi-orthogonality.

Corollary 4.8. Assume the hypotheses in Theorem 4.4. If {gj : j =
1, 2, . . . , d(q,m, n)} is orthonormal then

d(q,m,n)∑
j=1

〈fj , fj〉2 ≤
2m+n+2π2q−1

(q − 1)!(q − 2)!
. (4.42)

Proof. First apply the Cauchy-Schwarz inequality to obtain

Gwm,n(ẑ)Gwm,n(ẑ) ≤〈ẑ, ẑ〉m〈(w, 1), (w, 1)〉m〈ẑ, ẑ〉n〈(−w, 1), (−w, 1)〉n

≤2m+n〈ẑ, ẑ〉m+n, ẑ ∈ Cq, w ∈ Ω2q−2.

Integration yields∫
Ω2q

Gwm,n(ẑ)Gwm,n(ẑ)dσq(ẑ) ≤ 2m+n
∫

Ω2q

dσq(ẑ) =
2m+n+1πq

(q − 1)!
,
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w ∈ Ω2q−2. (4.43)

On the other hand, if {gj : j = 1, 2, . . . , d(q,m, n)} is orthonormal, the
arguments at beginning of the proof of Corollary 4.7 imply that

d(q,m,n)∑
j=1

|gj(w)|2〈fj , fj〉2 ≤
2m+n+1πq

(q − 1)!
, w ∈ Ω2q−2. (4.44)

Finally,

d(q,m,n)∑
j=1

〈fj , fj〉2 =
d(q,m,n)∑
j=1

〈fj , fj〉2
∫

Ω2q−2

|gj(w)|2dσq−1(w)

≤ 2m+n+1πq

(q − 1)!

∫
Ω2q−2

dσq−1(w) =
2m+n+2π2q−1

(q − 1)!(q − 2)!
,

completing the proof.

Corollary 4.9. Let {gj : j = 1, 2, . . . , d(q,m, n)} and {g′j : j =
1, 2, . . . , d(q,m, n)} be orthonormal subsets of

⋃m
k=0

⋃n
l=0Hk,l(Ω2q−2) and

let {fj : j = 1, 2, . . . , d(q,m, n)} and {f ′j : j = 1, 2, . . . , d(q,m, n)} be the
corresponding sets resulting from the use of Theorem 4.2. If 〈gj , g

′
k〉2 = 0,

j 6= k, then [fj , f
′
k] = 0, j 6= k.

Proof. We use Corollary 4.6 to write

fj(ẑ) = pj(zq)gj(z), z ∈ Ω2q−2, j = 1, 2, . . . , d(q,m, n), (4.45)

and

f
′
j(ẑ) = p

′
j(zq)g

′
j(z), z ∈ Ω2q−2, j = 1, 2, . . . , d(q,m, n), (4.46)

in which {pj : j = 1, 2, . . . , d(q,m, n)} and {p′j : j = 1, 2, . . . , d(q,m, n)}
are subsets of P(C). It follows, with a help of Theorem 2.7, that

[fj , f
′
k]q =pj

(
∂

∂zq

)(
p
′
k(zq)

)
[gj , g

′
k]q−1

=
m+ n+ q − 1)!

2πq
pj

(
∂

∂zq

)(
p
′
k(zq)

)
〈gj , g

′
k〉2.

The conclusion in the statement of the Corollary follows.
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