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Abstract. In this paper, by introducing some parameters and by em-
ploying a sharpening of Holder’s inequality, a new generalization of
Hardy-Hilbert integral inequality involving the Beta function is estab-
lished. At the same time, an extension of Widder’s theorem is given.

1. Introduction

1 1
Suppose that p > 1, —+ — =1, and f,g: (0,00) — (0,00) are so that
p q
o0 o0
0< / fP(t)dt < oo, 0< / gi(t)dt < 0.
0 0
Then we may state the following integral inequality
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[

< 2 ([ o) " ([ o) R

in which the constant factor 7 /sin(7/p) is the best possible.

The inequality (1.1) is well known in the literature as Hardy-Hilbert’s
integral inequality.

Recently, some improvements and generalizations of Hardy-Hilbert’s in-
tegral inequality have been given. For instance, we refer the reader to the
papers [1]-[3], [5], [6], [8] and the bibliography therein.

The main purpose of this paper is to establish a new extended Hardy-
Hilbert’s type inequality, which includes improvements and generalisations
of the corresponding results from [1]-[2].

2. Lemmas and their proofs

For convenience, we firstly introduce some notations:

)= [ r@d@de - ( Ia fp(w)dw) "

112 = 1171, S (H,x) = (H",x) | HI"72,

where z is a parametric variable unit vector. Clearly, S, (H,x) = 0 when
the vector z selected is orthogonal to HP/2.
Throughout this paper, m is taken to be

“Lha)
m=minq —, — o .
P q

In order to state our results, we need to point out the following lemmas.

Lemma 1. Let f(z),g9(z) > 0,z € (0,00), —+ - =1 and p > 1. If

"=
S

0<||fllp <o0,0<|lg|lg < oo, then

(f:9) <|Ifllpllgllg (1 — R)™, (2.1)
where R = (S, (f,h) — Sy (9.0))2, [[Al| = 1, f7/2(x), g**(x) and h(x) are
linearly independent.

The lemma is proved in [5], and we omit the details.
In the following, we define

A—2 A—2
k/\:B<p+ 7q+ )7
p q
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= [ i (D) e e=pa

o] 2fu—l
B(u,v) = ——dt ,0>0
(u,v) /0 AT (u,v )

where

is the Beta function.
The following lemma also holds.

Lemma 2. Let b < 1, A > 0. Define the function

e(by) =y /Oy (1—l—1u)>‘ <i)bdu, y € (0,1].

Then we have

w(b,y) > (b, 1), 0<y<1). (2.2)

A proof of Lemma 2 is given in paper [8], and we omit it here.
Another technical result that will be required in the following is:

1 1
Lemma 3. Letp>1, —+ - =1, A > 2 —min{p,q}, a« > —(3. Define the
p q

weight function wy by

oo (2=X\)/r
u))\(()é,ﬂ,r,l'):/ ! (x—l_B) dy

o (@+y+20*2 \y+4 (2.3)
z € (a,00).

(i) For o = —f3,

wA(=B,B,1m.x) =ky(x + B)'*  x € (—B,00). (2.4)
(ii) For a > —f,

1+(A\=2)/r
w)\(Oé,/B,T‘,.ZE) < [k)\_ek(r) <Z::__g) ($+/8)1_>\
z € (a,00). (2.5)

Proof. Setting u = (y + 5)/(x + 3), we have
00 2=\ /r
s =@ [0 s (V) W

+8) (14+u) \u
(z+8)

(i) For a = —p, (2.4) is valid.
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(ii) For a > —f3, we have

wi(a, B, 1, )
B _ 00 1 1 2=\ /r
=(z+p) {/0 A+up <u> du (2.6)
551 1\
B /0 (1+w) (u) du}
B = O4—|—,8 1+(A=2)/r 2.\ Ol+ﬁ
— {m ( w) ¢< - ,Hﬁ) @

Putting b = (2 — \)/r, and since A > 2 —min{p, ¢},b < 1 is valid, then
by Lemma 2 we get

¢<2;A“Ig) (2;AJ>:6AM (z€(0,00).  (28)

Substituting (2.8) into (2.7), we obtain (2.5). The proof is completed.

O
Finally, the following result is needed as well.
Lemma 4. Let a, (n=0,1,2,3,...) be complex numbers. If
o
o
n=0
is analytic on unit disk |z| < 1, and
. ap 2"
A*(z) = .
(2) ;} g
is analytic on |z| < 0o, then
159 2 1
/p1|m_ A% (s)ds| Ly, (2.9)

where s € (0,00), € (0,1].

Proof. Since A*(z) is analytic on the complex plane, the series

= e ta, (xt)"
D

n=0
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is uniformly convergent in (0, 00), and we obtain

/ _tA*(m dt = / et n (2
0
a"l" / re—tdt

= Z anz" = A(x)
n=0
Setting tz = s, then
1 o0
Alz) == / =5/ A% (5)ds
T Jo
whence
1 1 o) 2 1
/ |A(2)|? dz = / / e/ A*(s)ds —dz.
0 o 1Jo €
The lemma is thus proved. O

3. Main results

For the sake of convenience, we need the following notations:

i fa) — (2=X)/(pa)
F(x,y)—(x+y+25)A/p <y+/5) )

9(y) y+ [ Y/ @)
Glay) = (w+y+2ﬁ>k/q <m+ﬁ> ’
a+p

a (2-X\)/r

/ W (1> du, (3.1)
0 ]. + ’LL u

{ / / Fp/zhdxdy}

x {/ [kx — ¢(q, )] (z + ﬁ)lAf”(fv)dx}l/z,

{/:o/ Gq/thxdy}

00 ~1/2
{ oy — & >]<x+5>1—kgq<w>dx} ,

and
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where h = h(z,y) is a unit vector satisfying the property

0o OO 1/2
ol ={ [~ [T e} <1

and FP/2. G2 h are linearly independent.
The first main result is incorporated in the following theorem.

Theorem 1. Letp > 1, —+ - =1, A > 2 —min{p,q}, o > =3, and

"=
< |

f,g > 0. Assume also that

0< /oo(t + A P ()dE < oo,
and

0</Oo(t+ﬂ)1 Aga(t)dt < .

(i) If « > —f, then we have

/ / mdwdy (3.2)
J&i 1+(A—2)/q 1/p
{ (lﬂ ~ t+ﬁ> >(t+5)1_>‘fp(t)dt}
a +(A=2)/p 1/q
{ (kA t :g) ) (t+ ﬁ)lqu(t)dt} (1— Ry)™.
(ii) If a = —ﬂ, then we have
/ / :c+y+25 (et g+ op)edy 5.3
v > 1/q
< ky </_B (t+ 6)1—Afp(t)dt) </_ﬁ (t+ B gi(t )dt) (1— R)™,
where

Ry = (SP(F7 h) - SQ(G7 h))2 )
while the function h is defined by

W, y) = <72T> - o ;a_za)m (; - Z) " (3.4)
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Proof. By Lemma 1 and the equality (2.3), we have
< f@)gly)
— " dzd 3.5
/a /a @ryt+200 " (@)
= / / FGdxdy
00 oo 1/p 0o oo 1/q
< {/ / dexdy} {/ / quxdy} (1 —R)™

([ ma,ﬂ,q,t)fp(t)dt)l/p ([ et My

Substituting (2.5) and (2.4) into the inequality (3.5) respectively, the in-
equalities (3.2) and (3.3) follow.

Next, let us discuss the expression R).

We can choose the function % indicated by (3.4). Setting s = x — a and
t=1y— «, we get

o0 o0 2 o0 o0 1 s 1/2
hl|? = h? dxdy = = QSd/ Z dt = 1.
e = [ [T rednay =2 [T eas [T (3)

Hence, ||h]| = 1.
By Lemma 1 and the given h, we have

Ry = { (/:O /aoo FP/2hda;dy> </:O /aoo }”’dscaly)l/2
([ o) ([ o) Y-

Substituting (2.3), (2.6) and (3.1) into (3.6), we get
Ry = (Sp(F,h) = $4(G, h)*.

It is obvious that F?/2, G¥2 and h are linearly independent, so it is
impossible for equality to hold in (3.5).
The proof is thus completed. ]

Owing to p,q > 1, when A = 1,2; the condition A > 2 — min{p, ¢} is
satisfied. We have

; Lo\ !
() /0 1+u<u) u>/0 Lo ™

11 i
ki =B e B )
' <p q sin (7 /p)
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0 = [ =
A=) w2 T 2

292 ¢4+2-2
kng(p+ gt ):B(l,l):l.

p q

The following results are natural consequences of Theorem 1.
1 1

Corollary 1. If p>1, - +-=1,a >0, f,g >0,
p g

0< /OO fP(t)dt < oo,

and

0< / g(t)dt < oo,

then

/ / x—i— +2ﬁd wdy

<:{1; <$n£/m (iﬂf§>1ﬁan2>fTGﬁﬁ}
1 (- 52 o
/ /5 x+y+2ﬁ dudy

< ) (/5 f p(”dt)l/p ( / o; 9q<t>dt> My, (3.8)
d

[
<$M;@)([”W@MQM%<Awf@moual—Rﬁm. (3.9)

Remark 1. When p = ¢ = 2, the inequality (3.9) reduces, after some
simple computation, to an inequality obtained in [2].

1/p

(3.7)
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1 1
Corollary 2. Ifp>1, —-+-=1,a> 3, f,g >0,
p q

0< /Oo(t +B) L)t < oo
and

0< /Oo(t +3) i (t)dt < oo,

/ /a x+y+26) oty + 23
© a+f3 1 1/p
/ <1 t+ﬁ>t+ﬂfp(t)dt}

{
« {/oo (1 O;:fa ) L gq(t)dt}l/q(l _ Ry)" (3.10)

t+ 0
// m+y+25)
L ([ o)

Remark 2. The inequalities (3.2), (3.3) and (3.7)—(3.9) are generalizations
of (1.1).

then

<

Remark 3. We can also define h(z,y) as

1 (x,y) €10,1] x [0,1]
h(z,y) = {0 (z,y) € (0,00) x (0,00) \ [0,1] x [0,1].

In this case, the expression of Ry will be much simpler. The details are
omitted.

4. Applications

We start with the following result:
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Theorem 2. Suppose that a, (n = 0,1,2,3,...) are complex numbers.
Also, define
Alw) =D ana",  A(@) =D T
n=0 n=0

and the function f as:

f(x) =e A" (x), z € (0,00). (4.1)

1 1
Ifp>1, —+— =1, then
p q

/01 |A(2)|? da:

<aem ([ If(w)\pd:v>1/p ([ If(x)lqd:v>1/q G-R" (42

where
R:= (S, (F,h) — 8, (G,h))* >0,
with ||h|| = 1, and

1/ (s)] (8)1/<m). G @)l <t)1/<Pq>7

S

(s +t)l/a

- 7 — ;

C(s+t)t/r \t

S +\ (a=»)/(2pq)
¥(t) ::/0 G+1) <8> ds,

sE=vef [T iroptas{ 7 |f(s)\pds}_1/ ’
5, o= Y2 {[Cowisomeal {7 Ws)‘qu}_m

and (F)P/?, (G)9/%, h are linearly independent.

Proof. Setting y = 1/x on the right-hand side of the equality (2.9), we

have
1 (o] [e9)
/ A(x)]Qda::/ / e WA*(s)ds
0 1 1Jo

Next, put u = y — 1. According to the equalities (4.1) and (4.3), we get

/01 |A(:c)|2dx:/ooodu /Oooe_suf(s)ds

2
dy. (4.3)

2
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Using Hardy’s technique, we may state that

/ A do - [Tl [T
= [T [T et [ e o
= / / (/ S*t"du)m )17 ()| dsdt
:/ / |f8’+|fl; dsdt
< W (/0 |f(x)|p> v </O°° ]f(x)|q> e,

Let us choose the function h(s,t) to be defined by

1/2 e’ s
hls,t) = (i) CEmUE (5"

0o oo 1/2
|h|| = {/ / h2(s,t)dsdt} =1.
0 0

ki(p) = B (;;) N m’

and, in a similar way to the one in Theorem 1, the expression of R is easily
given. We omit the details. O

2

then

Notice that

Remark 4. In particular, when p = ¢ = 2, it follows from (4.2) that

/01 A%(z)dx = (1 1/2/ () (4.4)

If r in (4.4) is replaced by zero, then Widder’s theorem (see [7]) can be
recaptured.

Remark 5. After simple computation, the inequality (4.4) is equivalent to
the inequality (3.4) in [2]. Consequently, inequality (4.2) is an extension of

(3.4) in [2].
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